
Computation Tree Regular Logic for

Genetic Regulatory Networks

Radu Mateescu1, Pedro T. Monteiro1,2, Estelle Dumas1, and Hidde de Jong1

1 Inria Rhône-Alpes, 655 Av. de l’Europe, F-38330 Montbonnot St Martin, France
2 Inesc-Id/Ist, Rua Alves Redol 9, 1000-029 Lisboa, Portugal

{Radu.Mateescu,Pedro.Monteiro,Estelle.Dumas,Hidde.de-Jong}@inrialpes.fr

Abstract. Model checking has proven to be a useful analysis technique
not only for concurrent systems, but also for the genetic regulatory net-
works (Grns) that govern the functioning of living cells. The applications
of model checking in systems biology have revealed that temporal logics
should be able to capture both branching-time and fairness properties. At
the same time, they should have a user-friendly syntax easy to employ by
non-experts. In this paper, we define Ctrl (Computation Tree Regular
Logic), an extension of Ctl with regular expressions and fairness opera-
tors that attempts to match these criteria. Ctrl subsumes both Ctl and
Ltl, and has a reduced set of temporal operators indexed by regular ex-
pressions, inspired from the modalities of Pdl (Propositional Dynamic
Logic). We also develop a translation of Ctrl into HmlR (Hennessy-
Milner Logic with Recursion), an equational variant of the modal μ-
calculus. This has allowed us to obtain an on-the-fly model checker with
diagnostic for Ctrl by directly reusing the verification technology avail-
able in the Cadp toolbox. We illustrate the application of the Ctrl
model checker by analyzing the Grn controlling the carbon starvation
response of Escherichia coli.

1 Introduction

Explicit state verification has been mostly applied to the analysis of concurrent
systems in engineering. Recently, however, biological regulatory networks have
been recognized as special cases of concurrent systems as well, which has opened
the way for the application of formal verification technology in the emerging
field of systems biology (see [1,2] for reviews). The networks controlling cellular
functions consist of genes, proteins, small molecules, and their mutual interac-
tions. Most of these networks are large and complex, thus defying our capacity
to understand how the dynamic behavior of the cell emerges from the structure
of interactions. A large number of mathematical formalisms have been proposed
to describe these networks [3], giving rise to models that can be directly or
indirectly mapped to Kripke structures.

The representation of the dynamics of biological regulatory networks by means
of Kripke structures enables the application of formal verification techniques to
the analysis of properties of the networks, formulated as queries in temporal logic.

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 48–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computation Tree Regular Logic for Genetic Regulatory Networks 49

Several applications of model checking exists in the bioinformatics and systems
biology literature [4,5,6,7,8,9,10]. In our previous work [11,6], we have developed
Gna (Genetic Network Analyzer), a tool for the qualitative simulation of genetic
regulatory networks, and connected it to state-of-the-art model checkers like
NuSmv [12] and Cadp [13].

The application to actual biological systems brought a few properties of the
network dynamics to the fore that are not easily expressed in classical temporal
logics. For instance, questions about multistability are important in the analysis
of biological regulatory networks [14], but difficult (or impossible) to express in
Ltl [15]. Ctl [16] is capable of dealing with branching time, important for mul-
tistability and other properties of non-deterministic models. However, it is not
expressive enough to specify the occurrence of oscillations of indefinite length,
a special kind of fairness property [6]. An obvious solution would be to consider
Ctl∗ [17] or the propositional μ-calculus [18], both of which subsume Ctl and
Ltl; however, these powerful branching-time logics are complex to understand
and use by non-experts. More generally, it is not easy to express observations
in temporal logic. Often these take the form of patterns of events corresponding
to variations of system variables (protein concentrations, their derivatives, etc.)
measured by experiments in the lab, which can be compared with the model
predictions and thus help validate the model. Observations are conveniently and
concisely formulated in terms of regular expressions, but these are not provided
by standard temporal logics such as Ctl and Ltl.

In this paper, we aim at providing a temporal specification language that al-
lows expressing properties of biological interest and strikes a suitable compromise
between expressive power, user-friendliness, and complexity of model checking.
Towards this objective, we propose a specification language named Ctrl (Com-
putation Tree Regular Logic), which extends Ctl with regular expressions and
fairness operators. Ctrl is more expressive than previous extensions of Ctl
with regular expressions, such as Rctl [19] and RegCtl [20], whilst having
a simpler syntax due to a different choice of primitive temporal operators, in-
spired from dynamic logics like Pdl [21]. Ctrl also subsumes Ctl, Ltl, and
Pdl-Δ [22] allowing in particular the concise expression of bistability and oscilla-
tion properties. Although Ctrl was primarily designed for describing properties
of regulatory networks in system biology, it also enables a succinct formulation
of typical safety, liveness, and fairness properties useful for the verification of
concurrent systems in other domains.

As regards the evaluation of Ctrl formulas on Kripke structures, we adopt as
verification engine Cadp [13], a state-of-the-art verification toolbox for concur-
rent asynchronous systems that provides, among other functionalities, on-the-
fly model checking and diagnostic generation for μ-calculus formulas on labeled
transition systems (Ltss). In order to reuse this technology, we have to move from
the state-based setting (Ctrl and Kripke structures) to the action-based setting
(μ-calculus and Ltss). The translation from Kripke structures to Ltss is done
in the standard way [16]. The translation from Ctrl to an action-based logic is
carried out by considering as target language HmlR (Hml with recursion) [23].

50 R. Mateescu et al.

The equational representation of HmlR is closer to the boolean equation sys-
tems (Bess) used as intermediate formalism by the verification engine, namely
the Cæsar Solve [24] generic library for local Bes resolution.

The Ctrl model checking procedure obtained in this way has a linear-time
complexity w.r.t. the size of the formula and the Kripke structure for a sig-
nificant part of the logic. This part notably subsumes Pdl-Δ and allows the
multistability and oscillation properties to be captured. The inevitability oper-
ator of Ctrl and its infinitary version (inevitable looping) has an exponential
worst-case complexity w.r.t. the size of its regular subformula; this complexity
becomes linear, however, when the regular subformula is “deterministic” in a
way similar to finite automata. In practice, the usage of Ctrl and the model
checker reveals that properties of biological interest can be expressed and verified
efficiently. We illustrate this on the analysis of a model of the genetic regulatory
network (Grn) controlling the carbon starvation response of E. coli.

The paper is organized as follows. Section 2 defines the syntax and semantics of
Ctrl and Section 3 presents the on-the-fly model checking procedure. Section 4
discusses the implementation of the Ctrl model checker and applies it to the
example of E. coli. Section 5 summarizes the results and provides directions for
future work. A more extensive description of Ctrl, including formal definitions
and proofs, is available in [25].

2 Syntax and Semantics of CTRL

Ctrl is interpreted on Kripke structures (Kss), which provide a natural formal
description of concurrent systems, including biological regulatory networks. A
Ks is a tuple K = 〈S, P, L, T, s0〉, where: S is the set of states; P is a set of atomic
propositions (predicates over states); L : S → 2P is the state labeling (each state
s is associated with the atomic propositions satisfied by s); T ⊆ S × S is the
transition relation; and s0 ∈ S is the initial state. Transitions (s1, s2) ∈ T are
also noted s1 →T s2 (the subscript T is omitted if it is clear from the context).
The transition relation T is assumed to be total, i.e., for each state s1 ∈ S, there
exists a transition s1 →T s2. A path π = s0s1 . . . sk . . . is an infinite sequence
of states such that si →T si+1 for every i ≥ 0. The i-th state of a path π is
noted πi. The interval going from the i-th state of a path π to the j-th state of
π inclusively (where i ≤ j) is noted πi,j . An interval π0,i is called prefix of π.
For each state s ∈ S, Path(s) denotes the set of all paths going out of s, i.e.,
the paths π such that π0 = s. In the sequel, we assume the existence of a Ks
K = 〈S, P, L, T, s0〉, on which all formulas will be interpreted.

The syntax and semantics of Ctrl are defined in the figure below. The logic
contains state formulas ϕ and regular formulas ρ, which characterize properties
of states and intervals, respectively. State formulas are built from atomic propo-
sitions p ∈ P by using standard boolean operators and the EF, AF, EF∞, AF∞

temporal operators indexed by regular formulas ρ. Regular formulas are built
from state formulas by using standard regular expression operators.

Computation Tree Regular Logic for Genetic Regulatory Networks 51

The interpretation [[ϕ]]K of a state formula denotes the set of states of K that
satisfy ϕ. The interpretation of regular formulas is defined by the satisfaction
relation |=K , which indicates whether an interval πi,j of a path in K satisfies a
regular formula ρ (notation πi,j |=K ρ). The notation ρj (where j ≥ 0) stands
for the concatenation ρ . . . ρ, where ρ occurs j times. The semantics of boolean
operators is defined in the standard way. A state satisfies the potentiality formula
EFρϕ iff it has an outgoing path containing a prefix satisfying ρ and leading to
a state satisfying ϕ. A state satisfies the inevitability formula AFρϕ iff all of
its outgoing paths contain a prefix satisfying ρ and lead to a state satisfying ϕ.
A state satisfies the potential looping formula EF∞

ρ iff it has an outgoing path
consisting of an infinite concatenation of intervals satisfying ρ. A state satisfies
the inevitable looping formula AF∞

ρ iff all of its outgoing paths consist of an
infinite concatenation of intervals satisfying ρ. An interval satisfies the one-step
interval formula ϕ iff it consists of two states, the first of which satisfies ϕ. An
interval satisfies the concatenation formula ρ1.ρ2 if it is the concatenation of
two subintervals, the first one satisfying ρ1 and the second one satisfying ρ2.
An interval satisfies the choice formula ρ1|ρ2 iff it satisfies either ρ1, or ρ2. An
interval satisfies the iteration formula ρ∗ iff it is the concatenation of (0 or more)
subintervals satisfying ρ. By definition, an empty interval πi,i satisfies ρ0 for any
regular formula ρ. K satisfies ϕ (notation K |= ϕ) iff s0 ∈ [[ϕ]]K .

Syntax
State formulas:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | EFρϕ | AFρϕ | EF∞
ρ | AF∞

ρ

Regular formulas:
ρ ::= ϕ | ρ1.ρ2 | ρ1|ρ2 | ρ∗

Semantics
State formulas:

[[p]]K = {s ∈ S | p ∈ L(s)}
[[¬ϕ]]K = S \ [[ϕ]]K

[[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K
[[EFρϕ]]K = {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ [[ϕ]]K}
[[AFρϕ]]K = {s ∈ S | ∀π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ [[ϕ]]K}
[[EF∞

ρ]]K = {s ∈ S | ∃π ∈ PathK(s).∀j ≥ 0.∃i ≥ 0.π0,i |=K ρj}
[[AF∞

ρ]]K = {s ∈ S | ∀π ∈ PathK(s).∀j ≥ 0.∃i ≥ 0.π0,i |=K ρj}

Regular formulas:
πi,j |=K ϕ iff j = i + 1 ∧ πi ∈ [[ϕ]]K
πi,j |=K ρ1.ρ2 iff ∃k ∈ [i, j].πi,k |=K ρ1 ∧ πk,j |=K ρ2

πi,j |=K ρ1|ρ2 iff πi,j |=K ρ1 ∨ πi,j |=K ρ2

πi,j |=K ρ∗ iff i = j ∨ ∃k > 0.πi,j |=K ρk

Several derived operators can be defined in order to facilitate the specification
of properties. The trajectory operator EGρϕ and the invariance operator AGρϕ
are the duals of AFρϕ and EFρϕ, respectively. They express that for some (resp.
each) path going out of a state, all of its prefixes satisfying ρ lead to states

52 R. Mateescu et al.

satisfying ϕ. The potential saturation operator EG�
ρ and the inevitable saturation

operator AG�
ρ are the negations of the corresponding looping operators. They

express that some (resp. each) path going out of a state may begin with at most
a finite number of repetitions of intervals satisfying ρ. Fairness properties can be
expressed in Ctrl by means of the formula ¬EF∞

ρ , which forbids the existence
of unfair infinite execution sequences (see [25] for examples).

Expressiveness. Ctrl is a natural extension of Ctl [16] in which the until
operator U is not primitive, but can be described using Ctrl’s EF operator as
follows: E[ϕ1 U ϕ2] = EFϕ∗

1
ϕ2. Other extensions of Ctl, such as Rctl [19] and

RegCtl [20], keep the U operator primitive as in the original logic. Ctrl sub-
sumes RegCtl, whose U operator indexed by a regular formula can be expressed
in Ctrl as follows: E[ϕ1 Uρ ϕ2] = EFρ & ϕ∗

1
ϕ2, where & denotes the intersection

of regular formulas (its occurrence in EF can be translated concisely in terms of
the other regular operators [25]). The subsumption of RegCtl is strict because
the U operator of RegCtl cannot describe an infinite concatenation of intervals
satisfying a regular formula ρ, as specified by the EF∞

ρ operator of Ctrl. In [20]
it is shown that RegCtl is more expressive than Rctl [19], the extension of
Ctl with regular expressions underlying the Sugar [26] specification language;
consequently, Rctl is also subsumed by Ctrl.

The potential looping operator EF∞ is able to capture the acceptance condi-
tion of Büchi automata, making Ctrl more expressive than Ltl [15]. Assuming
that p characterizes the accepting states in a Büchi automaton (represented as
a Ks), the formula EF∞

true∗.p.true expresses the existence of an infinite sequence
passing infinitely often through an accepting state, where the p.true regular sub-
formula avoids infinite sequences consisting of a single p-state. Although EF∞

does not allow a direct translation of the Ltl operators, it may serve as an inter-
mediate form for model checking Ltl formulas; in this respect, this operator is
similar to the “never claims” used for specifying properties in the early versions
of the Spin model checker [27]. Since Ctl and Ltl are uncomparable w.r.t. their
expressive power [16], it turns out that they are strictly subsumed by Ctrl. In
fact, the Ctrl fragment containing the boolean connectors and the temporal
operators EF and EF∞ is the state-based counterpart of Pdl-Δ [22], which has
been shown to be more expressive than Ctl∗ [28].

3 On-the-Fly Model Checking

Our method for evaluating Ctrl formulas on Kss on-the-fly relies on a trans-
lation from Ctrl to HmlR and on the connection with an existing on-the-fly
model checker for HmlR specifications on Ltss. In this section we briefly de-
scribe this translation by means of various examples of Ctrl temporal operators
(see [25] for formal definitions and proofs). We also illustrate the functioning of
the HmlR model checker, which rephrases the verification problem as the local
resolution of a boolean equation system (Bes).

Computation Tree Regular Logic for Genetic Regulatory Networks 53

3.1 Translation from CTRL to HMLR

We consider as running example the following formula, stating that after every
sequence matching (p|q)∗.r, either an r-state is eventually reached via a sequence
satisfying ((p∗.q)|r∗)∗.q∗, or p and q alternate along an infinite sequence:

AG(p|q)∗.r(AF((p∗.q)|r∗)∗.q∗r ∨ EF∞
true∗.p.true∗.q)

This formula is neither expressible in Ctl (because of the EF∞ subformula),
nor in Ltl (because of the nested ∗-operators). The translation from a Ctrl
formula to a HmlR specification comprises three phases:

– The Ctrl formula is turned into a regular equation system (Res), which
is a list of fixed point equation blocks interpreted on the Ks, having propo-
sitional variables in their left-hand sides and Ctrl state formulas in their
right-hand sides. Ress are the state-based counterparts of PdlR (Pdl with
recursion) specifications used as intermediate formalism for model checking
regular alternation-free μ-calculus formulas [29] on Ltss.

– Each equation block in the Res is subsequently refined into a modal equation
system (Mes) by eliminating all occurrences of regular operators contained
in the regular formulas indexing the Ctrl operators. This is done by apply-
ing various transformations on the Res equations, according to the kind of
temporal operators present in their right-hand sides.

– Finally, the resulting Mes is converted into a HmlR specification by replac-
ing each occurrence of Ctrl temporal operator (now indexed by a state
formula) with a Hml formula having the same interpretation on the Lts
corresponding to the Ks.

The Ctrl formula above is translated into the following Res (μ and ν denote
minimal and maximal fixed point equations, respectively):

{X1
ν
= AG(p|q)∗.rX2, X2

ν
= Y1 ∨ Z1}.{Y1

μ
= AF((p∗.q)|r∗)∗.q∗r}.{Z1

ν
= EFtrue∗.p.true∗.qZ1}

We explain below how this Res is refined into a Mes by applying the transfor-
mations specific to each temporal operator, and we also show how the Ks and
the Mes are converted into an Lts and a HmlR specification, respectively.

Operators EFρ and AGρ. The Ctrl formula AGρϕ is the state-based counter-
part of the Pdl modality [ρ]ϕ, and therefore Pdl-like identities hold about the
distributivity of the AGρ operator over the regular operators contained in ρ:

AGρ1.ρ2ϕ = AGρ1AGρ2ϕ AGρ1|ρ2ϕ = AGρ1ϕ ∧ AGρ2ϕ AGρ∗
1
ϕ = ϕ ∧ AGρ1AGρ∗

1
ϕ

Dual identities are valid for EFρϕ, which corresponds to the Pdl modality 〈ρ〉ϕ.
A repeated application of these identities to the equations of the first block of
the Res above allows to eliminate all occurrences of regular operators, leading
to the following Mes block:

{X1
ν
= X3 ∧ X4, X2

ν
= Y1 ∨ Z1, X3

ν
= AGrX2, X4

ν
= AGpX1 ∧ AGqX1}

54 R. Mateescu et al.

This transformation introduces a linear increase in size of the Mes w.r.t. the Res.
Note that additional equations were inserted in order to avoid nested occurrences
of temporal operators; this is necessary for keeping the size of the final Bes linear
w.r.t. the size of the Mes and of the Ks.

Operators AFρ and EGρ. The AFρ operator does not satisfy the identities of
EFρ, and thus the regular operators occurring in ρ cannot be eliminated simply by
applying substitutions. The procedure we propose for expanding AFρ operators
consists of the three steps below (a dual procedure holds for expanding EGρ

operators). Without loss of generality, we assume that the Res block contains a
single equation with an AFρ operator in its right-hand side.

(a) The equation block containing AFρ is first converted to potentiality form by
replacing AF with EF and eliminating all occurrences of regular operators using
the identities associated to EF. This operation does not preserve the semantics
of the initial block, but we will take care to restore it at step (c). For the second
block of our example Res, this yields the following Mes:

{ Y1
μ
= Y2 ∨ Y3, Y2

μ
= Y4 ∨ Y5, Y3

μ
= Y6 ∨ Y7, Y4

μ
= r, Y5

μ
= EFqY2,

Y6
μ
= Y8 ∨ Y9, Y7

μ
= Y1 ∨ Y10, Y8

μ
= EFqY1, Y9

μ
= EFpY6, Y10

μ
= EFrY7 }

(b) The resulting Mes is further transformed to guarded potentiality form
(Gpf) by eliminating all occurrences of unguarded propositional variables (not
preceded by an EF operator) in the right-hand sides of equations. This is
done by considering each equation Yi

μ
= ϕi, by replacing with ϕi all un-

guarded occurrences of Yi in other equations, and eliminating the possible self-
recursive unguarded occurrences found on the way using the absorption property
Yj

μ
= Yj ∨ ϕj ≡ Yj

μ
= ϕj [25]. When brought to Gpf and simplified (by delet-

ing redundant variable occurrences using idempotency of disjunction, dropping
identical equations, and renumbering variables), the Mes block becomes:

Y1
μ
= EFpY3∨EFqY1∨EFqY2∨EFrY1∨Y4, Y2

μ
= EFqY2∨Y4, Y3

μ
= EFpY3∨EFqY1, Y4

μ
= r

A Mes in Gpf is similar to the equation system defining the derivatives of
regular expressions [30].

(c) The Mes in Gpf is finally determinized in order to retrieve the inter-
pretation of the original Res block containing the AF operator. This is done
by considering meta-variables (i.e., sets of propositional variables) holding at a
state s and determining, for each combination of atomic propositions that may
hold at s, the meta-variables that should be satisfied by the successors of s.
We show below two equations obtained by determinizing the Mes above (Y{1,2}
stands for the meta-variable {Y1, Y2}, and similarly for the others):

Y{1}
μ
= AFpY{3} ∨ AFqY{1,2} ∨ AFrY{1} ∨ AFp∧qY{1,2,3} ∨ AFp∧rY{1,3} ∨ AFq∧rY{1,2}∨

AFp∧q∧rY{1,2,3} ∨ Y{4}, Y{3}
μ
= AFpY{3} ∨ AFqY{1} ∨ AFp∧qY{1,3}

Computation Tree Regular Logic for Genetic Regulatory Networks 55

The rhs of the equations defining the meta-variables Y{1,2}, Y{1,3}, and Y{1,2,3}
is identical to the one defining Y{1}. After further simplifications (induced by the
implication AFp∧qϕ ⇒ AFqϕ) we obtain the final Mes:

Y{1}
μ
= AFpY{3} ∨ AFqY{1} ∨ AFrY{1} ∨ Y{4}, Y{3}

μ
= AFpY{3} ∨ AFqY{1}, Y{4}

μ
= r

The determinization step is similar to the subset construction used for deter-
minizing finite automata [31].

The final Mes produced after expanding a Res block containing an AFρ op-
erator has in the worst-case a size exponential w.r.t. the size of ρ; however the
temporal formulas encountered in practice are far from reaching this bound. In
particular, when ρ is “deterministic”, i.e., for each equation of the corresponding
Mes in Gpf, the atomic propositions indexing the EF operators in the right-
hand side are disjoint (e.g., p and q disjoint in the Mes above), the resulting
determinized Mes has a size linear w.r.t. ρ.

Operators EF∞
ρ , AG�

ρ , AF∞
ρ , and EG�

ρ . The infinite iteration operators (and
their saturation duals) must be translated into Ress with alternation depth 2,
because they involve two mutually recursive minimal and maximal fixed points.
The third Res equation block of our running example would translate as follows:

{Z0
ν
= Z1}.{Z1

μ
= EFtrue∗.p.true∗.qZ0}

However, given the very simple structure of the first equation block, we can
abusively merge the two blocks into a minimal fixed point one, expand the regular
subformula using the EF substitutions, and mark the Z0 variable such that the
original semantics of the equation blocks can be restored during the resolution
of the underlying Bes (see Sec. 3.2). The AF∞

ρ operator is expanded in a similar
manner, and the saturation operators AG�

ρ and EG�
ρ are handled dually.

Moving from the state-based to the action-based setting. In order to
apply a HmlR model checker as verification back-end for Ctrl, we need to
interpret formulas on Ltss instead of Kss. A Ks can be converted to an Lts
by migrating all the atomic propositions valid at each state of the Ks on the
actions labeling the transitions going out from that state in the Lts [16]. This
conversion is succinct (it keeps the same state set and transition relation) and
can be performed on-the-fly during an incremental construction of the Ks. The
Mes produced from a Ctrl formula can be turned into a HmlR specification
by replacing basic Ctrl formulas with Hml modalities having the same inter-
pretation on the Lts corresponding to the Ks:

p = 〈p〉true EFpX = 〈p〉X AGpX = [p]X
AFpX = 〈p〉true ∧ [true]X EGpX = 〈p〉true ⇒ 〈true〉X

These replacements increase by at most a linear factor the size of the HmlR
specification w.r.t. the Mes.

56 R. Mateescu et al.

3.2 BES Encoding and Local Resolution

The on-the-fly model checking of the HmlR specification produced from a Ctrl
formula on the Lts corresponding to a Ks can be rephrased as the local res-
olution of a Bes [23,32], which can be carried out using graph-based algo-
rithms [33,34,24]. Figure 1 illustrates the evaluation of a Ctrl infinite looping
operator on a Ks. For simplicity, we show the verification by considering di-
rectly the Mes (produced as indicated in Sec. 3.1) and the Ks instead of the
corresponding HmlR specification and Lts.

Formula:

Z00

Z10

Z11

Z24Z23

Z01 Z21

Z04

Z13

Z12

Z14Z22

p q

q

10 2 3

4

EF∞
true∗.p.true∗.q

Ks:���
��

Z0
μ
= Z1

Z1
μ
= EFpZ2 ∨ EFtrueZ1

Z2
μ
= EFqZ0 ∨ EFtrueZ2

���
��

Mes:

Bes: Zij = sj |= Zi

Fig. 1. Evaluation of a EF∞ formula. The underlying Bes is obtained by making a
product between the Mes and the Ks. It is represented here by its boolean graph,
which is explored on-the-fly by the A4cyc algorithm.

The Bes encoding the model checking problem is disjunctive, and could be
solved using the memory-efficient algorithm A4 proposed in [24]. If the EF∞ for-
mula is false, the solution of the Mes is also false, since by abusively switching
the sign from ν to μ we obtained an equation block with a “smaller” interpre-
tation. If the formula is true, the Ks contains a cycle going through a state
satisfying the marked variable Z0; this kind of cycle is detected in linear-time by
the A4cyc algorithm [35], which records that all states on the cycle satisfy EF∞,
thus restoring the original meaning of the formula.

Complexity. The complexity of our Ctrl model checking procedure is sum-
marized in the table below. The EFρ and EF∞

ρ operators, together with their
respective duals AGρ and AG�

ρ , are evaluated in linear-time w.r.t. the size of ρ
and the size of the Ks. Moreover, the evaluation of these operators stores only
the states (and not the transitions) of the Ks, thanks to the memory-efficient

Computation Tree Regular Logic for Genetic Regulatory Networks 57

algorithms A4 [24] and A4cyc [35] dedicated to disjunctive and conjunctive Bess.
This fragment of Ctrl is the state-based counterpart of Pdl-Δ [22]. The linear-
time evaluation of the EF∞

ρ operator allows an efficient detection of complex
cycles, such as those characterizing oscillation properties [9]. EF∞

ρ is also useful
for capturing fairness properties in concurrent systems, such as the existence of
complex unfair executions in resource locking protocols [36].

The AFρ operator and its dual EGρ are evaluated in linear-time only when the
regular subformula ρ is deterministic. In general, these operators are evaluated
in exponential-time w.r.t. the size of ρ (because of the determinization step) but
still in linear-time w.r.t. the Ks size. In practice, the size of temporal formulas is
much smaller than the size of Kss, which reduces the impact of the factor 2|ρ| on
the total cost of model checking. Finally, the AF∞

ρ operator and its dual EG�
ρ are

evaluated in linear-time when ρ is deterministic (using a symmetric version of
the A4cyc algorithm); in the general case, these operators are evaluated in dou-
bly exponential-time w.r.t. the size of ρ and in quadratic-time w.r.t. the Ks size,
by applying local resolution algorithms for Bess with alternation depth 2 [34].
This complexity seems difficult to lower, since the Bess produced by translat-
ing these operators have a general shape (arbitrary nesting of disjunctions and
conjunctions in the right-hand sides of equations).

Ctrl Model checking complexity
operator ρ deterministic ρ nondeterministic

EFρ AGρ O(|ρ| · (|S| + |T |))
AFρ EGρ O(|ρ| · (|S| + |T |)) O(2|ρ| · (|S| + |T |))
EF∞

ρ AG�
ρ O(|ρ| · (|S| + |T |))

AF∞
ρ EG�

ρ O(|ρ| · (|S| + |T |)) O(22|ρ| · (|S| + |T |)2)

4 Implementation and Use

We implemented the model checking procedure for Ctrl described in Section 3
by reusing as much as possible the on-the-fly verification technology available
in the Cadp toolbox [13] for concurrent asynchronous systems. This section
presents the architecture of our Ctrl model checker and illustrates its use for
analyzing genetic regulatory networks.

4.1 An On-the-Fly Model Checker for CTRL

The tools of Cadp1 (Construction and Analysis of Distributed Processes) [13]
operate on labeled transition systems (Ltss), which are represented either ex-
plicitly (by their list of transitions) as compact binary files encoded in the Bcg
(Binary Coded Graphs) format, or implicitly (by their successor function) as C
programs compliant with the Open/Cæsar interface [37]. Cadp contains the
on-the-fly model checker Evaluator [29], which evaluates regular alternation-
free μ-calculus (Lμreg

1) formulas on implicit Ltss. The tool works by translat-
ing the verification problem in terms of the local resolution of a Bes, which is
1 http://www.inrialpes.fr/vasy/cadp

58 R. Mateescu et al.

done using the algorithms available in the generic Cæsar Solve library [24].
Evaluator 3.6 uses HmlR as intermediate language: Lμreg

1 formulas are trans-
lated into HmlR specifications, whose evaluation on implicit Ltss is encoded as a
local Bes resolution. It generates examples and counterexamples illustrating the
truth value of formulas, and is also equipped with macro-definition mechanisms
allowing the creation of reusable libraries of derived temporal operators.

(.aut
.bcg
.c)

(.aut
 .bcg)

(.ctrl)

(.blk)

(.mcl)

ρ
ex

pa
ns

io
n

A
bu

si
ve

ρ
ex

pa
ns

io
n

T
ra

ns
la

ti
on

T
ra

ns
la

ti
on

gu
ar

de
d

fo
rm

D
et

er
m

in
iz

at
io

n
On-the-fly
resolution

Res Mes

Mes Mes Mes

Lμreg
1

HmlR

Bes

answer

Lts

Lts

Res

Ctrl

EFρ/AGρ

AFρ/EGρ

Ctrl translation

Cadp EvaluatorE
xp

an
si

on

Fig. 2. Ctrl translator and its connection to the Evaluator model checker

In order to reuse the model checking features of Evaluator 3.6, we had
the choice of translating Ctrl formulas either to Lμreg

1 formulas, or to HmlR
specifications. We adopted the second solution because it leads to a more suc-
cinct translation and avoids the translation step from Lμreg

1 to HmlR present
in Evaluator. This technical choice motivated the definition of the translation
from Ctrl to HmlR in the first place. The architecture of the Ctrl translator
(about 12, 000 lines of code) is shown in Figure 2. The tool takes as input a
Ctrl state formula and translates it to a Mes following the phases described
in Section 3.1, which are different for the EFρ and AFρ operators. The Mes
obtained is then converted into a HmlR specification by replacing basic Ctrl
operators with Hml modalities. The resulting HmlR specification is directly
given as input to Evaluator 3.6, together with the Lts corresponding to the
Ks. The translator from Ctrl to HmlR has been completely implemented using
the compiler construction technology proposed in [38].

4.2 Verification of Genetic Regulatory Networks

Ctrl has been used for the analysis of so-called genetic regulatory networks
(Grns), which consist of genes, proteins, small molecules and their mutual in-
teractions that together control different functions of the cell. In order to better
understand how a specific dynamic behavior emerges from these interactions,
and the role of each component in the network, a wide variety of mathematical
formalisms are available [3].

Computation Tree Regular Logic for Genetic Regulatory Networks 59

Due to limited availability of numerical values for the kinetic parameters and
the molecular concentrations, some mathematical formalisms are difficult to ap-
ply in practice. This has motivated the use of a special class of piecewise-linear
(Pl) differential equation models, originally introduced by [39]. Using Pl models,
the qualitative dynamics of the high-dimensional systems are relatively straight-
forward to analyze, using inequality constraints on the parameters rather than
exact numerical values [40,41]. Discrete abstractions can be used to convert the
continuous dynamics of the Pl systems into state transition graphs (Stgs) [40]
that are formally equivalent to Kss. The atomic propositions describe, among
other things, the concentration bounds defining a region and the trend of the
variables inside regions. The generation of the Stg from the Pl model has been
implemented in the computer tool Gna (Genetic Network Analyzer) [6], which
is able to export the graph to standard model checkers like NuSmv [12] and
Cadp [13] in order to use formal verification.

We analyse here the carbon starvation response network of E. coli (illustrated
below), using a Pl model proposed in [42], with focus on the nutrient upshift
after a period of starvation, leading to exponential growth of the bacterial pop-
ulation. The dynamics of the system are described by 6 coupled Pl differential
equations, and 48 inequality constraints on the parameter values.

Activation

P1/P1’

CRP

P
Fis

P

P1 P2

P1 P2

TopA

P2

P1

Supercoiling

Activation

Abstract description of
a set of interactions

Inhibition

P

Carbon starvation signal

Synthesis of protein Fis
from gene fis

GyrAB

gyrAB

topA

crp

cya

stable RNAs

cAMP·CRP Cya

rrn

fis

Fis

fis

The generated graph has 743 states and contains one terminal cycle corre-
sponding to a (damped) oscillation of some of the protein concentrations and
the concentration of stable Rnas (which are transcribed from the rrn oper-
ons). We expressed this property using the four Ctrl formulas below, where
inTermCycle is an atomic proposition indicating that a state is part of the
terminal cycle. Similarly, dec rrn (inc rrn) represent a decreasing (increasing)
concentration of stable Rnas (ρ+ stands for ρ.ρ∗).

N. Ctrl formula Answer Time
1. EFtrue∗AFinTermCycle+.(inc rrn+.dec rrn+)+true false 3 sec
2. EFtrue∗EF∞

inTermCycle+.(inc rrn+.dec rrn+)+
true 1 sec

3. AGtrue∗EF∞
inTermCycle+.(inc rrn+.dec rrn+)+

false 1 sec
4. AGtrue∗.inc Fis+.dec Crp+.inTermCycleEF∞

inTermCycle+.(inc rrn+.dec rrn+)+
true 2 sec

Formula 1 fails, indicating that an oscillation of stable Rnas is not inevitable
once the system has reached the terminal cycle. Formula 2, obtained by replacing

60 R. Mateescu et al.

the AF operator with an EF∞, is valid on the graph, showing the existence of
an infinite oscillation of the stable Rnas. Formula 3 is stricter, stating that all
paths in the graph lead to the terminal cycle with an oscillation of stable Rnas.
Formula 4 forces the model checker to consider the oscillation only on the paths
satisfying the restriction that an increase of the Fis concentration is followed by
a decrease of the Crp concentration before arriving at the terminal cycle.

The use of regular expressions in the Ctrl formulas above clearly outlines
the convenience of being able to characterize a sequence of events. Due to the
presence of nested iteration operators, these properties cannot be expressed using
standard temporal logics such as Ctl or Ltl. In addition, the EF∞

ρ operator
enables a natural formulation of infinite repetitions of sequences defined by ρ,
such as those corresponding to the oscillation in the E. coli example.

5 Conclusion and Future Work

Applications of model checking in system biology have demonstrated its use-
fulness for understanding the dynamic behaviour of regulatory networks in
living cells, but also pointed out certain limitations in expressiveness and
user-friendliness. Our work aims at alleviating these limitations in order to pro-
mote the practical usage of model checking in the bioinformatics and systems
biology communities. Ctrl extends Ctl with regular expressions and fairness
operators, allowing a natural and concise description of typical properties of bio-
logical interest, such as the presence of multistability or oscillations. We were able
to reduce the development effort and to obtain an on-the-fly model checker for
Ctrl by defining and implementing a translation from Ctrl to HmlR, and by
reusing the verification and diagnostic generation features of the Evaluator 3.6
model checker of the Cadp toolbox.

In this paper, we have employed Ctrl for the verification of dynamic proper-
ties of Grns modeled by (but not limited to) piecewise-linear differential equa-
tions. The continuous dynamics of these models, by defining appropriate discrete
abstractions, can be converted into discrete state transition graphs that are for-
mally equivalent to Kss. The computer tool Gna is able to generate the state
transition graphs and export them as Ltss to Cadp. Ctrl can be combined with
many of the other approaches proposed for the application of formal verification
tools to biological regulatory networks [4,5,6,7,8,9,10].

We plan to continue our work on several directions. First, we will extend
the Cæsar Solve [24] library of Cadp with resolution algorithms handling
Bess of alternation depth 2 [34] in order to obtain an on-the-fly evaluation
of the AF∞

ρ operator when the regular formula ρ is nondeterministic. Second,
the translation from Ctrl to HmlR can be optimized by adding static analysis
features on the Gna atomic propositions in order to reduce the size of the HmlR
specifications produced. Third, a distributed version of the Ctrl model checker
can be obtained by coupling it with the distributed Bes resolution algorithms
proposed in [43,44]. Fourth, we will develop pattern-based tools to help non-
expert users specify queries for the analysis of biological networks [45].

Computation Tree Regular Logic for Genetic Regulatory Networks 61

Acknowledgements. This research was funded by the Ec-Moan project no.
043235 of the Fp6-Nest-Path-Com European program. Pedro T. Monteiro is
also supported by the Fct program (PhD grant Sfrh/Bd/32965/2006).

References

1. Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11),
1239–1250 (2007)

2. Regev, A., Shapiro, E.: Cells as computation. Nature 419(6905), 343 (2002)
3. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature

review. J. of Computational Biology 9(1), 67–103 (2002)
4. Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model check-

ing for biochemical processes. Cell Biochemistry and Biophysics 38(3), 271–286
(2003)

5. Barnat, J., Brim, L., Cerná, I., Drazan, S., Safranek, D.: Parallel model checking
large-scale genetic regulatory networks with DiVinE. In: FBTC 2007. ENTCS,
vol. 194 (2008)

6. Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schnei-
der, D.: Validation of qualitative models of genetic regulatory networks by model
checking: Analysis of the nutritional stress response in Escherichia coli. Bioinfor-
matics 21 (Suppl. 1), i19–i28 (2005)

7. Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal meth-
ods to biological regulatory networks: Extending Thomas’ asynchronous logical
approach with temporal logic. J. of Theoretical Biology 229(3), 339–348 (2004)

8. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling path-
ways using the PRISM model checker. In: CMSB 2005, pp. 79–90 (2005)

9. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling
and querying biomolecular interaction networks. TCS 325(1), 25–44 (2004)

10. Fisher, J., Piterman, N., Hajnal, A., Henzinger, T.A.: Predictive modeling of sig-
naling crosstalk during C. elegans vulval development. PLoS Computational Biol-
ogy 3(5), e92 (2007)

11. Batt, G., Bergamini, D., de Jong, H., Gavarel, H., Mateescu, R.: Model checking
genetic regulatory networks using GNA and CADP. In: Graf, S., Mounier, L. (eds.)
SPIN 2004. LNCS, vol. 2989, pp. 158–163. Springer, Heidelberg (2004)

12. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
checker. STTT 2(4), 410–425 (2000)

13. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A toolbox for the
construction and analysis of distributed processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

14. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regula-
tory networks: I. Biological role of feedback loops and practical use of the concept
of the loop-characteristic state. Bulletin of Mathematical Biology 57(2), 247–276
(1995)

15. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Specification, vol. I. Springer, Heidelberg (1992)

16. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

17. Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: On branching
versus linear time. In: POPL 1983, pp. 127–140 (January 1983)

62 R. Mateescu et al.

18. Kozen, D.: Results on the propositional μ-calculus. TCS 27, 333–354 (1983)
19. Beer, I., Ben-David, S., Landver, A.: On-the-fly model checking of RCTL formu-

las. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 184–194. Springer,
Heidelberg (1998)

20. Brázdil, T., Cerná, I.: Model checking of RegCTL. Computers and Artificial Intel-
ligence 25(1) (2006)

21. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.
JCSS 18(2), 194–211 (1979)

22. Streett, R.: Propositional dynamic logic of looping and converse. Information and
Control (1982)

23. Larsen, K.G.: Proof systems for Hennessy-Milner logic with recursion. In: Dauchet,
M., Nivat, M. (eds.) CAAP 1988. LNCS, vol. 299, pp. 215–230. Springer, Heidelberg
(1988)

24. Mateescu, R.: CÆSAR SOLVE: A generic library for on-the-fly resolution of
alternation-free boolean equation systems. STTT 8(1), 37–56 (2006)

25. Mateescu, R., Monteiro, P.T., Dumas, E., Mateescu, R.: Computation tree regular
logic for genetic regulatory networks. Research Report RR-6521, INRIA (2008)

26. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The
temporal logic Sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 363–367. Springer, Heidelberg (2001)

27. Holzmann, G.: The SPIN Model Checker – Primer and Reference Manual. Addison-
Wesley, Reading (2003)

28. Wolper, P.: A translation from full branching time temporal logic to one letter
propositional dynamic logic with looping (published manuscript, 1982)

29. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. SCP 46(3), 255–281 (2003)

30. Brzozowski, J.A.: Derivatives of regular expressions. JACM 11(4), 481–494 (1964)
31. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.

Addison-Wesley, Reading (1986)
32. Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the

alternation-free modal mu-calculus. FMSD 2(2), 121–147 (1993)
33. Andersen, H.R.: Model checking and boolean graphs. TCS 126(1), 3–30 (1994)
34. Vergauwen, B., Lewi, J.: Efficient local correctness checking for single and alter-

nating boolean equation systems. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994.
LNCS, vol. 820, pp. 304–315. Springer, Heidelberg (1994)

35. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Maibaum, T.S.E. (eds.) FM 2008. LNCS, vol. 5014, pp.
148–164. Springer, Heidelberg (2008)

36. Arts, T., Earle, C.B., Derrick, J.: Development of a verified Erlang program for
resource locking. STTT 5(2–3), 205–220 (2004)

37. Garavel, H.: OPEN/CÆSAR: An open software architecture for verification, simu-
lation, and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84.
Springer, Heidelberg (1998)

38. Garavel, H., Lang, F., Mateescu, R.: Compiler construction using LOTOS NT. In:
Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 9–13. Springer, Heidelberg
(2002)

39. Glass, L., Kauffman, S.A.: The logical analysis of continuous non-linear biochemical
control networks. J. of Theoretical Biology 39(1), 103–129 (1973)

40. Batt, G., de Jong, H., Page, M., Geiselmann, J.: Symbolic reachability analysis of
genetic regulatory networks using discrete abstractions. Automatica 44(4), 982–989
(2008)

Computation Tree Regular Logic for Genetic Regulatory Networks 63

41. de Jong, H., Gouzé, J.-L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qual-
itative simulation of genetic regulatory networks using piecewise-linear models.
Bulletin of Mathematical Biology 66(2), 301–340 (2004)

42. Ropers, D., de Jong, H., Page, M., Schneider, D., Geiselmann, J.: Qualitative
simulation of the carbon starvation response in Escherichia coli. Biosystems 84(2),
124–152 (2006)

43. Joubert, C., Mateescu, R.: Distributed local resolution of boolean equation systems.
In: PDP 2005. IEEE Computer Society, Los Alamitos (2005)

44. Joubert, C., Mateescu, R.: Distributed on-the-fly model checking and test case gen-
eration. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 126–145. Springer,
Heidelberg (2006)

45. Monteiro, P.T., Ropers, D., Mateescu, R., Freitas, A.T., de Jong, H.: Temporal
logic patterns for querying dynamic models of cellular interaction networks. Bioin-
formatics (in press, 2008)

	Introduction
	Syntax and Semantics of CTRL
	On-the-Fly Model Checking
	Translation from CTRL to HMLR
	BES Encoding and Local Resolution

	Implementation and Use
	An On-the-Fly Model Checker for CTRL
	Verification of Genetic Regulatory Networks

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

