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Abstract

We consider a dynamical system whose state equation evolves continuously in time
according to a linear stochastic differential equation; the parameters of such SDE
depend on a discrete variable that follows the laws of a continuous-time Markov process.
Noisy measurements of the continuous state are made available at discrete deterministic
times, by a static linear equation whose parameters depend, again, on the discrete state.
Therefore the discrete state may switch between different values between successive
measures. We solve the problem of estimating both the continuous and the discrete
state, given the measurements up to a certain time, in an on-line manner. Models like
the one we analyze arise naturally in industrial applications such as fault detection.

1 Introduction

In the recent past there has been a proliferation of papers on the topic of state estima-
tion of Jump Markov Linear Systems, often referred to as discrete-time Stochastic Hybrid
Systems in the electrical engineering community. To name a few, see Tugnait [21][22], Bar-
Shalom [2], Elliott et al. [9], Murphy [20], Logothetis & Krishnamurthy [18], Chen & Liu [3],
Lerner et al. [17], Koutsoukos et al. [15][16], Doucet et al. [7][8], Hofbaur & Williams [12],
Costa et al. [5][6], Germani et al. [10]. Other authors have worked on the filtering problem
for stochastic hybrid systems governed by continuous-time equations in both the state dy-
namics and the measurement process. See for instance Miller & Runggaldier [19], Hibey &
Charalambous [11], Hu et al. [13], and Zhang [23].

In the present paper we study a model where the continuous state x evolves in time
described by a linear stochastic differential equation, and noisy measurements are acquired
at fixed deterministic time instants {tk}. The parameters of both the state equation and the
measurement equation depend on a discrete state q which evolves in time as a continuous-
time Markov chain. The goal is estimating the pair (x, q), given the available measurements.
Note that the discrete state may switch (in principle, even more than once) between two
different measurements. Such a model arises naturally in applications where the switching
rate of the discrete state is high relatively to the frequency of measurements. In this paper
we will formulate the problem mostly restricting our attention to the fault detection setting,
for which the model is particularly well-suited.

The paper is organized as follows. In section 2 we introduce the general continuous-
time dynamics, discrete-time measurement stochastic hybrid model and formalize the state
estimation problems of our concern. We then focus on the special case of fault detection and
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introduce the switching time t? as an alternative characterization of q(t). In Section 3 we
derive a statistically equivalent model based on system discretization along fixed trajectories
of q, which we call conditioned system. Based on this result, the interpretation of the
estimation of x in terms of averaging of conditional Kalman filters – i.e. ordinary Kalman
filters conditioned on the switching time – is discussed in section 4. The following section
presents methods for the efficient computation of the a posteriori density of t?, also showing
its intimate connection with the computation of the a posteriori density of x for arbitrary
values of t?. The latter problem is studied in section 6 and reduced once again to conditional
Kalman filtering. It is then solved by way of original algorithms of minimum complexity for
the recursive update of the conditional Kalman filter thought of as a function of t?. Final
comments and perspectives of our work are reported in Section 7.

For reasons of space, all proofs will be omitted. We refer the reader to [4] for details.

2 Problem formulation

Let1 T = {tk}k∈N0 be a deterministic sequence such that, for all k,

0 = t0 < t1 < . . . < tk < tk+1 < . . .

and tk → ∞ as k → ∞. Consider a finite state space Q = {0, 1, 2, . . . , N − 1} and let q
denote its generic element. Assume that we are given matrix functions: F : Q → Rn×n,
G : Q → Rn×m, H : Q → Rp×n, and K : Q → Rp×r, which assign to each value q ∈ Q a
4-tuple of matrices (Fq, Gq, Hq, Kq).

Consider the following dynamical model:2

{
ẋ(t) = Fq(t)x(t) + Gq(t)u(t)
yk = Hq(tk)x(tk) + Kq(tk)vk

, t ∈ R, tk ∈ T , (1)

where x : R → Rn, y : N0 → Rp, are stochastic processes. In the above linear model
two different white, zero-mean, normalized Gaussian stationary noise inputs appear: the
continuous-time noise u(t), t ∈ R and the discrete-time noise vk indexed by k ∈ N0. We
assume that {u(t)}t∈R, {vk}k∈N0 and initial condition x(t0) ∼ N (

µ0, Σ0

)
are mutually inde-

pendent. Furthermore, we shall assume that q(t), t ∈ R is a continuous-time, homogeneous
Markov process (independent of inputs {u(t)}, {vk} and random variable x0) with assigned
transition probabilities Tij(∆) , P [q(t+∆) = j | q(t) = i] (independently of x(t)); the initial

probabilities pi , P[q(t0) = i], i ∈ Q are also assigned.
The process q(t) switches in time between different states in Q (and the time interval

between two subsequent jumps is a memoryless random variable), thus changing the pa-
rameters of both the state equation (which is a linear stochastic differential equation) and
the (static) measurement equation. Our problem is the following: given measurements up
to time tk, that is yk , {y0, . . . , yk} we wish to compute the “best” estimate for the joint
state (x, q). More precisely, for j, k ∈ N0 we wish to compute the least squares estimate of
the continuous state x(tj):

x̂j|k , arg min
z∈Rn

E
[||z − x(tj)||2

∣∣ yk
]

= E
[
x(tj)

∣∣ yk
]
, (2)

1The notation N0 stands for N ∪ {0}.
2We will refer to the first equation in (1) as state equation, and the second one as measurement equation.
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and the a posteriori probability distribution of the discrete state:

pj|k(q) , P
[
q(tj) = q

∣∣ yk
]
. (3)

We will mostly restrict our attention to the cases j = k (filtering) and j = k+1 (prediction).
According to our model the discrete state can switch between different values inQ between

two successive measurements —in principle, even more than once between the same two
measurements: this makes the exact computation of the above estimates a formidable task.
In order to simplify our problem, in the present paper we shall limit ourselves to a fault
detection setting. That is, we will assume that Q = {0, 1} and that state q = 1 is absorbing :
in other words, the transition probability matrix [Tij(∆)] is given by

T (∆) =

[
e−λ∆ 1− e−λ∆

0 1

]

for some given parameter λ. Therefore there can be at most one switching time (from state 0
to state 1) which we will indicate with t?; its probability distribution function, for t ≥ 0, is

Ft?(t) = (1− e−λt)p0 + p1

and is undefined for t < 0. In particular, when p1 = 0 we have that t? ∼ E(λ). Since there
is only one switching time t?, we shall compute the a posteriori probability density

f(t? | yk) for t? > 0,

from which probabilities (3) follow immediately. For the clarity of the exposition, the as-
sumption p1 = 0 will be maintained throughout the paper.

This setting can be generalized to a broader class of Markov chains. For instance, a
straightforward extension is to consider Markov chains having N − 1 absorbing states out of
an arbitrary number of states N . However, this will form the object of future studies.

3 The conditioned system

Notwithstanding the stochastic nature of the switching time, one may fix the value of t? and
study the system associated to the corresponding trajectory q(t). In this way, all parameters
of (1) are determined, and a standard linear time-varying Gaussian system is obtained. It is
common knowledge that such a system can be discretized, i.e. a discrete-time, time-varying
linear Gaussian system can be associated to it so to preserve the joint statistical description
of the sampled state

xk , x(tk)

and the measurements yk. Precisely, we may introduce the conditioned system{
xk+1 = Ak(t

?)xk + uk

yk = Ck(t
?)xk + Dk(t

?)vk
, (4)

uk ∼ N (0, Qk(t
?)),

with {uk} white and independent of {vk} and x0, where the parameters Ak(t
?), Qk(t

?),
Ck(t

?), Dk(t
?) can be determined from those of the original system (1) and the value of t?

so to guarantee the desired statistical equivalence. This will be done in the next section.
Of course, (4) is a state-space representation of the random variables xk and yk conditioned

on t?. Moreover, for changing values of t?, (4) describes a family of models corresponding to
the different possible realizations of t?.
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3.1 Computation of the conditioned system parameters

In this section we will assume that t? takes values in a certain interval (th, th+1), with th,
th+1 ∈ T . The interval is assumed to be open without loss of generality.

Proposition 1. Assume that Fq and −Fq have disjoint spectra, q = 0, 1. Then:

1. the Lyapunov equation

FqJq + JqF
T
q = −GqG

T
q

admits a unique solution in Jq, q = 0, 1;

2. the parameters of the conditioned system are given by:

Case k 6= h (i.e. t? 6∈ (tk, tk+1)):

Ak(t
?) = eFq(tk+1−tk) Ck(t

?) = Hq

Qk(t
?) = Jq − Ak(t

?)JqA
T
k (t?) Dk(t

?) = Kq

where q = 0 if k < h and q = 1 if k > h;

Case k = h (i.e. t? ∈ (tk, tk+1)):

Ak(t
?) = Ak,1(t

?)Ak,0(t
?) Ck(t

?) = H0

Qk(t
?) = −Ak(t

?)Sk,0(t
?)AT

k (t?) + Sk,1(t
?) Dk(t

?) = K0

where, for i = 0, 1,

Ak,i(t
?) = eFi(−1)i+1(tk+i−t?),

Sk,i(t
?) = Ji − A−1

k,i (t
?)JiA

−T
k,i (t?).

Remark 1. The assumption on the spectrum of Fq only plays a role in the existence and
uniqueness of the solution of the Lyapunov equation of point 1. (see [1], pp. 203-204). For
arbitrary matrices F0 and F1, the computation of Qk, Sk,0 and Sk,1 (where J0 and J1 appear)
can still be accomplished although in a less elegant form.

Remark 2. For k 6= h, Ak(t
?) and Qk(t

?) do not depend on the specific value of t?. In fact,
they depend on t? only through h. The same clearly holds for Ck(t

?), Dk(t
?), for any k.

Remark 3. At this stage, all parameters of the conditioned system are expressed in terms
of explicit functions of t?. Notice that Ji, i = 0, 1 may be computed offline with arbitrary
precision using standard numerical tecniques. Parameters Ak, Qk, k 6= h can be computed
offline as well.
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4 The filtering problem as averaging of Kalman filters

Let us take a deeper look at the estimation problems we stated in section 2. For any index j,
consider the computation of x̂j|k. Applying the Law of Total Probability we write

f(xj|yk) =

∫ +∞

0

f(xj|t?, yk)f(t?|yk)dt?. (5)

We recognize f(xj|t?, yk) to be the a posteriori density of the state xj given yk of the condi-
tioned system (4).

In the light of the discussion of section 3, for any fixed value of t? it must hold that

f(xj|t?, yk) ∼ N (x̂j|k(t
?), Pj|k(t

?)), (6)

where mean and variance may be interpreted as the minimum error variance estimate of
xj given yk and the estimation error covariance matrix for the conditioned system (see for
instance [14]). In particular,

x̂k|k(t?) (7)

x̂k+1|k(t?) (8)

are the conditional Kalman filter and the conditional Kalman predictor for the corresponding
conditioned system, whereas

Pk|k(t?) (9)

Pk+1|k(t?) (10)

are the relative covariance matrices. Of course, these may be computed by an obvious
conditional Kalman recursion, which we report for later convenience:

Measurement update:

Lk(t
?) = Pk|k−1(t

?)CT
k (t?)[Ck(t

?)Pk|k−1(t
?)CT

k (t?) + D(t?)DT (t?)]−1

x̂k|k(t?) = x̂k|k−1(t
?) + Lk(t

?)[yk − Ck(t
?)x̂k|k−1(t

?)]
Pk|k(t?) = Pk|k−1(t

?)− Lk(t
?)Ck(t

?)Pk|k−1(t
?)

(11)

Time update:
x̂k+1|k(t?) = Ak(t

?)x̂k|k(t?)
Pk+1|k(t?) = Ak(t

?)Pk|k(t?)AT
k (t?) + Qk(t

?)
(12)

By equation (5), estimate (2) is therefore equal to the conditional average

x̂j|k =

∫ +∞

0

x̂j|k(t
?)f(t?|yk)dt?. (13)

Hence, for j = k (or k + 1), we have a natural interpretation of x̂j|k as averaging of Kalman
filters (or predictors). Note that (5) is a weighted average of Gaussian densities parameterized
by t?. What is obtained in general is not at all Gaussian, hence there is no hope to compute
x̂j|k in a linear recursive manner [14].

It is now evident that the a posteriori density f(t?|yk) plays a major role in the estima-
tion (2). In fact, it is intimately related to the computation of (8), as it will be clear in the
next section. Hence, with the computation of integral (13) in mind, the attention shifts to
deriving explicit expressions for f(t?|yk) (section 5) and (6) (section 6), with special regard
to filtering (j = k) and prediction (j = k + 1).
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5 Switching time estimation

In this section we shall present a technique for the computation of the conditional probability
density f(t?|yk), i.e. the a posteriori statistical description of the switching time (given the
data up to time tk). The knowledge of f(t?|yk) obviously has importance per se, since it
allows to compute probabilities such as P[q(tj) = 1 | yk] = P[t? < tj | yk], which is part of the
solution to the state estimation problem (more precisely, when j > k, j = k, or j < k we
are dealing respectively with prediction, filtering, or smoothing). But on the other hand, as
discussed in the previous paragraph, the above density plays a fundamental role in computing
the estimate of continuous state x(tj) as well.

We will obtain f(t?|yk) by first computing the likelihood function f(yk|t?) and then
applying Bayes’rule. Two different methods for the computation of f(yk|t?) are presented,
both making use of the results of section 3. Note incidentally that the parameters of the
conditioned system (4) are functions of the random variable t?, hence they are random
themselves; however, for the time being, fix a particular value of t?. Keeping this in mind,
sometimes we shall drop the t? from our notation.

Direct computation of f(yk|t?). Define the following vectors and matrices:

µ̃k ,




0
0
...
0
µ0



∈ R(k+1)n, Σ̃k(t

?) ,




Qk−1(t
?) 0 · · · 0 0

0 Qk−2(t
?) · · · 0 0

...
...

. . .
...

...
0 0 · · · Q0(t

?) 0
0 0 · · · 0 Σ0




,

Θk(t
?) ,




I Ak−1 Ak−1Ak−2 · · · Ak−1Ak−2 . . . A2A1 Ak−1Ak−2 . . . A1A0

0 I Ak−2 · · · Ak−2Ak−3 . . . A2A1 Ak−2Ak−3 . . . A1A0

0 0 I · · · Ak−3Ak−4 . . . A2A1 Ak−3Ak−4 . . . A1A0
...

...
...

. . .
...

...
0 0 0 · · · A1 A1A0

0 0 0 · · · I A0

0 0 0 · · · 0 I




(note that al the Ai’s are functions of t?),

Ξk ,
[

Ak−1 Ak−1Ak−2 · · · Ak−1Ak−2 . . . A2A1 Ak−1Ak−2 . . . A1A0

]
,

Υk(t
?) , diag{Ck(t

?), . . . , C0(t
?)} and Λk(t

?) , diag{Dk(t
?), . . . , D0(t

?)}.
The following proposition holds:

Proposition 2. Let yk , [yT
k , yT

k−1, . . . , y
T
0 ]T ∈ R(k+1)×p be the vector of all measurements

up to time tk. Then yk conditioned on t? has the following multivariate Gaussian density:

f(yk| t?) ∼ N (
µyk(t?), Σyk(t?)

)
,

where

µyk(t?) , Υk(t
?)Θk(t

?) µ̃k ,

Σyk(t?) , Υk(t
?)Θk(t

?) Σ̃k(t
?) ΘT

k (t?)ΥT
k (t?) + Λk(t

?)ΛT
k (t?) .

The above quantities may be computed by the following iteration on k:
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1. each n-dimensional subvector of µyk(t?) is obtained just by left-multiplying the one
below it by Ck(t

?)Ak(t
?);

2. Σyk(t?) can be obtained by adding n rows and columns to Σyk−1(t?) as follows:

Σyk =

[
Φk Ψk

ΨT
k Σyk−1

]

where matrices Φk and Ψk are given by:

Φk = Ck(ΞkΣ̃k−1Ξ
T
k + Qk)C

T
k + DkD

T
k ,

Ψk = CkΞkΣk−1Θ
T
k−1Υ

T
k−1.

An iterative formulation for the computation of f(yk|t?). The above computation
may look somewhat cumbersome: however it only requires the computation of the condi-
tioned system’s parameters, which we performed in section 3.

Note that we may write density f(yk|t?) simply as follows:

f(yk| t?) = f(yk| t?, yk−1) f(yk−1| t?); (14)

this formula provides an iterative method for computing f(yk|t?). Since yk is a given vector
of data, for a fixed value of t? we have that f(yk−1|t?) is just a number that we carry on from
the previous computation. Such number has to be multiplied by f(yk| t?, yk−1), whose value
is easily obtainable from f(xk| t?, yk−1). The latter quantity plays a fundamental role in the
estimation of continuous state x, as we saw in section 4; in section 6 we will show a precise
technique for computing it. However, if one is just interested in the posterior density of t?

and not in the estimation of the continuous state, the formulation given by Proposition 2
may be sufficient. Otherwise, once f(xk| t?, yk−1) is known, the application of (14) is more
appropriate.

Application of Bayes’ rule. The posterior density of t? is given by:

f(t?|yk) =
f(yk|t?)f(t?)∫∞

0
f(yk|t?)f(t?) dt?

(15)

where f(t?) = λe−λt? for t? > 0. In fact, for t? > tk density f(yk|t?) is independent of the
specific value assumed by t? (compare the initial discussion of section 6). Therefore, we have
that the denominator of (15) is given by:

∫ tk

0

f(yk|t?)f(t?) dt? + f(yk|t? > tk)P[t? > tk]. (16)

In principle, the above integration requires computing f(yk|t?) for infinite values of t?.
In practice, by Proposition 2 and the results of section 3, likelihood f(yk|t?) may be effi-
ciently evaluated at any t? in the finite interval (0, tk). Hence, quadrature methods apply
successfully.
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Remark. When combined with the direct method for the computation of f(yk| t?), the
computation of (15) does not make use of conditional Kalman filtering. However, whenever
computation of f(xk+1|, t?, yk) is carried out for the estimation of x (see sections 4 and 6),
the iterative method (14), which takes advantage of the computation of the latter density,
should be preferred. We will come back to this at the end of the next section.

6 Conditional Kalman filtering

Following section 4, for any fixed value of t? one may think of computing the a posteriori
densities

f(xk|t?, yk) (17)

f(xk+1|t?, yk) (18)

at once by simply running the conditional Kalman recursion associated to t?. In principle,
the procedure solves the problem of computing (17) and (18) for any value of t?. In practice,
however, it cannot deal with the computation of integrals such as (5) and (16) (see also (14)
and related comments), where (17) and (18) need to be known for all t?, or at least for a
relatively large set of values.

It turns out that the dependence on t? can be singled out by suitably rearranging the
computation of (11) and (12). Indeed, fix h ∈ N0 and let t? assume any value in the
interval (th, th+1). We note the following:

(i) (7), (9) and (8), (10) are independent of the specific t? for k ≤ h and k < h, respectively;

(ii) for k ≥ h+1, (7)÷(10) depend on t? only through their new initial conditions x̂h+1|h(t?),
Ph+1|h(t?).

Indeed, the parameters of the conditioned system are constant (w.r.t. t?) before th (when
q(t) ≡ 0) and after th+1 (when q(t) ≡ 1). Therefore, for any t? ∈ (th, th+1), (11) and (12)
evolve independently of t? before th and after th+1, whereas the role of t? is concentrated in
the time update at step k = h. Based on these two key remarks, the rest of the section will
be devoted to deriving an explicit representation of densities (17), (18).

Again, let h ∈ N0 and t? ∈ (th, th+1). The first result is just a formalization of (i).

Proposition 3. It holds that:

x̂k|k(t?) = x̂k|k(∞) Pk|k(t?) = Pk|k(∞), k ≤ h,
x̂k+1|k(t?) = x̂k+1|k(∞) Pk+1|k(t?) = Pk+1|k(∞), k < h.

The next result states how t? affects (12) at step k = h.

Proposition 4. In the same hypotheses of Proposition 1,

x̂h+1|h(t
?) = Ah(t

?)x̂h|h(∞),

Ph+1|h(t
?) = Ah(t

?)(Ph|h(∞)− J0)A
T
h (t?) + Ah,1(t

?)(J0 − J1)A
T
h,1(t

?) + J1.

In essence, the above expresses the new initial conditions for the recursion steps k ≥ h+1
as explicit functions of t?. Recall that Ah(t

?) is a known matrix exponential. We need now
to show how (7) and (8) depend on t? for k ≥ h + 1.
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Proposition 5. Assume Ck full row rank. For k > h, define the recursions

Πk =

[
A−T

k A−T
k ∆k

QkA
−T
k Ak + QkA

−T
k ∆k

]
Πk−1, Πh = I,

Nk = [AT
k Π1,1

k − Π1,1
k−1]

T C†
kyk + Nk−1, Nh = 0,

Mk = [AT
k Π1,2

k − Π1,2
k−1]

T C†
kyk + Mk−1, Mh = 0,

with C†
k = CT

k (CkC
T
k )−1, ∆k = CT

k (DkD
T
k )−1Ck, and3

Γk =

[
I ∆k

AT
k QkA

−T
k AT

k Ak + AT
k QkA

−T
k ∆k

]
Πk−1.

Then, for k ≥ h + 1,

x̂k|k(t
?) = [Γ1,1

k + Γ1,2
k Ph+1|h(t

?)]−T · [x̂h+1|h(t
?) + Nk + Ph+1|h(t

?)Mk]

Pk|k(t
?) = −A−1

k QkA
−T
k + [Γ1,1

k + Γ1,2
k Ph+1|h(t

?)]−T · [Γ2,1
k + Γ2,2

k Ph+1|h(t
?)]T

x̂k+1|k(t
?) = [Π1,1

k + Π1,2
k Ph+1|h(t

?)]−T · [x̂h+1|h(t
?) + Nk + Ph+1|h(t

?)Mk]

Pk+1|k(t
?) = [Π1,1

k + Π1,2
k Ph+1|h(t

?)]−T · [Π2,1
k + Π2,2

k Ph+1|h(t
?)]T

where superscript (i,j) indicates the (i, j)-th matrix block.

Remark. Observe that Πk, Nk, Mk and Γk do not depend on the specific value of t?. In
fact, they appear as constants in the expressions of x̂k|k(t?), Pk|k(t?) and x̂k+1|k(t?), Pk+1|k(t?).
Hence, the latter depend on t? only through x̂h+1|h(t?), Ph+1|h(t?). Also observe that the time
update step of the above proposition holds trivially for k = h too.

In practice, knowledge of (17) and (18) is required for (almost) every t?. For any index
k, it may be obtained by considering the restriction of x̂j|k(t?) and Pj|k(t?), j = k, k + 1 to
each of the k + 2 intervals

(t0, t1), . . . , (th, th+1), . . . , (tk, tk+1), (tk+1, +∞),

and applying the results of Propositions 3 and 5 to form (6) piecewise. All the procedure
needs to compute is matrices Πk(h), Nk(h), Mk(h) and Γk(h) for each h ≤ k (restrictions of
t? to (th, th+1), Proposition 5), plus a standard Kalman recursion up to step k (restriction of
t? to (tk+1, +∞), Proposition 3). Moreover, the whole scheme can be put in recursive form
as follows:

Initialization: set x̂0|−1 = µ0, P0|−1 = Σ0;

Iteration (k ≥ 0): as measurement yk arrives,

1. for h = 0, . . . , k−1 compute Γk(h) from Πk−1(h); compute x̂k|k(∞), Pk|k(∞) from
x̂k|k−1(∞), Pk|k−1(∞);

3It is in fact Πk = Πk(h), Nk = Nk(h), Mk = Mk(h), Γk = Γk(h). For notational conciseness, the
dependence on h of these and other quantities is not reported here.
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2. for h = 0, . . . , k − 1, compute Πk(h), Nk(h), Mk(h) from Πk−1(h), Nk−1(h),
Mk−1(h); set Πk(k) = I, Nk(k) = 0, Mk(k) = 0; compute x̂k+1|k(∞), Pk+1|k(∞)
from x̂k|k(∞), Pk|k(∞).

Of course, the initialization step gives the parameters that are needed to represent f(x0| · , y−1),
whereas points 1 and 2 of the iteration step yield the parameters to represent f(xk| · , yk)
and f(xk+1| · , yk), respectively. With this scheme, a complete, explicit representation of (17)
and (18) in terms of the parameter t? is computed with O(k2) complexity.

6.1 Application to switching time estimation

Based on expressions (14) and (15) of section 5 we get the following result.

Proposition 6. The a posteriori density f(t?|yk) can be computed as follows:

f(t?|yk) =

∏k
j=0 f(yj|t?, yj−1)f(t?)

(. . . )
,

where

(. . . ) =
k−1∑

h=0

[ h∏
j=0

f(yj|t? > th, y
j−1) ·

∫ th+1

th

k∏

j=h+1

f(yj|t?, yj−1)f(t?)dt?
]

+
k∏

j=0

f(yj|t? > tk, y
j−1)P[t? > tk].

In fact, all the terms f(yj|t?, yj−1) may be trivially deduced from the corresponding den-
sities f(xj|t?, yj−1). By considering their restriction to the relevant interval of integration,
one may apply the algorithm presented above and suitable numerical quadrature so to obtain
an efficient evaluation of all integrals, i.e. of the normalization factor. Similarly, this repre-
sentation of f(t?|yk) is extremely well suited for a piecewise computation of integral (13).

7 Conclusions

In this paper we have presented a new method for estimating the state (x, q) of a class of
stochastic hybrid systems, where the continuous state evolves according to a linear SDE, the
discrete state is a continuous-time Markov chain, while noisy measurements of the continuous
state are discrete in time.

For a given trajectory of the discrete state q(t) the problem is solvable by applying
ordinary Kalman filtering to the corresponding time-varying discrete-time dynamical system,
sampled in correspondence of the measurement times. In order to solve our problem, however,
we must average these Kalman filters against the a posteriori distribution of the discrete state
switching time. This averaging operation eliminates the Gaussian nature of the estimate,
which cannot therefore be described in a parametric way. However, we managed to formulate
an algorithm that is exact up to the averaging operation. In other words, it involves exact and
efficient computation of parameters until the very last moment, that is when integrals (5)
or (16) have to be computed. Note, for example, that by following this procedure any
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approximation (due to the numerical computation of integral (5)) that is introduced for the
calculation of f(xk|yk) does not influence the degree of approximation of f(x`|y`) for ` > k,
since the latter density is not computed directly from the former.

We believe that the class of stochastic hybrid systems that we consider is a natural one
for many applications where discrete state jumps may occur at a rate that is higher than the
frequency of measurements. We are currently considering to extend our algorithm to models
that are more complex than the one we studied: i.e., instead of having an absorbing state
(or more absorbing states), describing the evolution of the discrete state by more general
Markov models allowing for multiple switches between two consecutive measurements.

8 Acknowledgements

This work was supported in part by the European Community through the project RECSYS
of the V Framework Program. Mario Micheli’s research was partially supported by the
Fondazione “Ing. Aldo Gini” (Padova, Italy). We wish to thank Professor Augusto Ferrante
for his precious advice.

References

[1] R. Bhatia. Matrix Analysis. Springer-Verlag New York Inc., New York, USA, 1997.

[2] H. A. P. Blom and Y. Bar-Shalom. The interacting multiple model algorithm for sys-
tems with Markovian switching coefficients. IEEE Transactions on Automatic Control,
33(8):780–783, Aug. 1988.

[3] R. Chen and J. S. Liu. Mixture Kalman Filters. Journal of the Royal Statistical Society
– Series B, 62:493–508, 2000.

[4] E. Cinquemani, M. Micheli, and G. Picci. State estimation for a class of stochastic
hybrid systems. Journal paper, in preparation.

[5] O. L. V. Costa. Linear minimum mean square error estimation for discrete-time Marko-
vian jump linear systems. IEEE Transactions on Automatic Control, 39(8):1685–1689,
Aug. 1994.

[6] O. L. V. Costa and S. Guerra. Stationary filter for linear minimum mean square error
estimator of discrete-time Markovian jump systems. IEEE Transactions on Automatic
Control, 47(8):1351–1356, Aug. 2003.

[7] A. Doucet and C. Andrieu. Iterative algorithms for state estimation of Jump Markov
linear systems. IEEE Transactions on Signal Processing, 49(6):1216–1227, June 2001.

[8] A. Doucet, A. Logothetis, and V. Krishnamurthy. Stochastic sampling algorithms for
state estimation of Jump Markov linear systems. IEEE Transactions on Automatic
Control, 45(2):188–201, 2000.

[9] R. J. Elliott, F. Dufour, and D. D. Sworder. Exact hybrid filters in discrete time. IEEE
Transactions on Automatic Control, 41(12):1807–1810, Dec. 1996.

11



[10] A. Germani, C. Manes, and P. Palumbo. Polynomial filtering for stochastic systems
with Markovian switching coefficients. In Proceedings of the 42nd IEEE Conference on
Decision and Control (CDC 2003), pages 1392–1397, Maui, Hawaii, Dec. 2003.

[11] J. L. Hibey and C. D. Charalambous. Conditional densities for continuous-time nonlin-
ear hybrid systems with application to fault detection. IEEE Transactions on Automatic
Control, 44(11):2164–2169, Nov. 1999.

[12] M. W. Hofbaur and B. C. Williams. Mode estimation of probabilistic hybrid systems. In
Hybrid Systems: Computation and Control (HSCC 2002), Lecture Notes on Computer
Sciences. Springer Verlag, 2002.

[13] J. Hu, J. Lygeros, and S. S. Sastry. Towards a Theory of Stochastic Hybrid Systems.
In Third International Workshop on Hybrid Systems: Computation and Control, Pitts-
burgh, PA, 2000. Springer Verlag Lecture Notes on Computer Science, vol. 1790.

[14] A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, London,
1970.

[15] X. Koutsoukos, J. Kurien, and F. Zhao. Monitoring and diagnosis of hybrid systems
using particle filtering methods. In Proceedings of the Fifteenth International Symposium
on the Mathematical Theory of Networks and Systems (MTNS ’02), University of Notre
Dame, South Bend, Indiana, Aug. 2002.

[16] X. Koutsoukos, J. Kurien, and F. Zhao. Estimation of distributed hybrid systems using
particle filtering methods. In Hybrid Systems: Computation and Control (HSCC 2003).
Springer Verlag Lecture Notes on Computer Science, vol. 2623, Pittsburgh, PA, 2003.

[17] U. Lerner, R. Parr, D. Koller, and G. Biswas. Bayesian fault detection and diagno-
sis in dynamic systems. In Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI), pages 531–537, Austin, Texas, July 2000.

[18] A. Logothetis and V. Krishnamurthy. Expectation maximization algorithms for map
estimation of jump Markov linear systems. IEEE Transactions on Signal Processing,
47(8):2139–2156, Aug. 1999.

[19] B. M. Miller and W. J. Runggaldier. Kalman filtering for linear systems with coefficients
driven by a hiddem Markov jump process. Systems and Control Letters, 31:93–102, 1997.

[20] K. P. Murphy. Switching Kalman filters. Report 98-10, Compaq Cambridge Research
Laboratory, 1998.

[21] J. K. Tugnait. Adaptive estimation and identification for discrete systems with Markov
jump parameters. IEEE Transactions on Automatic Control, 27(5):1054–1065, Oct.
1982.

[22] J. K. Tugnait. Detection and estimation for abruptly changing systems. Automatica,
18(5):607–615, 1982.

[23] Q. Zhang. Hybrid filtering for linear systems with non-Gaussian disturbances. IEEE
Transactions on Automatic Control, 45(1):50–61, Jan. 2000.

12


