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Abstract: Gene regulatory networks consist of direct interactions on the transcriptional level,
but also include indirect interactions mediated by metabolism. We investigate to which extent
these indirect interactions influence the dynamics of the system. To this end, we build a
qualitative model of the gene regulatory network controlling carbon assimilation in E. coli, and
use this model to study the changes in gene expression following a diauxic shift from glucose to
acetate. We find significant differences between the dynamics of the system in the absence and
presence of metabolic coupling. This shows that interactions arising from metabolic coupling
cannot be ignored when studying the dynamics of gene regulatory networks.
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1. INTRODUCTION

The reorganization of gene expression patterns in response
to environmental changes is controlled by so-called gene
regulatory networks, which ensure the coordinated expres-
sion of clusters of functionally related genes. The interac-
tions in the network may be direct, as in the case of a gene
coding for a transcription factor regulating the expression
of another gene. Most of the time, however, regulatory
interactions are indirect, e.g. when a gene encodes an en-
zyme producing a transcriptional effector (Brazhnik et al.,
2002). The latter interactions arise from the fact that gene
regulation is embedded in a complex, multi-level system
that tightly integrates gene expression with metabolism.
We call the occurrence of indirect interactions between
enzymes and genes, mediated by metabolism, metabolic
coupling.

In previous work, we showed how indirect interactions aris-
ing from metabolic coupling can be derived from a model
of the underlying biochemical reaction network (Baldazzi
et al., 2010). We applied this approach to the carbon as-
similation network in Escherichia coli. Our results showed
that the derived gene regulatory network is densely con-
nected, contrary to what is usually assumed. Moreover, we
found that the signs of the indirect interactions are largely
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fixed by the direction of metabolic fluxes, independently
of specific parameter values and rate laws, and that a
change in flux direction may invert the sign of indirect
interactions. This leads to a feedback structure that is at
the same time robust to changes in the kinetic properties
of enzymes and that has the flexibility to accommodate
radical changes in the environment.

It remains an open question, however, to which extent
the indirect interactions induced by metabolic coupling
influence the dynamics of the system. This is a key
issue for understanding the relative contributions of the
regulation of gene expression and metabolism during the
adaptation of the cell to changes in its environment.
Indirect interactions could be essential in shaping the
response of the cell, giving it the required flexibility to
adapt to external perturbations. However, one could also
argue that indirect interactions only have a fine-tuning
effect, simply refining the gene expression levels at which
the system would stabilize without metabolic coupling.

In order to decide between these two hypotheses, and ob-
tain a clearer view of the role of metabolic coupling in the
adaptation of gene expression, we build a dynamic model
of the gene regulatory network controlling carbon assimi-
lation in E. coli, and use this model to study the changes
in gene expression following a diauxic shift from glucose to
acetate. More specifically, we develop a qualitative model
using piecewise-linear (PL) differential equations that al-
lows us to encode the regulatory logic of the system in
a simple way (Batt et al., 2008; Glass and Kauffman,
1973). Even though good quantitative models of carbon
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metabolism in E. coli have appeared in recent years (e.g.,
Bettenbrock et al. (2005); Kotte et al. (2010)), not much
is know about precise mechanisms and parameters values
for gene regulation. Moreover, qualitative models are an
appropriate tool for analyzing if metabolic coupling can
induce major changes in the gene expression dynamics,
i.e., will not only have an effect on quantitative but also
qualitative properties of the system dynamics.

We build two distinct qualitative models of the network,
corresponding to the topology with and without indirect
interactions, respectively. The dynamical properties of the
two models are analyzed and compared with available
experimental data. In particular, we compare the steady-
state concentration of enzymes and transcription regula-
tors during growth on glucose and acetate, as well as the
dynamic response of gene expression to the exhaustion of
glucose and the subsequent assimilation of acetate.

We find significant differences between the dynamics of
the system in the absence and presence of metabolic
coupling. This underlines the importance of metabolic
coupling in gene regulatory networks, and show that such
indirect interaction cannot be neglected when studying the
adaptation of an organism to changes in its environment.

2. METABOLIC COUPLING IN GENE
REGULATORY NETWORKS

In Baldazzi et al. (2010) a mathematical method is pro-
posed, based on a combination of time-scale approxima-
tions and sensitivity criteria from metabolic control analy-
sis, to reconstruct the indirect interactions between genes
from a model of the underlying network of biochemical
reactions. In the following, we briefly summarize the basic
principles of this approach.

We start by building a stoichiometric model of the net-
work. The model takes the form of a system of ordinary
differential equations (ODEs) and describes the rate of
change of the concentrations of the different molecular
species in the network:

ẋ = N v(x), x(0) = x0, (1)

where x ∈ R
n
+ denotes the vector of concentrations and

v : R
n
+ → R

q the vector of reaction rates. N ∈ Z
n×q is a

stoichiometry matrix. In the presence of conserved quan-
tities, N is the reduced stoichiometry matrix.Contrary to
kinetic models, the rate laws are not explicitly specified,
but only the functional dependency of the reaction rates on
specific molecular species are given. We do not develop the
rate laws, because only the signs of the partial derivatives
are used for reconstructing the indirect interactions (see
below).

As a first step, the model can be simplified by making the
QSS approximation (Heinrich and Schuster, 1996). Two
different time-scales are distinguished, one corresponding
to the slow processes (protein synthesis and degradation)
and one to the fast processes (complex formation and
enzymatic reactions). Based on time-scale separation, the
original model can be rewritten into two distinct subsys-
tems

ẋs = Ns vs(xs, xf ), xs(0) = xs
0, (2)

ẋf= Nf vf (xs, xf ), xf (0) = xf
0 (3)

where xs ∈ R
m
+ and xf ∈ R

n−m
+ are vectors of slow and

fast variables, respectively, and Ns, Nf and vs, vf the cor-
responding stoichiometry matrices and rate vectors. The
slow variables describe total concentrations of the proteins,
and the fast variables concentrations of metabolites and
complexes of proteins and signalling molecules.

The QSS approximation makes the assumption that at the
time-scale of the slow processes the fast part of the system
is at steady state, instantly adapting to the dynamics of
the slow variables, i.e. Nf vf (xs, xf ) = 0 (see Heinrich and
Schuster (1996) and Khalil (2001) for the conditions under
which the QSS approximation is valid). This means that,
after an initial transient, the dynamics of the fast system
can be well approximated by an algebraic function of the
slow variables, if such a function can be found: xf = g(xs),
g : R

m
+ → R

n−m
+ . The resulting reduced system, at the

slow time-scale, takes the following form

ẋs = Ns vs(xs, g(xs)) (4)

The interest of this model is that it represents the struc-
ture of direct and indirect interactions between the slow
variables, that is, the structure of the gene regulatory
network. Since we have not specified the rate laws, and in
general these are complex nonlinear functions of the con-
centration variables, it is not possible to obtain a closed-
form expression for the function g. We therefore follow
another strategy to characterize the indirect interactions
between the slow variables, by studying the Jacobian ma-
trix J ∈ R

m × R
m of the system in Eq. 4:

J =
∂ẋs

∂xs
= Ns ∂vs(xs, g(xs))

∂xs
+Ns ∂vs(xs, g(xs))

∂xf

∂g(xs)

∂xs

(5)
The Jacobian matrix includes the direct effect of each
slow variable on the others (first term) and the indirect
effect via coupling through the fast system (second term).
It accounts for direct regulation of gene expression by
transcription factors as well as indirect regulation through
metabolic intermediates. Applying the implicit function
theorem to the QSS equation, ∂g(xs)/∂xs can be further
developed as

∂g(xs)

∂xs
= −M−1 Nf ∂vf (xs, xf )

∂xs
. (6)

where M = Nf ∂vf (xf , xs)/∂xf is the Jacobian matrix
of the fast system. Eq. 6 describes the response of the
fast system around its steady state to changes in the
slow variables. −M−1 Nf is known as the matrix of (non-
normalized) concentration control coefficients in metabolic
control analysis (Heinrich and Schuster, 1996).

The symbolic computation of the elements of J gives
rise to complex expressions in terms of elementary partial
derivatives of the reaction rates with respect to the con-
centration variables, called (non-normalized) elasticities
(Heinrich and Schuster, 1996). Even in the absence of a
precise specification of kinetic rate laws and parameters
values, most elasticities have a well-defined sign, given
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Fig. 1. Carbon assimilation network in E. coli, consisting of the glycolysis and gluconeogenesis pathways and their
genetic and metabolic regulation (Baldazzi et al., 2010).

a convention on the positive flux direction (Gutierrez-
Ríos et al., 2007). Together with constraints imposed by
the stability of the steady state of the fast system, the
elasticities are used to evaluate the signs of the elements of
the Jacobian matrix. Notice that the sign of the elasticity
of reversible reactions with respect to enzyme concentra-
tions can be positive or negative, depending on the flux
direction. As a consequence, the signs of the elements of
J depend on the growth conditions, as the latter may
influence the flux directions.

3. RESULTS AND DISCUSSION

Fig. 1 shows a part of the network involved in the as-
similation of carbon sources in E. coli. It consists of the
glycolytic and gluconeogenic pathways, the phosphotrans-
ferase system involved in glucose uptake, the genes coding
for the enzymes, their key transcriptional regulators (Crp,
FruR, and Fis), as well as other global regulators of tran-
scription (RpoS, DNA supercoiling, ...). We distinguish
two different growth conditions: growth on the carbon-rich
substrate glucose (glycolysis) and growth on the carbon-
poor substrate acetate (gluconeogenesis). Since glucose
and acetate are utilized by distinct metabolic pathways,
the flux distributions during glycolysis and gluconeogene-
sis are significantly different. A diauxic shift from glucose
to acetate notably leads to the inversion of glycolytic fluxes
(Oh et al., 2002).

The network of biochemical reactions in Fig. 1 can be
transformed into a network of direct and indirect regula-
tory interactions following the method outlined in Sec. 2.
To this end, we use a stoichiometric model of the network
describing the dependence of the reaction rates on the
substrates, products, enzymes, transcription factors, and
other molecular species (Baldazzi et al., 2010). In the case

of reversible reactions, the signs of the elasticities, and
therefore the signs of the indirect interactions, depend on
the directions of the metabolic fluxes. We therefore con-
sider the cases of glycolysis and gluconeogenesis separately.

Fig. 2 shows the resulting networks for glycolysis (panel
A) and gluconeogenesis (panel B). The boxes represent so-
called coupling species, which channel indirect influences
on gene expression through metabolism. Some indirect
interactions appear in one growth condition and disappear
in the other, such as the regulatory influence of GapA on
Crp·cAMP and its targets. Moreover, the same interaction
may have an opposite sign in the two cases, for instance
the effect of GapA on the concentration of free FruR.
Metabolic coupling thus allows the structure of regulatory
interactions to be dynamically rewired by changes in the
environment (Baldazzi et al., 2010).

The networks in Fig. 2 have been simplified by leaving out
some of the glycolytic enzymes. We notably omit enzymes
whose expression does not significantly change between
growth on glucose and acetate (Oh et al., 2002), enzymes
that are constitutively expressed, and enzymes that do not
regulate any other gene in the network. Moreover, we keep
only a single representative of each group of enzymes with
common regulators. This leaves us with GapA, PpsA, and
PykF, whose expression patterns are known to character-
ize the two modes of carbon catabolism considered here
(Oh et al., 2002). Notice that these simplifications of the
network tend to reduce the number of indirect interac-
tions, and thus their influence on the network dynamics.
If an effect of the indirect interactions on the qualitative
dynamics is visible in the simplified networks, this will a
fortiori be the case in the extended networks as well.
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Fig. 2. Gene regulatory networks for the glycolytic (A) and gluconeogenic case (B), obtained from the network of
biochemical reactions shown in Fig. 1. The networks are denoted by Mglyco and Mneo, respectively. The boxes
indicate the coupling species, here Crp·cAMP, free FruR, RpoS·RssB, and DNA supercoiling.

In order to precisely assess the effect of the indirect
interactions on the network dynamics, we additionally
define a reference network consisting of transcriptional
regulatory interactions only. This network is called M0,
and is the same for glycolysis and gluconeogenesis.

The networks shown in Fig. 2 are gene regulatory net-
works, in the sense that they describe the (direct or indi-
rect) influence of the products of one gene on the expres-
sion of another gene (Bolouri, 2008). The interactions can
be positive (activation) or negative (inhibition). A variety
of methods exist to model and analyze the dynamics of
gene regulatory networks (Karlebach and Shamir, 2008).
Here we focus on the use of qualitative models, which pro-
vide a coarse-grained description of the dynamics of gene
expression, in the sense that they include the logic of gene
regulation without explicitly specifying the biochemical
mechanisms.

More specifically, we use so-called piecewise-linear (PL)
differential equations, a formalism originally introduced by
Glass and Kauffman (1973) for describing gene regulatory

networks. The PL models have favorable mathematical
properties that allow their qualitative dynamics to be
analyzed, even in higher-dimensional systems (Kappler
et al., 2003). In particular, the dynamics of the system can
be represented by means of a state transition graph, which
can be inferred from the model using orderings between
parameter values rather than exact numerical values.

The network structures in Fig. 2 are transformed into qual-
itative PL models by defining the differential equations
for each of the gene products (protein concentrations) as
well as the ordering of the parameters that characterizes
the system dynamics (Batt et al., 2008). Intuitively, this
amounts to specifying the logic of the regulation of the
genes and the relative strength of the different interactions
regulating the expression of a gene. The PL models for the
Mglyco and Mneo networks extend an existing qualitative
model of the network of global regulators in E. coli (Ropers
et al., 2006), by adding metabolic coupling induced by
carbon catabolism. The following principles have guided
the modeling of the network:
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• The existence of a single stable attractor in each
growth condition, and the absence of glycolytic os-
cillations in the normal range of operation;

• A parametrization of the models consistent with that
of the previous models;

• No zero expression of glycolytic enzymes during
growth on glucose, no zero expression of gluco-
neogenic enzymes during growth on acetate.

The M0 model is obtained from the Mglyco model by elim-
inating all regulators that are not transcription factors.
The models are given in Baldazzi et al. (2011), together
with an analysis of the robustness of our results to changes
in parameter constraints.

The steady-state concentrations of the enzymes and regu-
latory proteins involved in carbon assimilation, both dur-
ing growth on glucose and acetate, can be predicted from
the models Mglyco and Mneo, by means of the methods
in de Jong and Page (2008). Both Mglyco and Mneo

have a single stable steady state. Given that we focus on
qualitative properties of the system, we are particularly
interested in the difference in steady-state concentrations
during glycolysis and gluconeogenesis. That is, which genes
are higher or lower expressed during growth on acetate
as compared to growth on glucose? Table 1 summarizes
the results of the comparison of the glycolytic and glu-
coneogenic steady states. The predicted changes in ex-
pression correspond well to the observations (Oh et al.,
2002; Liu et al., 2005; Peng and Shimizu, 2003). The ob-
served inversion of pykF and ppsA expression is correctly
reproduced, as well as the down-regulation of gapA during
growth on acetate. The exception is the observed lower ex-
pression level of Crp in acetate-grown bacteria. This result
is somewhat surprising as other measurements obtained
under glucose depletion show the contrary (Ishizuka et al.,
1993).

Is the correspondence with experimental data preserved
when the indirect interactions are omitted from the model?
In order to answer this question, we computed the steady
states for M0, the model accounting for purely tran-
scriptional interactions. Table 1 shows that M0 fails to
reproduce most of the observed changes in gene expression.
Indeed, according to M0, enzyme concentrations are in-
dependent of the specific growth condition. This confirms
the importance of metabolic coupling for the adjustment
of gene expression level when cells are alternatively grown
on glucose and acetate.

Are the indirect interactions equally important for the dy-
namic response of the system? When glucose is exhausted
the bacteria are able to continue growth on an alternative
carbon source like acetate. Such a diauxic shift entails im-
portant changes in metabolism, as well as a reorganization
of gene expression. The predicted transcriptional response
of the bacteria to glucose depletion is shown in Table 2. We
compare the synthesis rate of the proteins in the glycolysis
steady state and in the successor state following the rapid
drop in glucose levels. The synthesis rates of most proteins
are seen to react immediately to the change in nutrient
availability, in agreement with the experimental data of
Kao et al. (2005).

The importance of metabolic coupling can be assessed by
comparing the above predictions of the response of the

system to the exhaustion of glucose with the predictions
obtained by means of the M0 model. In the latter case
network response is impaired, for the simple reason that in
the absence of metabolic coupling the transcription factors
Crp and FruR cannot sense the change in concentration of
their metabolic effectors, cAMP and FBP, respectively.

In order to better understand the role of the different cou-
pling species, we analyzed the behavior of two additional
models in which one coupling species (either Crp·cAMP
or free FruR) is removed at a time. The results show
that the control of the gene expression response is shared
between different mechanisms. Metabolic coupling through
free FruR deals with the control of metabolic fluxes, via
the expression of glycolytic enzymes. For instance, the key
inversion in ppsA and pykF expression during a glucose-
acetate diauxie is absent when free FruR is eliminated. By
contrast, the control exerted via the Crp·cAMP complex
proves more global, equally affecting enzymes, transcrip-
tion factors, and other regulators, in agreement with the
predominant role of Crp·cAMP in the control of carbon
metabolism (Nanchen et al., 2008). More details on the
analysis of the role of the different coupling species can be
found in (Baldazzi et al., 2011).

4. CONCLUSIONS

We have used simple, qualitative models to explore the im-
portance of metabolic coupling for the qualitative dynam-
ics of gene regulatory networks. Our analysis of the gene
regulatory network controlling carbon assimilation in E.
coli shows that indirect interactions completely modify the
predicted expression patterns following a glucose-acetate
shift, transforming genes from passive, constitutively ex-
pressed elements into active players of the adaptive re-
sponse of the cell. The profiles obtained when including
metabolic coupling show good correspondence with the
available experimental data, contrary to what is observed
when the model is restricted to transcriptional regulation
only. In particular, key signatures of growth on a gly-
colytic substrate (glucose) as compared to growth on a
neoglucogenic substrate (acetate) are reproduced, such as
the opposite expression levels of the enzymes PpsA and
PykF.

The indirect interactions arising from metabolic coupling
are found to be crucial, because they convey rapid changes
in metabolism (fluxes, metabolite concentrations) that
control the activity of transcriptional regulators. This
allows environmental perturbations, such as the depletion
of glucose, to propagate through the network and affect the
expression of a large number of genes. While these results
have been obtained for one particular bacterial model
system, the ubiquity of metabolic coupling in regulatory
networks makes our conclusions relevant for other systems
as well.
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