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Abstract

In this work we address estimation problems in linear systems subject to
Markovian jumps. We first introduce the class of jump Markov linear sys-
tems. These are discrete-time systems jumping in time among a finite set of
known linear modes. Each mode is defined by a stochastic difference equa-
tion, describing the evolution of a continuous state vector xk, and a static
equation modeling noisy measurements yk of xk. The current operating mode
is determined by the value of a discrete state qk taking values in a finite set
Q. The evolution of qk follows the laws of a discrete-time Markov chain. We
illustrate the problem of estimating the values of xk and qk based on the
measurements yk collected up to time k. The optimal Bayesian solution is
presented and is shown to have complexity exponentially increasing in time.
An overview of certain finite-complexity approximate estimation algorithms
is presented. Open issues in suboptimal estimation and limitations of the
discrete-time model are discussed. A similar model is then considered for
systems with continuous-time dynamics. In this model, a stochastic differen-
tial equation governs the evolution of a continuous state ξ(t). Measurements
yk of the state are taken at fixed sample times tk. Switching among differ-
ent discrete states is determined by the outcome q(t) of a continuous-time
Markov chain taking values in Q. We state the problem of estimating ξ(t)
and q(t) based on the collection of data yk and formulate the optimal solution
of the problem. Application of conditioned Kalman filtering and a recursive
estimation algorithm are discussed for the case of filtering and prediction.
State estimation on single-switch models is studied in depth and is shown
to be equivalent to a fault detection problem. Algorithms for fault detec-
tion are derived and are evaluated on the basis of numerical simulations.
Finally, we focus back on state estimation in discrete time, and consider the
problem of detecting the whole sequence of discrete states q0, . . . qk from the
available data yk. A sequential testing rule for the selection of a set of most
probable sequences is considered. We investigate the connection between the
structural properties of the system and the ability of the test to discriminate
sequences, and determine the laws that regulate the probability of discarding
the true sequence.

Keywords: jump Markov linear systems, hybrid systems, Riccati equa-
tions, conditioned Kalman filtering, fault detection, hypothesis testing.





Sommario

Il presente lavoro tratta problemi di stima per sistemi lineari soggetti a
salti di tipo Markoviano. Si introducono dapprima i cosiddetti jump Markov
linear systems, ossia sistemi a tempo discreto descritti da una successione
temporale non nota di modelli lineari assegnati. Ciascun modello è definito
da un’equazione alle differenze stocastica che regola l’evoluzione di uno stato
continuo xk, e da una equazione statica che descrive misure rumorose yk di xk.
Il modello attivo al tempo k è determinato da uno stato discreto qk a valori in
un insieme finito Q. L’evoluzione di qk segue le leggi di una catena di Markov
a tempo discreto e determina salti fra i diversi modi lineari. Si considera il
problema della stima Bayesiana di xk e qk a partire dalla collezione di misure
yk disponibili all’istante k. Se ne deriva la soluzione ottima e si dimostra
che la complessità di tale soluzione cresce esponenzialmente nel tempo. Si
illustrano noti algoritmi di stima approssimata a complessità finita. Si discu-
tono i problemi aperti nella stima subottima ed i limiti del modello a tempo
discreto. Si considera quindi un analogo modello per sistemi con dinamica a
tempo continuo. In tale modello, un’equazione differenziale stocastica gov-
erna l’evoluzione di uno stato continuo ξ(t), mentre una equazione statica
descrive misure rumorose yk effettuate in istanti temporali prefissati. I salti
fra i vari stati discreti seguono la dinamica di una catena di Markov a tempo
continuo q(t) a valori in Q. Si definisce il problema della stima di ξ(t) e di
q(t) basata sulla collezione di misure yk e se ne formula la soluzione ottima in
termini astratti. Nei casi di filtraggio e predizione, si discutono l’applicazione
di filtri di Kalman condizionati ed un algoritmo di stima di tipo ricorsivo.
Si approfondisce lo studio del problema di stima dello stato nel caso speci-
fico di un sistema con un singolo salto, e se ne dimostra l’equivalenza ad un
problema di fault detection, ossia di rilevazione di guasti. Si costruiscono
algoritmi di fault detection e se ne valutano le prestazioni sulla base di sim-
ulazioni numeriche. Infine, si riconsiderano i modelli a tempo discreto e si
affronta il problema della stima dell’intera traiettoria q0, . . . , qk dello stato
discreto basata sulle misure yk. Si introduce un test di tipo sequenziale per
la determinazione di un sottoinsieme di traiettorie più probabili. Si studi-
ano gli effetti delle proprietà strutturali del modello sull’efficacia del test
nel distinguere sequenze differenti, e si determinano le leggi che regolano la
probabilità di scartare la sequenza corretta.

Parole chiave: jump Markov linear systems, sistemi ibridi, equazioni di
Riccati, filtri di Kalman condizionati, fault detection, test di ipotesi.
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Introduction and preview

Diverse applications of automated estimation and control deal with systems
subject to sudden changes. Air traffic management requires monitoring the
actions of aircrafts to guarantee safe flight conditions. In this context, the
motion of an aircraft may be split into take off, cruising, landing and other
manoeuvres [30, 43]. Industrial plants undergo ruptures that modify the
dynamics of the process. Interest is in monitoring and detecting faults for
fast repair or reconfiguration [6]. Automotive power train control requires
the online identification of the transmission parameters of a car. They change
in time according to the gear engaged and the clutch connection state [4].
Cardiac activity is subject to different types of arrhythmias, which need to be
recognized based on electrocardiogram data [54]. The flow of information in
a networked system is regulated by communication protocols, and congestion
or dead-lock events may be avoided by suitable control [31]. Human motion
and gaits may by tracked and classified by a computer vision system provided
the learning of a set of typical dynamics [9, 50]. In these settings, continuous
time variables characterizing the evolution of the system are combined with
quantities and events that are discrete in nature. This results in a so-called
hybrid system, a generic term used to indicate a vast and heterogeneous class
of systems with discrete and continuous components.

In a number of settings, jumps are not determined by the evolution of
the system, or the relationship between jumps and continuous dynamics can-
not be explained by a model of reasonable complexity. In other words, the
sequence of modes the system goes through follows its own stochastic dynam-
ics. Since the late 60’s, the engineering community has been interested in
jump Markov linear systems (JMLS). A jump Markov linear system consists
of a linear Gaussian stochastic difference equation for the evolution of a con-
tinuous state xk, of a static linear equation describing measurements yk of xk

corrupted by Gaussian noise, and of an N -valued discrete state qk that de-
termines the parameters of the two equations at each time step k. For fixed
values of qk, one gets a stochastic linear state-space model. However, the
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value of qk changes in time according to the laws of a discrete-time Markov
chain, which makes the system nonlinear. Given a jump Markov model, one
is concerned with the recursive estimation of the continuous state x and of
the mode of the system, i.e. the discrete state q, from the collection of mea-
surements y0, . . . , yk. Since Nk+1 different sequences q0, . . . , qk exist, optimal
Bayesian filtering and prediction of x may be obtained by a weighted average
of Nk+1 conditioned Kalman filters, each matched to a different discrete state
sequence. However, this solution is impracticable due the exponentially in-
creasing complexity of the algorithm. A related problem is that of detecting
the whole sequence q0, . . . , qk. As will be shown, the a posteriori statistics of
the whole sequence may be determined by the same bank of Kalman filters
used in the estimation of x.

Since the pioneering work of Ackerson and Fu [1], several suboptimal es-
timation strategies have been proposed trying to achieve good performance
with finite-complexity algorithms. Successful applications were found in
medicine and fault detection, see [54] and references therein, tracking of ma-
noeuvering targets [46, 21, 23], signal detection and noise suppression [24],
stochastic deconvolution [21], among others. However, it was already pointed
out in [54] that performance analysis of the available algorithms is intractable.
Moreover, numerical simulations show that performance depends heavily on
the model considered, and no algorithm can be preferred in general. To date,
there is general agreement on the fact that the theoretical understanding of
the JMLS estimation problem is still loose. In fact, most algorithms in lit-
erature are somewhat arbitrary approximations of the optimal solution and
have been evaluated on the basis of few numerical simulations.

Jump Markov linear systems may be used to approximate the dynamics
of a continuous-time switching system. In this case, an implicit assumption
is that the mode of the system does not change in-between measurement
instants. This may be a serious limitation if the system modes or the switch
dynamics are fast compared to the rate of measurements. In medical appli-
cations, for instance, measurements such as blood samples or radiographies
may only be taken at reasonably sparse time instants. On the contrary, the
evolution of a disease or the effects of a therapy should be monitored with
as much detail as possible. In a remote control problem with communication
constraints, few measurements are available for state estimation, therefore
discrete-time approximations of dynamics and switching might be unaccept-
able [14]. Continuous-time stochastic hybrid systems have been investigated
e.g. in [32, 35, 47, 58]. In this setting, a continuum of measurements is
available for estimation purposes.
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Motivations of the work

We are concerned with the study of continuous-time switching dynamical
systems observed at sparse sample times. As we mentioned above, a discrete-
time jump Markov model is a poor description of certain systems of actual
interest. In particular, the problem of detecting the exact time of a switch
cannot be posed unless the approximation to the closest sample time is ac-
cepted. On the other hand, no significant effort has been dedicated to model
continuous-time systems undergoing Markovian switches. A large part of this
thesis is dedicated to the generalization of the JMLS framework to systems
with continuous-time dynamics and switching. We consider a state-space
model where the continuous state ξ obeys a stochastic differential equation,
and noisy measurements of ξ are taken at fixed sample times. The parame-
ters of the two equations are determined by the N − valued discrete state q,
which is now assumed to jump in time according to a continuous-time Markov
chain. Therefore, switches in-between measurements are explicitly accounted
for. State estimation problems are considered together with the problem of
determining the time of a jump. The continuous nature of switching makes
estimation hard to treat in a parametric way. However, in the basic setting
of a single-switch system, an effective solution is found by convenient appli-
cation of conditioned Kalman filtering. This gives rise to optimal algorithms
for state estimation and fault detection, approximations being limited to an
adaptive numerical evaluation of a small number of finite-support integrals.

A second issue of our concern is the detection of the discrete-state se-
quence q0, . . . , qk of a JMLS. The problem raises questions of theoretical
interest such as the distinguishability of the sequences on the basis of the
output data yk. The ultimate aim would be to determine the achievable per-
formance on the basis of structural properties of the system such as rate of
switching, observability of the modes, et cetera. At the same time, we wish
to devise detection algorithms supported by a sound performance analysis.
Literature lacks theoretical results on the JMLS detection problem. Recent
works [44, 45] report encouraging results based on the use of the tools of in-
formation theory. Our effort is based on the application of hypothesis testing.
Using maximum-a-posteriori criteria, we select a subset of most probable se-
quences and reduce estimation to an exhaustive search within this set. Based
on the equivalence to a family of sequential likelihood ratio tests, we relate the
performance in pruning wrong sequences to a measure of similarity between
conditioned predictors. The results we obtain in this sense are preliminary.
On the other hand, general results on the probability of discarding the true
sequence shed light on the complexity of the selection task.
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Thesis outline

Chapter 1 provides an overview of Markov chains and statistical estimation
methods. The main properties of discrete-time and continuous-time Markov
chains are exposed for later use in jump Markov modeling. Bayesian estima-
tion is illustrated in its essential lines. Basic results of linear and nonlinear
estimation are presented along with recursive linear filtering for state-space
models. One section is dedicated to hypothesis testing. Fundamental con-
cepts such as the Neyman-Pearson theorem and Wald’s sequential testing are
adapted to the context of jump Markov systems.

Chapter 2 introduces jump Markov models in discrete-time and the rel-
evant state estimation problems. Optimal Bayesian solutions are derived in
the form of an average of conditioned linear estimates and in terms of a recur-
sion on the a posteriori statistics of the state. This shows the exponentially
increasing complexity of the problem and reveals that the use of an optimal
estimator is impracticable. The main suboptimal algorithms proposed in the
literature are reviewed. A final discussion points out the open issues that
motivate our research.

Chapter 3 describes an alternative formulation of the Kalman filtering
algorithm. Estimates are split in a term associated to zero initial conditions
and in a second term which is a parametric function of the initial conditions.
Both terms are updated by simple matrix recursions. The result resembles
the superposition principle holding for linear difference equations, and allows
direct evaluation of the estimates for changing initial conditions at any step of
the recursion. This will be fundamental in the development of fault detection
algorithms for continuous-dynamics switching systems.

Chapter 4 introduces a natural generalization of the discrete-time jump
Markov models to continuous-time dynamics and switching. A continuous-
time Markov chain description of the discrete state is used. Statement and
analysis of Bayesian estimation problems are developed in analogy with
Chapter 2. Both the averaged and the recursive solutions are shown to
be formally equivalent to the discrete-time counterparts, however, they are
complicated by the continuous variety of discrete state trajectories. The
basic instance of a single-switch system, well suited to fault detection appli-
cations, is examined in depth. State estimation is discussed and is shown to
encompass the estimation of the whole discrete-state trajectory.

Chapter 5 concentrates on the implementation of the fault detection
strategies developed in Chapter 4. We initially discuss the prerequisites of a
numerical solution. Estimation formulas are modified accordingly based on
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the application of the results of Chapter 3 to a conditioned discretization of
the continuous-dynamics model. Optimal and suboptimal estimation algo-
rithms are proposed. An implementation of the optimal estimator is tested
by computer simulation. A qualitative analysis of the results is reported.

Chapter 6 treats the estimation of the discrete-state sequence of discrete-
time jump Markov systems. We consider the use of sequential testing for
isolating a set of sequences with high a posteriori probability. Maximum-a-
posteriori estimation is reduced to a search within this set. We show that
the selection rule is equivalent to a family of sequential likelihood ratio tests
between two alternative sequences. We study the connection between the
properties of the system modes and the performance in the isolation of the
true sequence. We derive very general results on the probability of missing
the true sequence. To conclude, we discuss the limitations of the method and
possible remedies.

Main contributions

The reformulation of discrete-time Kalman filtering proposed in Chapter 3 is
original. Besides its use in this thesis, a number of utilizations may be fore-
seen, including the application to extended Kalman filtering and smoothing.
The work was submitted in the form of a journal paper [13] and is currently
under review.

The sampled-measurement Markov switching model of Chapter 4 is not
investigated in the literature. Along with the fault detection algorithms of
Chapter 5, it seems to be the first attempt to extend JMLS to systems where
estimation from sparse measurements cannot be tackled by trivial system
discretization. The first results on state estimation and fault detection were
published in the proceedings of two international conferences [17], [16]. A
journal paper was recently submitted [15] and is currently under review.

Chapter 6 represents an attempt to answer open theoretical questions
concerning JMLS detection problems. Perhaps the most interesting result is
the study of the update map for the probability of missing the true discrete-
state sequence. Although rather simple, it leads to debating the complexity
of the detection problem and suggests possible directions of research. The
study of JMLS detection problems constitutes our current research activity.





Chapter 1

Statistical background

This chapter provides an overview of Markov chains and stochastic esti-
mation. The main statistical properties of continuous-time and discrete-
time Markov chains are reviewed. In the continuous-time case, attention is
paid to the analytical properties of the trajectories. The equivalence be-
tween continuous-time Markov chains and uniform chains, in which discrete
Markovian jumps are subordinated to the occurrence of Poisson events, is il-
lustrated. Bayesian estimation methods for continuous and discrete variables
are briefly reviewed. Finally, the essential concepts of hypothesis testing are
presented. Most of the material is taken from [11],[52] and [57].

1.1 Discrete-time Markov chains

Let {qk}, k ∈ N0, be a sequence of random variables taking values in a finite
set Q.

Definition 1.1 Process {qk} is said to be a Markov chain if, for any k ∈ N0

and any i0, . . . , ik−1, i, j ∈ Q

P[qk+1 = j|qk = i, qk−1 = ik−1, . . . , q0 = i0] = P[qk+1 = j|qk = i].

If, in addition, the above probability is independent of k, the Markov chain
is said to be homogeneous.

In the sequel, we will always consider homogeneous chains.
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Definition 1.2 The transition probability matrix π of a homogeneous Markov
chain is defined as

πi,j , P[qk+1 = j|qk = i].

It is easily verified that π is a stochastic matrix, i.e.
∑
j∈Q

πi,j = 1

for all i ∈ Q. Let pk be the probability distribution of qk,

pk(i) , P[qk = i].

In general, pk will be thought of as a column vector having pk(i) on its i-th
row. We will call p0 the initial probability distribution of the chain.

Proposition 1.1 The probability distribution of a discrete-time Markov chain
is determined by the transition probability matrix π and the initial distribu-
tion p0. For any k ∈ N0 and any i0, . . . , ik ∈ Q it holds that

P[q0 = i0, . . . , qk = ik] = p0(i0)πi0,i1 · . . . · πik−1,ik .

Therefore, two discrete-time homogeneous Markov chains are probabilisti-
cally equivalent if they have the same initial distribution and the same tran-
sition probabilities.

Proposition 1.2 For any k, h ∈ N0 and any i, j ∈ Q it holds that

P[qk+h = j|qk = i] = (πh)i,j.

Corollary 1.1 For any k, h ∈ N0, it holds that

pT
k+h = pT

k πh.

In particular, pT
k+1 = pT

k π.

Quantity qk will be called the state of the chain at time k. With an abuse of
terminology, the elements of Q will also be called the states of the chain.

Definition 1.3 A state i ∈ Q is said to be absorbing if, for every h ∈ N0,

P[qk+h = i|qk = i] = 1.

Proposition 1.3 A state i ∈ Q is absorbing if and only if

πi,i = 1.

Observe that, if i is absorbing, πi,j = 0 for all j 6= i.
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1.2 Continuous-time Markov chains

Let q(t), t ∈ R+, be a continuous-time stochastic process. Let q(t)inQ, where
Q is finite set.

Definition 1.4 Process q(·) is said to be a Markov chain if, for any t, δ ∈
R+, any k ∈ N0, any s0, . . . , sk such that 0 ≤ s0 < . . . s` < s`+1 . . . < sk < t
and any i, j, i0, . . . , ik ∈ Q it holds that

P[q(t + δ) = j|q(t) = i, q(sk) = ik, . . . , q(s0) = i0] = P[q(t + δ) = j|q(t) = i].

If, in addition, the above probability is independent of t, the Markov chain is
said to be homogeneous.

It this work, we will consider homogeneous Markov chains only.

Definition 1.5 The transition probability function T(δ), δ ∈ R+, of a
continuous-time Markov chain is defined as

Ti,j(δ) , P[q(t + δ) = j|q(t) = i].

One may verify that T(δ) is a stochastic matrix for every value of δ.

Proposition 1.4 It holds that

T(0) = I

T(t + s) = T(t)T(s)

for every t, s ∈ R+.

In light of these properties, matrix function T(δ) is also called a transition
semigroup on Q. Let pt denote the probability distribution of q(t),

pt(i) , P[q(t) = i].

As usual, we will call p0 the initial probability distribution of the chain, and
we will interpret pt as a column vector of functions of t.

Proposition 1.5 For any t, δ ∈ R+,it holds that

pT
t+δ = pT

t T(δ).

In particular, pT
t = pT

0 T(t).
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Proposition 1.6 The probability distribution of a continuous-time Markov
chain is determined by the transition probability function T(·) and the initial
distribution p0. For any k ∈ N0, any i0, . . . , ik ∈ Q and any s0, . . . , sk such
that 0 ≤ s0 < . . . s` < s`+1 . . . < sk it holds that

P[q(s0) = i0, . . . , q(sk) = ik] = p0(i0)Ti0,i1(s1 − s0) · . . . ·Tik−1,ik(sk − sk−1).

Therefore, two continuous-time homogeneous Markov chains are probabilis-
tically equivalent if they have the same initial distribution and the same
transition semigroup.

Definition 1.6 A transition semigroup T(δ) is said to be continuous if

lim
δ→0+

T(t + δ) = T(t)

for every t ∈ R+, where the limit is evaluated elementwise.

Proposition 1.7 A transition semigroup T(δ) is continuous if and only if
it is continuous at the origin.

For a continuous semigroup, one may consider local properties which do not
have a discrete-time counterpart.

Definition 1.7 The infinitesimal generator of a continuous transition semi-
group is defined as

G , lim
δ→0+

T(δ)− I

δ
,

i.e. it is the right-derivative of T(δ) at 0.

It may be shown that Gi,j ∈ [0, +∞) for every i, j ∈ Q, i 6= j, and that

Gi,i = −
∑

j 6=i

Gi,j.

Proposition 1.8 If T is continuous, it holds that

d

dt
T(t) , lim

δ→0+

T(t + δ)− T (t)

δ
= GT(t).

Corollary 1.2 If T is continuous, it holds that

T(t) = eGt. (1.1)
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We shall now complete the analogy with the discrete-time chains.

Definition 1.8 A state i ∈ Q is said to be absorbing if

P[q(t + δ) = i|q(t) = i] = 1

for all t, δ ∈ R+.

Hence, if i is an absorbing state, Ti,i(δ) = 1. As a consequence, Ti,j(δ) = 0
for all j 6= i.

Proposition 1.9 If i is an absorbing state, then

Gi,j = 0

for all j ∈ Q.

So far, we were concerned with the statistical properties of continuous-
time Markov chains. Let us now consider the analytical properties of the
trajectories of the process. We will write q(t, ω) to make the dependency on
the event ω explicit.

Definition 1.9 A (generic) continuous-time process q(t, ω) is a jump pro-
cess if, for almost every ω and all t ≥ 0,

q(t + δ, ω) = q(t, ω), δ ∈ [0, ε)

for some ε = ε(t, ω) > 0.

Let us denote with {τk(ω)}, with k ∈ N0, τk ≥ 0 and τk < τk+1, the set of
discontinuities of q(t, ω). Furthermore, let DT (ω) , {τk(ω)}∩ [0, T ], T ∈ R+,
denote the discontinuities falling within the interval [0, T ].

Definition 1.10 A jump process is regular if

|DT (ω)| < +∞
for almost every ω and all T ∈ R+.

In the above definitions, no restriction is imposed on the codomain Q of
q(t, ω).

Proposition 1.10 Let q(t, ω) be a continuous-time Markov chain with con-
tinuous transition semigroup T(δ). Then q(t, ω) is a regular jump process.
For almost every ω, q(t, ω) is a right-continuous function.

Therefore, the outcome of a continuous-time Markov chain is, with probabil-
ity 1, a piecewise constant, right-continuous trajectory with a finite number
of discontinuities in any finite time.
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1.3 Poisson processes

Let {τk}, k ∈ N0, be a stochastic sequence such that, with probability one,
τ0 = 0 and τk ≤ τk+1 for all k.

Definition 1.11 For a, b ∈ R+, a ≤ b, the counter process of {τk} is

c(a,b] ,
∑

k∈N0

1(a,b](τk),

where 1(a,b](·) is the indicator function of the set (a, b].

Definition 1.12 The stochastic sequence {τk} is a Poisson process if:

i. for every k ∈ N0 and every {a`} ⊂ R+ such that a` ≤ a`+1, the random
variables {c(a`,a`+1]}, ` = 0, . . . , k − 1, are independent;

ii. for a given ν > 0, the random variable c(a,b] has distribution of Poisson
of parameter ν(b− a), i.e., for every k ∈ N0,

P[c(a,b] = k] = e−ν(b−a)ν
k(b− a)k

k!
.

Note that ν(b − a) is the mean of the Poisson distribution. Therefore, ν
represents the average density of the events τk, and will be called the rate of
the Poisson process. Let now c(t) , c(0,t]. Because the interval is closed on
the right, the trajectories of c(t) are right-continuous.

Proposition 1.11 c(t) is a regular jump homogeneous Markov process.

1.4 Uniform chains

Consider a Poisson process {τk}, k ∈ N0, of rate ν and a discrete-time Markov
chain q`, ` ∈ N0, with q` ∈ Q and Q finite, having transition probability ma-
trix π and initial distribution p0. Assume that {τk} and {q`} are independent.

Definition 1.13 A uniform chain q(t), t ∈ R+, is defined as q(t) , qc(t),
where c(t) is the counter process of τk.
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According to this definition, process q(t) takes values in Q and is allowed
to switch in correspondence of the arrivals of a Poisson process. Switching
itself follows the laws of a discrete-time Markov chain, which is called the
subordinated chain.

Proposition 1.12 Every uniform chain is a continuous-time homogeneous
Markov chain with transition semigroup given by

T(δ) = e−νδ

+∞∑

k=0

(νδ)k

k!
πk. (1.2)

Proof: ([38], pp.173) Recall that P[c(t,t+δ] = k] = e−νδ(νδ)k/k!. Then, for
any {s0, . . . , s`} ⊂ [0, t) with s0 < s1 < . . . < s`,

P[q(t + δ) = j|q(t) = i, q(s0), . . . , q(s`)] =

=
+∞∑

k=0

(νδ)k

k!
e−νδP[q(t + δ) = j|q(t) = i, q(s0), . . . , q(s`), c(t,t+δ] = k]

=
+∞∑

k=0

(νδ)k

k!
e−νδP[qc(t+δ) = j|qc(t) = i, c(t,t+δ] = k]

because qk is Markov. Therefore one gets

P[q(t + δ) = j|q(t) = i, q(s0), . . . , q(s`)] = P[q(t + δ) = j|q(t) = i] =

=
+∞∑

k=0

(νδ)k

k!
e−νδP[qc(t)+k = j|qc(t) = i] =

+∞∑

k=0

(νδ)k

k!
e−νδ(πk)i,j.

¤

Equation (1.2) may be written concisely as T(δ) = e−νδeνδπ. In general,
this expression may be computed by means of the Jordan canonical form of
π [27]. Note that the initial distribution of q(t) is the same as the initial
distribution of qk, namely, p0.

Proposition 1.13 The infinitesimal generator of a uniform chain is

G = ν(π − I). (1.3)

Proof: It holds that

G =

[
d

dt
T(t)

]

t=0

=

[
d

dt
e−νteνtπ

]

t=0

= −νT(0) + νπT(0),
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hence the result. ¤

Proposition 1.14 Every continuous-time Markov chain having continuous
transition semigroup is probabilistically equivalent to a uniform Markov chain.

Proof: Consider a Markov chain with transition semigroup T(δ) and initial
probability p0. Since T(δ) is continuous, one may equivalently consider the
infinitesimal generator G. Let qk be a Markov chain with initial probability
p0. Let τk be a Poisson process of rate ν. Choose ν and the transition
probability matrix π of qk so that, for every i, j ∈ Q, j 6= i,

Gi,j = νπi,j,

Gi,i = ν(πi,i − 1).

Then q(t) = qc(t) has initial probability p0 and infinitesimal generator G. In
fact, one may choose any value of ν such that ν ≥ −mini∈QGi,i, and define
πi,i , Gi,i/ν + 1 and πi,j , Gi,j/ν. ¤

Continuous-time Markov chains and uniform chains are therefore equiva-
lent. Last proof shows that the interaction between the Poisson process and
the subordinated Markov chain introduces redundancy. The ambiguity is re-
moved by fixing the value of ν. The minimal realization of a continuous-time
Markov chain is obtained by choosing ν = −mini∈QGi,i, in which case q(t) is
forced to jump away from the state arg mini∈QGi,i at the first Poisson event.

1.5 Case study

In this section we consider a very simple case of continuous-time Markov
chain which will be of use later on. Let Q = {0, . . . , N − 1}, and consider a
discrete-time Markov chain qk taking values in Q. Let the states Q \ {0} be
absorbing. Then, the transition probability matrix of qk has the form

π =




π0,0 π0,1 · · · π0,N−1

0
... I
0


 . (1.4)



1.5. Case study 25

Proposition 1.15 It holds that

πk =




(π0,0)
k · · · π0,j

∑k−1
`=0 (π0,0)

` · · ·
0
... I
0


 . (1.5)

Proof: By induction on k. ¤

Next, consider the uniform chain q(t) , qc(t), where c(t) is the counter of a
Poisson process of rate ν.

Corollary 1.3 Let π be as in (1.4). The transition semigroup of q(t) is

T(δ) =




T0,0(δ) T0,1(δ) · · · T0,N−1(δ)
0
... I
0


 ,

where

T0,j(δ) =





e−νδ(1−π0,0), j = 0;
π0,j

1− π0,0

(1− e−νδ(1−π0,0)), j = 1, . . . , N − 1.

In particular, Q \ {0} is a set of absorbing states of q(t).

Proof: For every i, j ∈ Q let us compute the expression

Ti,j(δ) = e−νδ

+∞∑

k=0

(νδ)k

k!
(πk)i,j,

with πk given by (1.5). For i = j = 0,

T0,0(δ) = e−νδ

+∞∑

k=0

(νδπ0,0)
k

k!
= e−νδeνδπ0,0 = e−νδ(1−π0,0).

For i = j > 0,

Ti,i(δ) = e−νδ

+∞∑

k=0

(νδ)k

k!
= e−νδeνδ = 1.
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For i 6= j, i > 0,

Ti,j(δ) = e−νδ

+∞∑

k=0

(νδ)k

k!
· 0 = 0.

For i = 0, j > 0,

T0,j(δ) = e−νδ

+∞∑

k=0

(νδ)k

k!
π0,j

(π0,0)
k − 1

π0,0 − 1

= e−νδ π0,j

π0,0 − 1
(

+∞∑

k=0

(νδπ0,0)
k

k!
−

+∞∑

k=0

(νδ)k

k!
)

= e−νδ π0,j

π0,0 − 1
(eνδπ0,0 − eνδ)

=
π0,j

π0,0 − 1
(e−νδ(1−π0,0) − 1),

where the identity
k−1∑

`=0

(π0,0)
` =

(π0,0)
k − 1

π0,0 − 1

has been used. Alternative, one may compute (1.1) with G given by (1.3). ¤

1.6 Bayesian estimation

Let x and y be continuous random vectors. Consider the problem of esti-
mating the value of x from the outcome of y. In this context, y is referred to
as measurements (of x) or data. Define X , Rn.

Definition 1.14 Let x ∈ X. An estimator z of x is any measurable function
of the data of the form

z : y 7→ z(y) ∈ X.

The quality of an estimate may be evaluated in terms of the cost of the error
x− z(y).

Definition 1.15 A cost function c : X → R is any measurable nonnegative
convex function of the form

c(x− z)

with c(0) = 0.
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A natural way to define an estimator is to require that it minimizes the
expected error given the available measurements. Let fx|y be a posteriori
probability density of x given y.

Definition 1.16 Given a cost function c, the conditioned expected risk of an
estimator z given y is defined as

R(z, y) , E[c(x− z)|y],

where the expectation is taken w.r.t. fx|y and is assumed to exist.

Consider the following optimization problem:

Pc : min
z
R(z, y).

Definition 1.17 A function z solving problem Pc will be called an optimal
Bayesian estimator of x w.r.t. the cost function c.

In fact, the optimal Bayesian estimator minimizes the unconditioned expec-
tation E[c(x − z(y))] as well, see [36]. In this work we will always consider
the quadratic cost function

c(x− z) , ||x− z||2. (1.6)

Therefore, the optimal Bayesian estimator of x will be called the minimum
mean-squared error estimator.

Proposition 1.16 Let c be defined as in (1.6). For an arbitrary density
fx|y, the optimal Bayesian estimator of x is given by

x̂ = E[x|y],

provided the expectation exists.

A proof of this result may be found e.g. in [52]. Note that in this case

R(x̂|y) = E[||x− E[x|y]||2|y],

that is, the risk function coincides with the variance of x given y.

Assume that the random vectors x and y are jointly Gaussian, that is,
f(x, y) = N (µ, Σ). Consider the partitioning

µ =

[
µx

µy

]
Σ =

[
Σx Σxy

ΣT
xy Σy

]
,

with obvious meaning of the symbols. For estimation purposes, we may
assume that Σy > 0 without loss of generality [52].
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Proposition 1.17 The minimum-mean-squared-error estimator of x given
y and the associated conditioned error covariance matrix are as follows:

x̂ = µx + ΣxyΣ
−1
y (y − µy),

Var(x̃|y) = Σx − ΣxyΣ
−1
y ΣT

xy,

where x̃ denotes the estimation error x− x̂.

In this case, the optimal Bayesian estimator of x is a linear function of
y. Moreover, the error covariance matrix is independent of the data, as it
depends on the joint statistics of x and y only.

Let now q denote a discrete random variable, i.e. q takes values in a
countable set Q. In particular, we will be concerned with situations where Q
is finite. Assume that we want to estimate the value of q from the measured
data y.

Definition 1.18 An estimator of q is any measurable function

z : y 7→ z(y) ∈ Q.

Since q is a discrete variable, it is natural to construct an estimator by
ensuring that the probability of an error z(y) 6= q is minimized for the given
data y. That is, the following optimization problem is considered:

Pd : min
z
P[q 6= z(y)|y].

Definition 1.19 A function z solving problem Pd will be called a minimum-
probability-of-error estimator of q.

Let pq|y be the a posteriori probability of q given y. Then we have the
following result [56].

Proposition 1.18 The minimum-probability-of-error estimator of q is

q̂ = arg max
z

pq|y(z|y).

That is, the optimal Bayesian estimator of q is the maximum-a-posteriori
estimator. Again, it is easily verified that z(y) = q̂ also minimizes the un-
conditioned probability P[q 6= z(y)].
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Minimum-probability-of-error estimation fits perfectly into the optimal
Bayesian estimation framework that we illustrated for continuous random
variables. Replace X with Q, x with q and define the cost function c(q−z) ,
1{0}c(q − z), where “{0}c” denotes values different from zeros. Then one
obtains

R(z, y) = E[1{0}c(q − z)|y] = P[q 6= z|y],

i.e. problem Pc specializes to Pd. However, care must be taken in the defini-
tion of the notion of convexity (of the cost function) over discrete sets.

1.7 Kalman filtering

For k ∈ N0 and assigned matrix parameters {Ak, Bk, Ck, Dk}, x̂0, P0, consider
the discrete-time linear state-space model

{
xk+1 = Akxk + Bkuk

yk = Ckxk + Dkvk

where xk ∈ Rn, yk ∈ Rp, uk ∈ Rm, vk ∈ Rr, x0 ∼ N (x̂0, P0), {uk} and {vk}
are zero-mean normalized white Gaussian sequences, and x0, {uk}, {vk} are
mutually uncorrelated. Since the system is linear, the joint distribution of
x` and yk , {y0, . . . , yk} will be a multivariate Gaussian for every k, ` ∈
N0. Consider the minimum-mean-squared error estimation of x` from the
measurements yk. Let

x̂`|k , E[x`|yk],

P`|k , Var(x̃`|k|yk),

where x̃`|k denotes the estimation error x` − x̂`|k. Since x` and yk are jointly
Gaussian, x̂`|k will be a linear function of yk, and P`|k will be independent of
yk. For ` = k and k + 1, their computation may be carried out iteratively.
Let for simplicity DkD

T
k > 0.

Theorem 1.1 (Kalman-Bucy filter) The following two-step iteration on
index k holds:

i. Measurement update:

x̂k|k = x̂k|k−1 + Lk[yk − Ckx̂k|k−1], (1.7a)

Pk|k = Pk|k−1 − LkCkPk|k−1, (1.7b)
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with gain matrix Lk given by

Pk|k−1C
T
k

[
DkD

T
k + CkPk|k−1C

T
k

]−1
;

ii. Time update:

x̂k+1|k = Akx̂k|k, (1.8a)

Pk+1|k = AkPk|kA
T
k + BkB

T
k . (1.8b)

Iterations are initialized by x̂0|−1 = x̂0 and P0|−1 = P0.

For any ` > k, x̂`|k and P`|k are found by iterating the time update equations.
Assuming DkD

T
k > 0 guarantees that the matrix inverse in the expression

of Lk is well-defined for all k. However, the assumption is not essential and
may be circumvented, see [26].

Next, for t ∈ R+, assigned regular matrix functions F (t), G(t), assigned
matrix parameters {Hk, Gk} and assigned sequence of measurement instants
{tk} ⊂ R+ such that

0 = t0 < t1 < . . . < tk < tk+1 < . . . ,

consider the continuous/discrete-time linear state-space model

{
ξ̇ = F (t)ξ(t) + G(t)u(t)

yk = Hkξ(tk) + Kkvk

.

Assume that ξ(t) ∈ Rn, u(t) ∈ Rm, ξ(0) ∼ N (ξ̂0, Σ0), u(t) is a zero-mean nor-
malized white Gaussian noise, and ξ(0), u(t), {vk} are mutually uncorrelated
for all t ∈ R+. Let

ξ̂t|k , E[ξ(t)|yk],

Σt|k , Var(ξ̃t|k|yk),

with ξ̃t|k being the estimation error ξ(t)− ξ̂t|k. The system is linear, therefore

ξ(t) and yk are jointly Gaussian random variables. As a consequence, ξ̂t|k will
be a linear function of yk, and Σt|k will be independent of yk. For t ≥ tk, their
computation may be carried out as follows. It is assumed that HkH

T
k > 0.

Proposition 1.19 The following iteration on index k holds:
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i. Measurement update:

ξ̂tk|k = ξ̂tk|k−1 + Lk[yk −Hkξ̂tk|k−1],

Σtk|k = Σtk|k−1 − LkHkΣtk|k−1,

with
Lk = Σtk|k−1H

T
k [HkΣtk|k−1H

T
k + KkK

T
k ]−1;

ii. Time update: solve, for t ≥ tk, the differential equations

dξ̂t|k/dt = F (t)ξ̂t|k,

dΣt|k/dt = F (t)Σt|k + Σt|kF (t)T + G(t)G(t)T .

Iterations are initialized by ξ̂t0|−1 = ξ̂0 and Σt0|−1 = Σ0.

1.8 Hypothesis testing

Consider a sequence of random variables {y`}, y` ∈ Rp, ` ∈ N0, distributed
according to some joint density function f . Let fi, i = 0, . . . , N − 1, be N
assigned distributions of sequences in Rp. That is, for i = 0, . . . N − 1, the
density functions

fi(y0, . . . , yk)

are known for all k and satisfy the conditions of marginalization. Assume
that f ∈ {f0, . . . , fN−1}, i.e., there exists one index i such that

fi(y0, . . . , yk) = f(y0, . . . , yk)

for all k and all values of y0, . . . , yk. One wants to build a procedure to decide
which distribution fi is the true one given the outcome of the variables y`,
which we will call data or measurements. The eventuality that f = fi will
be called hypothesis i and will be indicated with Hi.

Assume that a decision has to be taken based on the k measurements
y0, . . . , yk.

Definition 1.20 A test function is a measurable function

T : (y1, . . . , yk) 7→ T (y1, . . . , yk) ∈ {0, . . . , N − 1}.

For a given test function T , the procedure consists in applying T to the
measured data and to accept hypothesis Hi if and only if T (y1, . . . , yk) = i.
Of course, different kinds of errors may occur.
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Definition 1.21 An error of type i occurs if T (y1, . . . , yk) 6= i when Hi

holds. The probability of an error of type i is by definition

αi , P[T (y1, . . . , yk) 6= i|Hi].

Of course, the error probabilities αi depend on the definition of the test
function T , i.e. αi = αi(T ). The test function shall be chosen as to minimize
certain error probabilities, or to keep them below a certain bound, in relation
with the context of use.

Let now N = 2, i.e., only two different hypotheses are admissible. It is
evident that one can make either α0 or α1 as small as desired by a suitable
choice of T . However, for a fixed probability of the error of type 0, α0 = ᾱ,
the probability of error α1 shall not be smaller than a certain lower bound
depending on the nature of the distributions f0 and f1 and on the number
of measurements k. In general, the larger the k, the smaller the lowerbound.
Denote with Cᾱ the class of test functions yielding probability of error of type
0 equal to p̄. Consider the likelihood ratio

rk(y0, . . . , yk) , f1(y0, . . . , yk)

f0(y0, . . . , yk)
.

Definition 1.22 The likelihood ratio test is defined by

Tκ(y0, . . . , yk) =

{
0, if rk(y0, . . . , yk) < κ

1, if rk(y0, . . . , yk) ≥ κ

with threshold parameter κ ∈ R+.

It may be shown by continuity arguments that there must exist a value of κ =
κ(ᾱ) for which the likelihood ratio test has probability of error α0(Tκ(ᾱ)) = ᾱ.

Theorem 1.2 (Neyman-Pearson) For any T ∈ Cᾱ it holds that

α1(T ) ≥ α1(Tκ(ᾱ)).

By the symmetry of the problem, an identical result is obtained if α1 is fixed
instead of α0. In this sense, the likelihood ratio test is optimal among the
set of tests with one probability of error fixed.
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Remark. In a Bayesian setting, one assumed that each hypothesis is as-
signed a prior probability, say, pi. In this case, the optimal estimator of Hi

is given by the maximum-a-posteriori estimator

q̂ = arg max
q
P[Hq|y0, . . . , yk],

where q = 0, . . . , N − 1. If N = 2, one may consider the ratio

P[H1|y0, . . . , yk]

P[H0|y0, . . . , yk]
= rk(y0, . . . , yk)

p1

p0

(1.9)

and reformulate q̂ as

q̂ =

{
0, if rk(y0, . . . , yk) < p0/p1,

1, if rk(y0, . . . , yk) ≥ p0/p1.

Therefore, the optimal Bayesian estimator is essentially a likelihood ratio
test with threshold κ = p0/p1. The overall estimation error probability is
given by

α0p0 + . . . + αN−1pN−1,

for an arbitrary number of hypotheses N . ¤

1.9 Sequential hypothesis testing

Assume that the outcomes of y`, ` = 0, 1, . . . are measured sequentially.

Definition 1.23 A sequential test function at time ` is a measurable func-
tion

T ` : (y0, . . . , y`) 7→ T `(y0, . . . , y`) ∈ {0, . . . , N − 1, ε},
where ε is an arbitrary value different from 0, . . . , N − 1.

Given a family of sequential test functions {T`}, ` ∈ N0, a sequential test
is the following recursive algorithm. At time `, apply T` to y0, . . . , y`. Let
T`(y0, . . . , y`) = i. If i ∈ {0, . . . , N − 1}, accept hypothesis Hi. If instead
i = ε, then draw a new measurement y`+1 and repeat the cycle at time ` + 1.

Definition 1.24 The stopping time of a test with sequential test functions
{T `} is the random variable

k̄ = inf{` : T `(y0, . . . , y`) 6= ε}.
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The stopping time may be finite or infinite. In k̄ is finite, we say that the
test terminates at time k̄, otherwise we say that the test never terminates.
One wants to choose {T`} so to ensure that P[k̄ < +∞] = 1.

Definition 1.25 An error of type i occurs if T k̄(y0, . . . , yk̄) 6= i when Hi

holds. Associated to it is the probability of error

αi = P[T k̄(y0, . . . , yk̄) 6= i|Hi].

Observe that a non-sequential test with test function T (y0, . . . , yk) may al-
ways be put in the form of a sequential test: just set T ` = ε, ` = 0, . . . , k− 1
and T k , T . Therefore, one may always construct a sequential test yielding
probabilities of error equal to αi(T ), i = 0, . . . , N − 1, for which k̄ ≤ k with
probability 1. However, one is interested in the expected stopping time E[k̄].
In most cases, it is possible to construct {T`} so that E[k̄] < k.

Now consider the case N = 2.

Definition 1.26 The sequential likelihood ratio test is defined by

T `
κ0,κ1

(y0, . . . , y`) =





0, if r`(y0, . . . , y`) < κ1

1, if r`(y0, . . . , y`) ≥ κ0

ε, if κ1 ≤ r`(y0, . . . , y`) < κ0

for all ` ∈ N0 and parameters κ1, κ0 ∈ R+, κ1 ≤ κ0.

In more generality, thresholds κ0 and κ1 may depend on `. In particular, one
may define a truncated test by setting κ1 = κ0 at a certain ` = k, in which
case k̄ ≤ k w.p.1. For fixed values of κ0 and κ1, there may be a nonzero
probability that the test never terminates. A special case is the following.

Proposition 1.20 Assume that {y`} are i.i.d. variables, i.e. f(y0, . . . , yk) =
f(y0)·. . .·f(yk) for every k ∈ N0. Let fi, i = 0, 1 be such that fi(y0, . . . , yk) =
fi(y0) · . . . · fi(yk), with f0 6= f1 on a set of nonzero probability. Then, the
probability that the sequential likelihood ratio test never terminates is zero.

For arbitrary functions f and fi let us define

γi(κ0, κ1) = P[k̄ = +∞|Hi],

where k̄ = +∞ stands for T `
κ0,κ1

(y0, . . . , y`) = ε, ∀` ∈ N0.
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Proposition 1.21 The following inequalities hold:

α0κ0 ≤ 1− α1 − γ1,

α1 ≤ κ1(1− α0 − γ0).

Proof: Following [57], it holds that

P[accept H1|H1] ≥ κ0P[accept H1|H0],

P[accept H0|H1] ≤ κ1P[accept H0|H0].

On the other hand, P[accept H1|H1] may be rewritten as

1− P[(accept H1)
c|H1] = 1− P[accept H0|H1]− P[k̄ = +∞|H1],

since the event that the test never terminates is disjoint from the event of
accepting H0. Similarly, P[accept H0|H0] may be rewritten as

1− P[(accept H0)
c|H0] = 1− P[accept H1|H0]− P[k̄ = +∞|H0].

Recognizing the quantities αi and γi yields the result. ¤

As a consequence, the probabilities of error α0 and α1 obey the bounds

α0 ≤ 1/κ0,

α1 ≤ κ1,

regardless of the values of γ0(κ0, κ1) and γ1(κ0, κ1). Thus, arbitrarily small
probabilities of error may be attained by a suitable choice of the parameters
κ0 and κ1. If, moreover, γ0 = γ1 = 0 for all choices of κ0 and κ1 – which
is the case, for instance, if {y`} is an i.i.d. sequence – the test terminates
w.p.1. It is conjectured in [57] that the sequential likelihood ratio test is
optimal in the sense of minimizing E[k̄] over all sequential tests with given
error probabilities.

Remark. In the Bayesian setting discussed in Section 1.8, a sequential test
procedure is set up as follows. At time `, accept H0 if ratio (1.9) is below
κ0; accept H1 if (1.9) it exceeds κ0; otherwise, repeat the procedure at time
` + 1. That is, the Bayesian test becomes the likelihood test

κ0
p0

p1

≶ r`(y0, . . . , y`) ≶ κ1
p0

p1

,
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where the symbol “≶” indicates the comparison of the likelihood ratio with
the thresholds. It follows that the overall probability of error is

α0p0 + α1p1 ≤ p1
1

κ0

+ p0κ1,

i.e. it can be made arbitrarily small by a proper choice of κ0 and κ1. A
natural generalization of the sequential Bayesian test to an arbitrary fixed
number of hypotheses N is presented in [7]. ¤



Chapter 2

Jump Markov linear systems

In this chapter, the problem of state estimation for discrete-time switching
linear systems is considered. We introduce the class of jump Markov linear
systems and the relevant state estimation problem. The optimal Bayesian
solution is derived and is shown to depend on a mixing of an exponential
number of Kalman filters. A recursive formulation of the solution is then
presented. Based on this, currently available suboptimal algorithms are il-
lustrated. Limits of the model and theoretical issues of our concern are finally
discussed.

2.1 Model statement

For a certain index N ∈ N0, let Q = {0, . . . , N − 1}. Assume that we are
given the matrix-valued functions

A : Q → Rn×n : q 7→ Aq

B : Q → Rn×m : q 7→ Bq

C : Q → Rp×n : q 7→ Cq

D : Q → Rp×r : q 7→ Dq

with n, m, p, r ∈ N0. For k ∈ N0, let uk, vk ∈ Rm be zero-mean, normal-
ized white Gaussian sequences, and let qk be a sequence taking values in Q.
Consider the following discrete-time, time-varying model

{
xk+1 = Aqk

xk + Bqk
uk

yk = Cqk
xk + Dqk

vk

(2.1)
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Figure 2.1: Switching system

with x0 ∼ N (x̂0, P0), and x̂0, P0 known. For a given sequence {qk}, the first
equation is a linear stochastic difference equation describing the evolution of
xk, and the second equation defines yk as a linear noisy measurement of xk.
We will assume that {uk}, {vk} and x0 are mutually uncorrelated, and that
Var(Dqvk) = DqD

T
q > 0 for every q ∈ Q.

At any time index k, the value of qk defines the current mode of the system
by fixing the parameters of the model. Since qk is allowed to take different
values at different times, equation (2.1) describes a switching system, as
depicted in Figure 2.1

Let {qk} follow the laws of a discrete-time homogeneous Markov chain
with known transition probability matrix π and initial probability distribu-
tion p0. That is, for every i, j ∈ Q, and any k ∈ N0,

πi,j = P[qk+1 = j|qk = i],

p0(j) = P[q0 = j].

We shall assume qk+1 to be conditionally independent of xk given qk. More
precisely, for every k ∈ N0, we will assume that

P[qk+1|qk, x0, w, v] = P[qk+1|qk].

The joint process (x, q) is Markovian: for every k ∈ N0 it holds that

F(xk+`, qk+`|xk, qk, xk−1, qk−1, . . . , x0, q0) = F(xk+`, qk+`|xk, qk),

where F denotes probability distribution. Therefore, the couple (xk, qk) will
be called the state of the system at time k. In particular, xk will be called
the continuous state, as opposed to qk, which will be called the discrete state.
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For a fixed sequence {qk}, equation (2.1) represents a linear Gaussian
system. Thus, letting qk denote the subsequence q0, . . . , qk, the joint density
function

f(x`, y`′|qk)

is a multivariate Gaussian for all `, `′ ≤ k. However, the unconditioned
system is not linear, since it depends on the outcomes of {qk}. Note that

f(x`, y`′) =
∑

qk

f(x`, y`′|qk)P[qk].

Therefore, the unconditioned joint distribution of x` and y`′ is a mixture of
Nk+1 Gaussian distributions.

2.2 State estimation problem

Let yk denote the measurements available up to time k, i.e.,

yk , {y0, . . . , yk}.

We are concerned in the estimation of the state (x`, q`) given yk. In particular,
we will consider the case of filtering, if ` = k, and prediction, if ` > k. Let

x̂`|k , arg min
z
E[||x` − z(yk)||2], (2.2a)

q̂`|k , arg min
z
P[q` 6= z(yk)], (2.2b)

where z is in both cases a measurable function of the data. By definition, x̂`|k
is the minimum-mean-squared-error estimator of x`, and q̂`|k is the minimum-
probability-of-error estimator of q`. In light of the results reviewed in Chapter
1, it holds that

x̂`|k = E[x`|yk],

q̂`|k = arg max
j∈Q

P[q` = j|yk].

For ` = k, k + 1, consider the a posteriori density f(x`|yk), from which x̂`|k
follows. One may write

f(x`|yk) =
∑

qk

f(x`|yk, qk)p(qk|yk),
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where p(qk|yk) is the a posteriori probability of qk. Since f(x`|yk, qk) ∝
f(x`, y

k|qk), it must be the case that

f(x`|yk, qk) = N (x̂qk

`|k, P
qk

`|k),

for some mean and covariance parameters depending on qk. Applying Propo-
sition 1.16 w.r.t. the a posteriori density f(x`|yk, qk), it follows that

x̂qk

`|k = arg min
z
E[||x` − z(yk)||2|qk] = E[x`|yk, qk],

i.e. x̂qk

`|k is itself the solution of the state estimation problem conditioned on

qk. Correspondingly, P qk

`|k is the error covariance matrix Var(x`− x̂qk

`|k|yk, qk),

which may be shown to be data-independent [36]. That is,

P qk

`|k = Var(x` − x̂qk

`|k|qk).

Proposition 2.1 It holds that

x̂`|k =
∑

qk

x̂qk

`|kp(qk|yk). (2.3)

Proof: By the total probability law,

E[x`|yk] =

∫
x`f(x`|yk)dx` =

∫
x`

∑

qk

f(x`|yk, qk)p(qk|yk)dx`

=
∑

qk

{
∫

x`f(x`|yk, qk)dx`}p(qk|yk) =
∑

qk

E[x`|yk, qk]p(qk|yk).

¤

Therefore, x̂`|k is a weighted average of the solutions of Nk+1 estimation
problems. This fact was first noticed by Ackerson and Fu [1] in a slightly less
general context. Consider now the a posteriori probability p(qk|yk).

Proposition 2.2 It holds that

p(qk|yk) ∝ f(yk|qk)p(qk) = f(yk|yk−1, qk) · . . . f(y0|y−1, q0)p(qk)

where f(y0|y−1, q0) , f(y0|q0) and p(qk) is the a priori probability of qk. In
turn, for l = 0, . . . , k,

f(yl|yl−1, ql) = N (Cql
x̂ql

l|l−1, Cql
P ql

l|l−1C
T
ql

+ Dql
DT

ql
), (2.4)

where ql indicates the last element of the sequence ql.
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Proof: First expression is obtained by Bayes’rule,

p(qk|yk) =
f(yk|qk)p(qk)

f(yk)
,

and iterated application of the relation

f(yk|qk) = f(yk|yk−1, qk)f(yk−1|qk).

Because of the conditional independence of qk on yk−1 given qk−1,

f(yk−1|qk) = f(yk−1|qk, q
k−1) = f(yk−1|qk−1).

Second expression follows from the measurement equation of (2.1). Consider
w.l.o.g. l = k. As qk is fixed, yk is Gaussian and the sum is between
independent vectors. Thus,

E[yk|yk−1, qk] = E[Cqk
xk|yk−1, qk] + E[Dqk

vk|yk−1, qk] = Cqk
E[xk|yk−1, qk−1],

and

Var(yk|yk−1, qk) = Var(Cqk
xk|yk−1, qk) + Var(Dqk

vk|yk−1, qk)

= Cqk
Var(xk|yk−1, qk−1)CT

qk
+ Dqk

DT
qk

,

where the conditional independence of qk on xk, yk−1 given qk−1 was used. ¤

Note that estimates q̂`|k may be formulated in terms of p(qk|yk). In fact,
they amount to the maximization of p(q`|yk). If ` ≤ k, p(q`|yk) follows from
p(qk|yk) by marginalization. Otherwise, one may write

p(q`|yk) =
∑

qk

p(qk|yk)(π`−k)qk,q`
,

where qk denotes the last element of qk and the conditional independence of
q` from yk given qk has been used.

Therefore, both the continuous and the discrete state estimation problem

may be reduced to the problem of computing x̂qk

`|k and P qk

`|k for increasing

values of k. If ` = k, k + 1, for every possible sequence {qk}, this may be
done iteratively by way of a conditioned Kalman filter.

Proposition 2.3 The following two-step iteration holds:

x̂qk

k|k = x̂qk

k|k−1 + Lqk

k [yk − Cqk
x̂qk

k|k−1],

P qk

k|k = P qk

k|k−1 − Lqk

k Cqk
P qk

k|k−1,
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where Lqk

k = P qk

k|k−1C
T
qk

[Dqk
DT

qk
+ Cqk

P qk

k|k−1C
T
qk

]−1, and

x̂qk

k+1|k = Aqk
x̂qk

k|k,

P qk

k+1|k = Aqk
P qk

k|kA
T
qk

+ Bqk
BT

qk
,

with x̂qk

0|−1 = x̂0 and P qk

0|−1 = P0.

Proof: Observe that system (2.1) conditioned on qk is linear with parameters
(Aqk

, Bqk
, Cqk

, Dqk
) fixed by the last element qk of the sequence qk. Hence,

apply Theorem 1.1. ¤

In practice, running Nk+1 Kalman filters in parallel is prohibitive, hence
the need of suboptimal estimation strategies. These will be commented in
Section 2.4.

2.3 Recursive solution

From a theoretical point of view, one may alternatively solve filtering and
prediction by a recursion on the functions p(q`|yk) and f(x`|q`, y

k). Observe
that

f(x`|yk) =
∑
q`

f(x`|q`, y
k)p(q`|yk),

from which the estimate x̂`|k follows.

Proposition 2.4 For k ≥ 0, the following two-step recursion holds:

1. Measurement update:

p(qk|yk) = f(yk|yk−1, qk)p(qk|yk−1)/f(yk|yk−1) (2.5a)

f(xk|qk, y
k) = f(yk|xk, qk)f(xk|qk, y

k−1)/f(yk|yk−1, qk) (2.5b)

with
f(yk|yk−1) =

∑
qk∈Q

f(yk|yk−1, qk)f(qk|yk−1)

2. Time update:

p(qk+1|yk) =
∑
qk

πqk,qk+1
p(qk|yk) (2.6a)

f(xk+1|qk+1, y
k) =

∑
qk

f(xk+1|qk, qk+1, y
k)

p(qk|yk)

p(qk+1|yk)
πqk,qk+1

.(2.6b)
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Initial conditions are given by p(q0|y−1) = p0(q0) and f(x0|q0, y
−1) = f(x0).

Proof: Equations (2.5a) and (2.5b) are simple applications of the Bayes’rule.
Equation (2.6a) follows by application of the total probability law and of the
conditional independence of qk+1 on yk given qk. Similarly,

f(xk+1|qk+1, y
k) =

∑
qk

f(xk+1|qk, qk+1, y
k)p(qk|qk+1, y

k)

where

p(qk|qk+1, y
k) =

p(qk+1, qk|yk)

p(qk+1|yk)
=

p(qk+1|qk)p(qk|yk)

p(qk+1|yk)
,

and the statement is proven. ¤

The remaining terms of the measurement update step follow from the mea-
surement equation of (2.1). As vk is conditionally independent of xk and of
yk−1 given qk, f(yk|yk−1, qk) is equal to the convolution of functions of Rp

f(Cqk
xk|qk, y

k−1) ~ f(Dqk
vk|qk). (2.7)

The left factor follows from f(xk|qk, y
k−1) in in accordance with the linear

transformation Cqk
xk, while f(Dqk

vk|qk) = N (0, Dqk
DT

qk
). Furthermore,

f(yk|qk, xk) = N (Cqk
xk, Dqk

DT
qk

). (2.8)

On the other hand, the expression of f(xk+1|qk, qk+1, y
k) follows from the

state update equation and is

f(Aqk
xk|qk, y

k) ~ f(Bqk
uk|qk) (2.9)

because Aqk
xk is conditionally independent of Bqk

uk. The rightmost term
is simply N (0, Bqk

BT
qk

), whereas the leftmost term follows from f(xk|qk, y
k)

under the linear transformation Aqk
xk.

Remark. Both f(Cqk
xk|qk, y

k−1) and f(Aqk
xk|qk, y

k) are finite Gaussian
mixtures,

f(Cqk
xk|qk, y

k−1) =
∑

qk−1

f(Cqk
xk|qk, q

k−1, yk−1)p(qk−1|qk, y
k−1),

f(Aqk
xk|qk, y

k) =
∑

qk−1

f(Aqk
xk|qk, q

k−1, yk)p(qk−1|qk, y
k),
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Figure 2.2: Recursive computation of f(x`|q`, y
k) and p(q`|yk)

where

f(Cqk
xk|qk, q

k−1yk−1) = N (Cqk
x̂qk−1

k|k−1, Cqk
P qk−1

k|k−1C
T
qk

),

f(Aqk
xk|qk, q

k−1, yk) = N (Aqk
x̂qk

k|k, Aqk
P qk

k|kA
T
qk

),

while p(qk−1|qk, y
k−1) and p(qk−1|qk, y

k) are easily written in terms of p(q`|y`),
` = k−1, k, and of π. Correspondingly, (2.7) and (2.9) may be rewritten as a
weighted sum of convolutions between Gaussian distributions, each resulting
in

N (Cqk
x̂qk−1

k|k−1, Cqk
P qk−1

k|k−1C
T
qk

+ Dqk
DT

qk
),

N (Aqk
x̂qk

k|k, Aqk
P qk

k|k−1A
T
qk

+ Bqk
BT

qk
),

in the order. The first expression yields the conditioned predictor of yk given
qk and the associated error covariance matrix, whereas the second expression
is the update step of Proposition 2.3. Therefore, computing (2.7) and (2.9)

at each step k is equivalent to carrying over x̂qk

k|k−1, P qk

k|k−1 and the weights

p(q`|y`). ¤

One cycle – measurement update and time update – of the recursion is
depicted in Figure 2.2. Following on the above remark, Gaussian mixing is
introduced by the update formula (2.6b), whose location in the diagram is
marked with a symbol “•”.
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2.4 Approximate estimation methods

The recursive method outlined by Proposition 2.4 does not overcome the
exponential complexity of the estimation problem. However, diverse approx-
imate algorithms may be derived from this scheme. Will shall now present
the classical suboptimal estimation algorithms and a brief overview of other
solutions.

Generalized pseudo-Bayes (GPS) algorithm. The basic form of the
method was proposed in [1] with a slightly different definition of model 2.1. It
is based on the approximation of the Gaussian mixtures with a single Gaus-
sian. In our setting, the algorithm would be as follows. At each step of the re-
cursion (2.5)÷(2.6), the mixture of Nk Gaussian distributions f(xk|qk, y

k−1)
is approximated by a single Gaussian of mean x̂k|k−1 and covariance matrix
Pk|k−1. Given a new measurement yk, the measurement update is carried
out individually for each value of qk ∈ Q. Equation (2.5b) is replaced by N
conditioned Kalman updates

x̂qk

k|k = x̂k|k−1 + Lqk

k [yk − Cqk
x̂k|k−1],

P qk

k|k = Pk|k−1 − Lqk

k Cqk
Pk|k−1,

where Lqk

k , Pk|k−1C
T
qk

[Dqk
DT

qk
+ Cqk

Pk|k−1C
T
qk

]−1. Equation (2.5a) is un-
changed, but now one takes

f(yk|yk−1, qk) = N (Cqk
x̂k|k−1, Cqk

Pk|k−1C
T
qk

+ Dqk
DT

qk
).

The time update step amounts to computing (2.6a) along with the N condi-
tioned predictions

x̂qk

k+1|k = Aqk
x̂qk

k|k,

P qk

k+1|k = Aqk
P qk

k|kA
T
qk

+ Bqk
BT

qk

in place of (2.6b). The Gaussian approximation

f(xk+1|qk+1, y
k) ' N (x̂k+1|k, Pk+1|k)

is introduced by defining

x̂k+1|k ,
∑
qk

x̂qk

k+1|kp(qk|yk),

Pk+1|k ,
∑
qk

P qk

k+1|kp(qk|yk) + {
∑
qk

[xqk

k+1|k(x
qk

k+1|k)
T − x̂k+1|kx̂

T
k+1|k]p(qk|yk)},
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where the term in braces compensates for the variance nonlinearity. That is,
the mixing step (2.6b) is reduced to the computation of ensemble conditioned
mean and covariance matrix. At any time k, the prediction of state xk and
the corresponding error covariance matrix are approximated by x̂k|k−1 and
Pk|k−1. On the other hand, the estimation of xk given yk is formulated as

x̂k|k =
∑
qk

x̂qk

k|kp(qk|yk),

Pk|k =
∑
qk

P qk

k|kp(qk|yk) + {
∑
qk

[xqk

k|k(x
qk

k|k)
T − x̂k|kx̂

T
k|k]p(qk|yk)}.

Therefore, the estimation burden is reduced from Nk+1 down to N condi-
tioned Kalman filters. Subsequent versions of the algorithm – see [54] and
references therein – use the less drastic assumption that

f(xk|qk, . . . , qk−`, y
k−1) = N (x̂k|k−1, Pk|k−1).

This results in approximating f(xk|qk, y
k−1) with a mixture of N ` Gaussian

distributions, for an overall complexity of O(N `+1). For ` = k, the optimal
estimator is recovered.

Detection-estimation (DE) algorithm. The detection estimation algo-
rithm is based on a direct approximation of (2.3). It was first presented in
[55]. Let Θk denote a set of up to M trajectories qk, where M is a design
parameter describing the allowable complexity. An approximate estimate of
x̂`|k is given by

x̂`|k '
∑

qk∈Θk

x̂qk

`|kp̃(qk|yk), (2.10)

where the a posteriori probabilities p̃(qk|yk) ∝ p(qk|yk) are defined as

p̃(qk|yk) , p(yk|qk)p(qk)∑
qk∈Θk

p(yk|qk)p(qk)
.

In light of Proposition 2.2, these may be updated recursively in terms of

x̂qk

k|k−1 and P qk

k|k−1. Because of renormalization, up to M such predictors are
needed. The set Θk is chosen so to contain highly probable trajectories as
follows. Let Θk−1 contain Mk−1 trajectories. Given some fixed threshold
κ > 0, consider the set Θ̃k of all trajectories qk = (qk−1, q), qk−1 ∈ Θk−1,
q ∈ Q satisfying

(eqk

k )T (Λqk

k )−1(eqk

k ) ≤ κ, (2.11)
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where

eqk

k = yk − Cqk
x̂qk

k|k−1,

Λqk

k = Cqk
Pk|k−1C

T
qk

+ Dqk
DT

qk
.

If |Θ̃k| ≤ M , set Θk = Θ̃k, otherwise, form Θk by choosing the M elements
of Θ̃k with the largest values of p(qk|yk). Observe that, if qk is the trajectory

underlying the generation of yk, then eqk

k is the minimum mean-squared error
for the prediction of yk given yk−1. In this case, the left-hand side of (2.11)
has known distribution χ2(p) (compare [55]). Therefore κ may be chosen
as to limit the probability of rejecting the true trajectory qk. Moreover,
trajectories qk “far away” from the true outcome will lead to larger values of
the left-hand side of (2.11) and are likely to be discarded. This guarantees
that only good estimates of qk are employed in the approximation (2.10).
In this sense, the state estimation step is subordinated to a detection step
where the most probable trajectories qk are elicited. Finally, the reduction
of Θ̃k to Θk ensures that Θk ≤ M . It becomes essential when system (2.1) is

such that different trajectories qk lead to similar statistics of eqk

k . The overall
complexity of the algorithm is of O(M). For κ → +∞ and M = Mk = Nk+1,
the optimal estimation algorithm is recovered.

Remark. A further refinement of the algorithm consists in “merging” those

trajectories for which eqk

k and Λqk

k are almost the same. This amounts to car-
rying on a “representative” qk and the associated conditioned estimates, and
to collecting into p̃(qk|yk) the a posteriori probabilities of the trajectories that
are no longer considered. In [55], two trajectories are merged if the Bhat-
tacharyya coefficient [37] between the corresponding densities f(yk|yk−1, qk)
exceeds a certain bound. A similar idea will be developed in Chapter 6 to
study the ability of a sequential test to discriminate between different tra-
jectories. ¤

Interactive multiple-model (IMM) algorithm. This suboptimal esti-
mation paradigm relies on running exactly N Kalman filters in parallel, one
for each of the possible modes (Aq, Bq, Cq, Dq), and to find suboptimal esti-

mates of xk by suitable averaging. For qk ≡ q, let x̂q
`|k = x̂qk

`|k and P q
`|k = P qk

`|k
denote the N matched filters. Then [46], the basic form of the IMM estimator
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of xk given yk is

x̂k|k ,
∑
q∈Q

x̂q
`|kη

q
k,

Pk|k ,
∑
q∈Q

(P q
k|k + (x̂k|k − x̂q

k|k)(x̂k|k − x̂q
k|k)

T )ηq
k,

where the weights ηq are approximations of the a posteriori probability p(qk|yk)
evaluated for qk = q. The standard update of x̂q

k|k and P q
k|k given in The-

orem 1.1 is modified so to take into account the possible interaction of the
modes, i.e. the possible occurrence of a switch between different modes. For
i, j ∈ Q, one defines the mixing probabilities ηi,j

k ∝ πi,jη
i
k, and the quantities

x̂0,j
k|k ,

∑
i∈Q

x̂i
k|kη

i,j
k ,

P 0,j
k|k ,

∑
i∈Q

(P i
k|k + (x̂i

k|k − x̂0,j
k|k)(x̂

i
k|k − x̂0,j

k|k)
T )ηi,j

k .

These replace x̂j
k|k and P j

k|k as initial conditions of the time update (1.8),

x̂j
k+1|k = Ajx̂

0,j
k|k,

P j
k+1|k = AjP

0,j
k|kA

T
j + BjB

T
j ,

while the computation of x̂j
k+1|k+1 and P j

k+1|k+1 from x̂j
k+1|k and P j

k+1|k follows

unaltered from (1.7). Finally, the update of the mixing coefficients is done
by setting

ηj
k+1 ∝ f j(yk+1|yk)

∑
i∈Q

ηi,j
k ,

where f j(yk+1|yk) is the evaluation at yk+1 of the likelihood function

N (Cjx̂
j
k+1|k, CjP

j
k+1|kC

T
j + DjD

T
j ).

A derivation of this algorithm from a recursion similar to that of Proposition
2.4 is shown in [10]. The update of ηj

k by way of the mixing coefficients ηi,j
k

is just a restatement of equations (2.5a) and (2.6a), with
∑
i∈Q

ηi,j
k ' P[qk+1 = j|yk].

The Gaussian mixing operated by (2.6b) is pushed back to the mixed initial
conditions x̂0,j

k|k and P 0,j
k|k . To conclude, the measurement update (2.5b) is

reduced to a separate update of the type (1.7) for each of the modes j ∈ Q.
The complexity of this algorithm is given by the computation of N Kalman
filters in parallel. A whole family of algorithms based on mixing of mode-
matched filters is illustrated in [46].
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Random sampling (RS) algorithm. An alternative approach is based
on the Monte Carlo generation of a large number of discrete state trajectories
and the use of an approximation like (2.10). The idea was first presented in
[2], and may be explained in simple terms as follows. Let Θk denote a set of

M trajectories qk. An importance weight ηqk

k is assigned to each trajectory
qk ∈ Θk. Assume that

ηqk ' p(qk|yk). (2.12)

Then, a reasonable approximation of x̂k|k is

x̂k|k =
∑

qk∈Θk

x̂qk

k|kη
qk

,

where x̂qk

k|k is the Kalman filter conditioned on qk. Given a new measurement

yk+1, one wants to (1) extend every trajectory qk ∈ Θk to qk+1 = (qk, qk+1)
by generating at random its next state qk+1 ∈ Q, thus forming Θk+1, and (2)

update the weights ηqk

k . The idea is to sample the new state qk+1 according
to its a posteriori probability

p(qk+1|yk+1, qk) ∝ f(yk+1|qk+1, q
k, yk)p(qk+1|qk)

and to update the weights by privileging those trajectories that best explain
the data, i.e. by setting

ηqk+1

k+1 ∝ f(yk+1, qk+1|qk, yk)ηqk

k = f(yk+1|qk+1, q
k, yk)p(qk+1|qk)ηqk

k (2.13)

with normalization factors chosen so that
∑

qk∈Θk
ηqk

k = 1 at all k. Com-

puting factors f(yk+1|qk+1, q
k, yk) amounts to evaluate (2.4) for each of the

M Kalman predictors x̂qk

k+1|k, P qk

k+1|k. Factor p(qk+1|qk) is computed directly

in terms of the transition probability matrix π. Note that (2.13) is, be-
sides normalization, the same recursion satisfied by p(qk|yk), provided the
initialization by p0. The stochastic sampling mechanism guarantees that tra-
jectories with larger probability p(qk|yk) will be generated. In principle, if
qk /∈ Θk, then p(qk|yk) ' 0. This motivates approximation (2.12). Using the
same approximation, the distribution of the current discrete state may be
evaluated by

pk|k(q) =
∑

qk

1{qk=q}(q
k)p(qk|yk) '

∑

qk∈Θk

1{qk=q}(q
k)ηqk

k .

The computational burden of the algorithm is given by the M Kalman filters
and predictors that need be run in parallel. In order for the approximations
to have statistical significance, a rather large number of trajectories M needs
be considered. For M → +∞, random sampling yields optimal estimates
with probability one [22].
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Other methods In the last few decades, a number of suboptimal estima-
tion strategies have been considered. In [29], polynomial functions rather
than linear functions of the data yk have been considered for estimation.
Joint state-mode estimation has been address in [18, 19], where the random
variable xk · 1qk

is estimated in a linear fashion. Sequential Monte Carlo
methods have been further investigated in [21, 24, 39, 40, 42]. Sequential
hypothesis testing, whose application to jump Markov systems is explored
in Chapter 6, is used in [6, 49] for the detection of abrupt changes in linear
systems. An information-theoretic approach has recently been proposed in
[44, 45] for the fundamental case of switching finite-impulse-response systems
with known input. Further tecniques are illustrated in [12, 25, 33, 41, 48, 53].

2.5 Discussion

State estimation for systems undergoing Markovian jumps has been an ac-
tive field of research in the last thirty years. Following a common approach,
we have considered a switching model where the system evolves according
to one of a known finite set of linear modes, and jumps are regulated by a
Markov chain qk with transition probabilities known and independent of the
continuous state xk. We have shown that both the continuous state xk and
the discrete state qk may be estimated by solving an exponentially growing
number of conditioned linear estimation problems. An alternative method
was illustrated based on the joint two-step recursive update of the a pos-
teriori probability p(q`|yk) and density f(x`|q`, y

k). Both solutions are not
practicable in that they require exponentially increasing computational capa-
bilities. However, they are at the basis of the currently available suboptimal
estimation algorithms, which were commented in Section 2.4.

Diverse suboptimal solutions, among which the DE and RS algorithms,
are essentially composed of two steps. In a first step, a certain number of
discrete-state trajectories are selected. These are used in a second step for
both estimation of qk and approximation of the minimum-mean-squared-error
estimator of xk. In a sense, state estimation is built on top of the solution
of a discrete-state trajectory detection problem. In fact, once a finite subset
of most probable trajectories {qk} has been determined, one may estimate
qk by searching for the sequence in the set that best matches the data yk.
However, this subset is often built with regard to the estimate of xk and
qk only. The estimation of the whole trajectory is considered explicitly in
[44, 42, 24], among others. In Chapter 6, we will consider the application of
sequential hypothesis testing to trajectory estimation.
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The discrete-time jump Markov system (2.1) is often used to model
stochastic systems with switching continuous-time dynamics and sampled
measurements. In this case, the discrete-time state xk stands for the value
of a continuous-time state ξ(t) at measurement instants tk, and the update
matrix Aqk

represents the evolution of ξ between two sample times tk and
tk+1. Implicit in the scheme is the assumption that the evolution of the state
between two measurements depends on a constant value of the discrete state
q. In other words, it is assumed that switches take place in correspondence
of measurements. In fact, the is no general reason for the switches of a
continuous-time dynamical system to be confined to the fixed sample times
{tk}. In this context, model (2.1) should be regarded as an approximate dis-
cretization of the original system. When the system’s dynamics are slow and
the average dwell time of q is large compared to the time intervals (tk, tk+1),
one may assign the occurrence of a switch to the closest measurement time
tk, and the error committed is negligible. If, however, measurements are
sparse, model (2.1) is no longer a good approximation of the original system,
regardless of the choice of the parameters (Aq, Bq, Cq, Dq). This issue will be
addressed in Chapter 4, where a generalized jump Markov model based on a
continuous-time Markov chain description of q will be considered.





Chapter 3

Superposition principle in
linear filtering

In this chapter, decomposition formulas for the discrete-time Kalman filter
are presented. Both the state estimate and the error covariance matrix are
expressed as the sum of two terms, the first being the estimate corresponding
to zero initial conditions, and the second an explicit function of the initial
estimates x̂0 and P0. The representation is updated in time by well-behaved
finite-complexity matrix recursions, and allows for a direct evaluation of the
estimates for variable initial conditions.

3.1 Introduction

In Kalman filtering, the initial state estimate, x̂0, and the initial error co-
variance matrix, P0, are usually fixed. However, it is sometimes necessary
to regard the estimates as functions of x̂0 and P0. In the applications of our
concern, the estimates need to be evaluated in correspondence of a contin-
uous set of initial values. Therefore, the standard implementations of the
Kalman filter are not appropriate.
This chapter presents an alternative formulation of Kalman filtering where
the initial values x̂0 and P0 appear in explicit form. Based on the connection
between Riccati equation and linear difference equations, the one-step pre-
diction and the error covariance matrix are split in two parts: the estimate
and the error covariance matrix corresponding to the initial values x̂0 = 0,
P0 = 0 and two parametric functions of x̂0 and P0. Finite-complexity matrix
recursions are provided for the update of the predictor and are shown to be
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numerically well-behaved in a time invariant setting. Prediction formulas are
then extended to filtering.

This chapter is organized as follows. In the next section, we elaborate
on the problems of filtering and prediction for discrete-time models and dis-
cuss the Kalman filtering algorithm presented in Chapter 1. In Section 3.3,
the relationship between difference Riccati equations and linear dynamical
equations is illustrated. The main results are presented in Section 3.4, where
decomposition formulas for the Kalman filter are established. A discussion
of the results is reported in Section 3.5.

3.2 Preliminaries

Consider the discrete-time linear Gaussian state-space model of Chapter 1,
namely, {

xk+1 = Akxk + Bkuk

yk = Ckxk + Dkvk
, (3.1)

where uk ∈ Rm×1 and vk ∈ Rr×1 are zero-mean white noise sequences,
xk ∈ Rn×1, yk ∈ Rp×1, {Ak, Bk, Ck, Dk} are given matrices of proper di-
mensions with DkDk > 0, and u, v, x0 are mutually independent. According
to Theorem 1.1, the problem of computing, for ` = k and ` = k + 1, the
minimum-mean-squared-error estimate

x̂`|k = E[x`|yk]

and the estimation error covariance matrix

P`|k , E[(x̂`|k − x`)(x̂`|k − x`)
T ]

given measurements yk is solved by the Kalman recursion

x̂k|k = x̂k|k−1 + Lk(yk − Ckx̂k|k−1), (3.2a)

Pk|k = Pk|k−1 − LkCkPk|k−1, (3.2b)

with gain Lk = Pk|k−1C
T
k (CkPk|k−1C

T
k + DkD

T
k )−1, and

x̂k+1|k = Akx̂k|k, (3.3a)

Pk+1|k = AkPk|kA
T
k + Qk, (3.3b)

where Qk , BkB
T
k . If x(0) has mean x̂0 and covariance matrix P0, the

recursion is started off by setting x̂0|−1 = x̂0 and P0|−1 = P0.
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It is evident that the initial conditions of the filter influence both x̂ and
P at every step k. That is, x̂ = x̂(x̂0, P0), P = P (P0). On the other hand,
the dependency on x̂0 and P0 is implicit and the algorithm gives no chance
to evaluate the estimates for changing values of x̂0 and P0, unless the whole
computation is repeated from the initial step.

We shall show that equations (3.2)–(3.3) can be rearranged so to obtain
explicit functions of x̂0 and P0 at every step of the recursion. We will initially
concentrate on the prediction problem. A simple substitution yields

x̂k+1|k = Ak(I − LkCk)x̂k|k−1 + AkLkyk, (3.4a)

Pk+1|k = Ak(I − LkCk)Pk|k−1A
T
k + Qk. (3.4b)

These equations represent a time-varying filter whose dynamics is described
by the state evolution matrix Φk , Ak(I − LkCk). By the algebraic identity

(I − Pk|k−1C
T
k (CkPk|k−1C

T
k + DkD

T
k )−1Ck) · (I + Pk|k−1∆k) = I, (3.5)

where ∆k , CT
k (DkD

T
k )−1Ck, a useful alternative expression of Φk is

Φk = Ak(I + ∆kPk|k−1)
−T .

Equation (3.5) also shows the invertibility of Φk whenever Ak in nonsingular.

3.3 Difference Riccati and linear equations

The evolution of the error covariance matrix Pk|k−1 is governed by the dif-
ference Riccati equation (3.4b). It is well-known that the Riccati equation is
related to linear difference equations.

Assumption 3.1 Matrices Ak and DkD
T
k are invertible for all k ≥ 0.

Define the 2n× 2n matrix

Zk ,
[

A−T
k A−T

k ∆k

QkA
−T
k Ak + QkA

−T
k ∆k

]
.

The relationship is established by the following classical result (see e.g. [3]).

Lemma 3.1 Consider the matrix difference equation
[
Xk+1

Yk+1

]
= Zk

[
Xk

Yk

]
(3.6)

with initial conditions Y0 = P0X0, and X0 any invertible matrix. Then, for
all k ≥ 0, Xk is invertible, and it holds that Pk|k−1 = YkX

−1
k .
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Remark. Assumption 3.1 will be maintained throughout the rest of the
chapter. Were Ak not invertible, the Riccati equation should be studied in
terms of generalized linear difference equations and symplectic pencils [51].
This would complicate the presentation and will not be done here. However,
the assumption that Ak be nonsingular is appropriate for a quite general set
of problems. ¤

Equation (3.6) may be written as

[
Xk+1

Yk+1

]
= Πk

[
X0

Y0

]
(3.7)

where Πk satisfies the recursion Πk = ZkΠk−1, provided Π−1 , I. Matrix
Πk inherits from Zk the symplectic property: ΠT

k JΠk = J , where J is the
2n× 2n matrix

J =

[
0 −I
I 0

]

satisfying JT = J−1 = −J . The property may be verified by induction, and
has relevant consequences: in particular, it implies that the eigenvalues of Πk

come in reciprocal pairs. Thus, if we actually were to compute Πk for, say, a
time-invariant system, i.e. Πk = Zk+1 for some fixed Zk ≡ Z, we would end
up with an extremely ill-conditioned matrix even for small values of k.

Lemma 3.2 The state evolution matrix and the gain of the one-step predic-
tor obey the following equalities:

Φk = X−T
k+1X

T
k ,

AkLk = X−T
k+1Y

T
k CT

k (DkD
T
k )−1.

Proof: The first equality follows from identity (3.5) and Lemma 3.1:

Ak(I−LkCk) = Ak(I+∆kPk|k−1)
−T = (A−T

k Xk+A−T
k ∆kYk)

−T XT
k = X−T

k+1X
T
k .

To verify the second equality, left-multiply both sides by X−T
k XT

k+1 so to
write

X−T
k XT

k+1AkLk = X−T
k Y T

k CT
k (DkD

T
k )−1. (3.8)

Use first equality and identity (3.5) to write X−T
k XT

k+1Ak as (I + Pk|k−1∆k).
Also use Lemma 3.1 to replace X−T

k Y T
k by Pk|k−1. Then (3.8) takes the form

(I + Pk|k−1∆k)Lk = Pk|k−1C
T
k (DkD

T
k )−1.
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Expand Lk, ∆k and right-multiply by CkPk|k−1C
T
k + DkD

T
k to get

(I+Pk|k−1C
T
k (DkD

T
k )−1Ck)PkC

T
k = Pk|k−1C

T
k (DkD

T
k )−1(CkPk|k−1C

T
k +DkD

T
k ).

Last equality is easily checked by inspection. ¤

Let the superscript “(i,j)” indicate the (i, j)-th n×n matrix block. Denote
with P ¦

k|k−1 , Pk|k−1(0) the prediction error covariance matrix associated
with zero initial conditions, and with Φ¦

k and L¦k the corresponding predictor
state evolution matrix and gain:

Φ¦
k , Ak(I + ∆kP

¦
k|k−1)

−T , (3.9)

L¦k , P ¦
k|k−1C

T
k (CkP

¦
k|k−1C

T
k + DkD

T
k )−1.

Corollary 3.1 1. The following recursion holds:

Π1,1
k = (Φ¦

k)
−T Π1,1

k−1,

initialized by Π1,1
−1 = I. In particular, Π1,1

k is invertible for all k;

2. It holds that Π2,1
k−1(Π

1,1
k−1)

−1 = P ¦
k|k−1;

3. It holds that AkL
¦
k = (Π1,1

k )−T (Π2,1
k−1)

T CT
k (DkD

T
k )−1.

Proof: First observe that Xk = (Π1,1
k−1X0 + Π1,2

k−1P0X0) and Yk = (Π2,1
k−1X0 +

Π2,2
k−1P0X0). Thus, by Lemmas 3.1–3.2,

Φk = (Π1,1
k + Π1,2

k P0)
−T (Π1,1

k−1 + Π1,2
k−1P0)

T ,

Pk|k−1 = (Π2,1
k−1 + Π2,2

k−1P0)(Π
1,1
k−1 + Π1,2

k−1P0)
−1,

AkLk = (Π1,1
k + Π1,2

k P0)
−T (Π2,1

k−1 + Π2,2
k−1P0)

T CT
k (DkD

T
k )−1.

The result follows by evaluation at P0 = 0. ¤

Define Uk , (Π1,1
k )−T . Then, the result at point 1. may be restated as

Uk = Φ¦
kUk−1,

with U−1 = I. Consider in addition Sk , UT
k Π1,2

k .

Lemma 3.3 Matrix Sk obeys the recursion

Sk = UT
k−1(I + ∆kP

¦
k|k−1)

−1∆kUk−1 + Sk−1

initialized by S−1 = 0. Moreover, Sk ≥ 0 for all k.
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Proof: By the definition of Πk, Π1,2
k = A−T

k Π1,2
k−1 + A−T

k ∆kΠ
2,2
k−1. Notice the

identity
Π2,2 = (Π1,1)−T + Π2,1(Π1,1)−1Π1,2, (3.10)

holding for any symplectic matrix Π with nonsingular Π1,1. Then

Π1,2
k = A−T

k ∆k(Π
1,1
k−1)

−T + A−T
k (I + ∆kΠ

2,1
k−1(Π

1,1
k−1)

−1)Π1,2
k−1.

Hence, using equation (3.9) and the results of Corollary 3.1,

Sk = (Π1,1
k )−1{A−T

k ∆k(Π
1,1
k−1)

−T + A−T
k (I + ∆kΠ

2,1
k−1(Π

1,1
k−1)

−1)Π1,2
k−1}

= (Π1,1
k−1)

−1(Φ¦
k)

T{A−T
k ∆k(Π

1,1
k−1)

−T + (Φ¦
k)
−T Π1,2

k−1}
= (Π1,1

k−1)
−1(I + ∆kP

¦
k|k−1)

−1∆k(Π
1,1
k−1)

−T + Sk−1. (3.11)

To prove that Sk ≥ 0, let us proceed by induction. That S−1 ≥ 0 is obvious.
Now assume Sk−1 ≥ 0. For any ∆ ≥ 0 and P ≥ 0, it holds that

(I + ∆P )−1∆ = (I + ∆P )−1(∆ + ∆P∆)(I + ∆P )−T ≥ 0. (3.12)

Thus, both addends of (3.11) are nonnegative definite. The result follows. ¤

Quantities Uk, P ¦
k and Sk will be the building blocks of an explicit repre-

sentation of x̂(x̂0, P0) and P (P0). Their properties may be promptly studied
in a time-invariant setting. Assume (Ak, Bk, Ck, Dk) ≡ (A,B, C, D) for all

k. If (A,C) is detectable, then the limiting matrix P ¦
k+1|k

k−→ P is positive

semidefinite and bounded. If, in addition, (A,B) is controllable, then the

limiting matrix Φ¦
k

k−→ Φ has all the eigenvalues strictly within the unit
circle. As

Uk = Φ¦
kUk−1 = . . . = Φ¦

k · . . . · Φ¦
0,

it follows that Uk
k−→ 0 with ultimate exponential decay. This guarantees

that Sk
k−→ S < +∞. Therefore, all recursions prove numerically bounded

and well-conditioned. If the system is not detectable and controllable, or it
is not time-invariant, the analysis is more involved. In any case, the stability
of the recursions is intimately related to that of the corresponding Kalman
filter.

3.4 Decomposition formulas

We are now ready to establish the main results of this chapter. Based on
the linear representation of the Riccati equation, an explicit expression for
Pk+1|k(P0) is derived first.
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Proposition 3.1 The prediction error covariance matrix admits the follow-
ing decomposition:

Pk+1|k(P0) = P ¦
k+1|k + Uk(I + SkP0)

−T P0U
T
k . (3.13)

Proof: By Lemma 3.1 and equation (3.7),

Pk+1|k(P0) = (Π2,1
k + Π2,2

k P0)(Π
1,1
k + Π1,2

k P0)
−1.

In light of identity (3.10), the first factor may be rewritten as

(Π1,1
k )−T P0 + Π2,1

k (Π1,1
k )−1(Π1,1

k + Π1,2
k P0).

Therefore, using Corollary 3.1 and the definitions of Uk and Sk,

Pk+1|k(P0) = (Π1,1
k )−T P0(Π

1,1
k + Π1,2

k P0)
−1 + Π2,1

k (Π1,1
k )−1

= UkP0(I + SkP0)
−1UT

k + P ¦
k+1|k.

Expression (3.13) follows from the symmetry of Pk+1|k. ¤

The expression of Pk+1|k(P0) is a superposition of two terms. The first
term, P ¦

k+1|k, corresponds to the initial value P0 = 0. The second term
accounts explicitly for P0. It is characterized by a finite set of parameters, Uk

and Sk, independent of P0, which are updated by well-behaved recursions. Let
now x̂¦k+1|k , x̂k+1|k(0, 0) indicate the state prediction associated to x̂0 = 0
and P0 = 0. Along the lines of Proposition 3.1, an explicit formula is found
for x̂k+1|k(x̂0, P0).

Proposition 3.2 The one-step predictor may be decomposed as

x̂k+1|k(x̂0, P0) = x̂¦k+1|k + Uk(I + SkP0)
−T (x̂0 + P0Mk), (3.14)

where the quantity Mk satisfies the recursions

Mk = UT
k−1(C

T
k (DkD

T
k )−1yk − (I + ∆kP

¦
k|k−1)

−1∆kM̃k) + Mk−1

initialized by M−1 = 0. In turn, M̃k satisfies

M̃k = Φ¦
k−1M̃k−1 + P ¦

k|k−1C
T
k (DkD

T
k )−1yk

initialized by M̃−1 = 0.
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Proof: Let zk , CT
k (DkD

T
k )−1yk. By Lemma 3.2,

x̂k+1|k = X−T
k+1X

T
k x̂k|k−1 + X−T

k+1Y
T
k zk.

Developing this recursion backwards, one gets

x̂k+1|k = X−T
k+1X

T
0 x̂0|−1 + X−T

k+1

k∑
i=0

Y T
i zi. (3.15)

Set w.l.o.g. X0 = I. Then Xk+1 = Π1,1
k +Π1,2

k P0 = Π1,1
k (I +SkP0). Moreover,

Yi = Π2,1
i−1 + Π2,2

i−1P0

= Π2,1
i−1(Π

1,1
i−1)

−1(Π1,1
i−1 + Π1,2

i−1P0) + (Π1,1
i−1)

−T P0

= P ¦
i|i−1Π

1,1
i−1(I + Si−1P0) + (Π1,1

i−1)
−T P0,

where (3.10) was used. By Lemma 3.3, term Si−1 may be written as Sk −∑k
l=i S̃l, with S̃l = (Π1,1

l−1)
−1(I + ∆lP

¦
l|l−1)

−1∆l(Π
1,1
l−1)

−T , whence

Yi = P ¦
i|i−1Π

1,1
i−1(I + SkP0) + {(Π1,1

i−1)
−T − P ¦

i|i−1Π
1,1
i−1

k∑

l=i

S̃l}P0.

Substituting the expressions of Xk+1 and Yi into (3.15) and rearranging,

x̂k+1|k = (Π1,1
k )−T

k∑
i=0

(Π1,1
i−1)

T P ¦
i|i−1zi

︸ ︷︷ ︸
,Nk

+(Π1,1
k )−T (I + SkP0)

−T ·

·{x̂0 + P0

k∑
i=0

(Π1,1
i−1)

−1zi

︸ ︷︷ ︸
,M ′

k

−P0

k∑
i=0

(
k∑

l=i

S̃l)(Π
1,1
i−1)

T P ¦
i|i−1zi

︸ ︷︷ ︸
,M ′′

k

}
.

Let us first show that Nk ≡ x̂¦k+1|k. In light of Corollary 3.1, one gets1

Nk =
k∑

i=0

(Π1,1
k )−T (Π1,1

i−1)
T (Π1,1

i−1)
−T (Π2,1

i−1)
T zi

=
k∑

i=0

(Π1,1
k )−T · (Π1,1

k−1)
T (Π1,1

k−1)
−T · . . . · (Π1,1

i )T (Π1,1
i )−T · (Π2,1

i−1)
T zi

=
k∑

i=0

k∏

l=i+1

Φ¦
l AiL

¦
i yi.

1Given a sequence of square matrices Φl of the same size, we let
∏k

l=h Φl be equal to
Φk · Φk−1 · . . . · Φh if h ≤ k, and to the identity matrix otherwise.
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It follows that Nk = Φ¦
kNk−1 + AkL

¦
kyk, with N−1 , 0. For x̂0 = 0 and

P0 = 0, this recursion is identical to recursion (3.4a). Hence, Nk ≡ x̂¦k+1|k.

Next, setting M ′
−1 , 0,

M ′
k =

k−1∑
i=0

(Π1,1
i−1)

−1zi + (Π1,1
k−1)

−1zk = M ′
k−1 + (Π1,1

k−1)
−1zk.

Consider now M ′′
k . Make use of Corollary 3.1 to get

S̃l(Π
1,1
i−1)

T = (Π1,1
l−1)

−1(I + ∆lP
¦
l|l−1)

−1∆l ·
l−1∏
j=i

Φ¦
j .

Substituting the above into the expression of M ′′
k and rearranging yields

M ′′
k =

k∑
i=0

k∑

l=i

(Π1,1
l−1)

−1(I + ∆lP
¦
l|l−1)

−1∆l ·
l−1∏
j=i

Φ¦
j · P ¦

i|i−1zi

=
k−1∑
i=0

k−1∑

l=i

(Π1,1
l−1)

−1(I + ∆lP
¦
l|l−1)

−1∆l ·
l−1∏
j=i

Φ¦
j · P ¦

i|i−1zi +

+(Π1,1
k−1)

−1(I + ∆kP
¦
k|k−1)

−1∆k ·
k∑

i=0

k−1∏
j=i

Φ¦
j · P ¦

i|i−1zi

= M ′′
k−1 + (Π1,1

k−1)
−1(I + ∆kP

¦
k|k−1)

−1∆kM̃k,

with M ′′
−1 , 0 and Mk ,

∑k
i=0

∏k−1
j=i Φ¦

j · P ¦
i|i−1zi. In turn,

M̃k = P ¦
k|k−1zk + Φ¦

k−1

k−1∑
i=0

k−2∏
j=i

Φ¦
j · P ¦

i|i−1zi = P ¦
k|k−1zk + Φ¦

k−1M̃k−1,

where M̃−1 , 0. To conclude, just set Mk , M ′
k −M ′′

k . ¤

Sequences M̃k and Mk are independent of x̂0 and P0. Together with
x̂¦k+1|k, they account for measurements yk. Under suitable assumptions –
in particular, for time-invariant detectable and controllable systems – their
expected norms are bounded.

Decomposition formulas for x̂k|k(x̂0, P0) and Pk|k(P0) follow easily. Let as

usual x̂¦k|k , x̂k|k(0, 0) and P ¦
k|k , Pk|k(0).
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Corollary 3.2 The Kalman filter and the associated error covariance matrix
admit the following decomposition:

x̂k|k(x̂0, P0) = x̂¦k|k + A−1
k Uk(I + SkP0)

−T (x̂0 + P0Mk),

Pk|k(P0) = P ¦
k|k + A−1

k Uk(I + SkP0)
−T P0U

T
k A−T

k .

Proof: By equations (3.3a)–(3.3b), it is simply

x̂k|k = A−1
k x̂k+1|k

= A−1
k x̂¦k+1|k + A−1

k Uk(I + SkP0)
−T (x̂0 + P0Mk),

where indeed A−1
k x̂¦k+1|k = x̂¦k|k, and

Pk|k = A−1
k (Pk+1|k −Qk)A

−T
k

= A−1
k (P ¦

k+1|k + Uk(. . .)
−T P0U

T
k Qk)A

−T
k

= A−1
k (P ¦

k+1|k −Qk)A
−T
k + A−1

k Uk(. . .)
−T P0U

T
k A−T

k ,

where A−1
k (P ¦

k+1|k −Qk)A
−T
k = P ¦

k|k. ¤

Note that all terms accounting for x̂0 and P0 involve Uk as a factor. In
general, this makes the contribution of the initialization negligible for large

k: in the standard time-invariant setting, for instance, Uk
k−→ 0, whereas all

the remaining factors are bounded. Finally observe that the quantities x̂¦k|k,
P ¦

k|k, x̂¦k+1|k and P ¦
k+1|k may be computed at once by way of the standard

algorithm (3.2)–(3.3) initialized by x̂0 = 0, P0 = 0.

3.5 Discussion

In this chapter we have presented an implementation of the Kalman filter
which keeps the dependence on the a priori state estimate x̂0 and error co-
variance matrix P0 explicit. The decomposition formulas we obtained may
be interpreted as a nonlinear version of the superposition principle holding
for linear difference equations. The recursive nature of the parameters de-
scribing x̂(x̂0, P0) and P (P0) makes this formulation well-suited for applica-
tions. Compared to the former arrangement described in [17], the algorithm
has been relieved of numerical ill-conditioning and of certain unessential as-
sumptions. Further investigation of its numerical properties and application
to several nonlinear settings are possible directions of research.



Chapter 4

Sampled linear switching
systems

In this chapter we introduce a jump Markov model with continuous-time
dynamics and sampled measurements. A general state estimation problem
is stated. The optimal solution is discussed and is shown to relate to the
solutions of certain linear estimation problems. A recursive solution to the
problems of filtering and prediction at measurement times is derived. The
fundamental case of a single switch model is examined in more depth. In
this setting, state estimation is further investigated in connection with the
more specific problem of fault detection.

4.1 Introduction

In Chapter 2 we observed that the discrete-time model (2.1) may be unsuited
for applications where the rate of measurement is slow compared to the rate
of switching or to the system’s dynamics. This limitation may be overcome if
the evolution of the discrete-state is described by a continuous-time Markov
chain q(t). By the results of Chapter 1, this allows to model switches as the
events τk of a Poisson process. Moreover, the dynamics of a continuous state
ξ(t) may be expressed in terms of the piecewise constant trajectories of q(t).
The nature of measurements is unchanged, but now the instants of switching
τk are completely unrelated with the measurement times tk. As for discrete-
time jump Markov linear systems, one is interested in the estimation of the
states ξ(t) and q(t). In addition, the problem of isolating the switches in
between measurements may be posed. In general, the vastity of the discrete-
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state trajectories that may be generated complicates the estimation tasks.

In the next section, we will formalize the continuous-type dynamics, sam-
pled measurement model and discuss its fundamental properties. In the fol-
lowing section, we will state the estimation problems we are concerned with.
In analogy with discrete-time jump Markov systems, we will illustrate the
connection of the problem with a set of conditioned linear estimation prob-
lems. Conditional Kalman filtering and a recursive scheme for the estimation
of the joint state (ξ(t), q(t)) will be introduced in Sections 4.5÷ 4.6 as a nat-
ural extension of the tools of Chapter 2. In Sections 4.7 and 4.8, we will focus
on the case study of a system subject to a single Markovian switch. A sim-
ple characterization of the trajectories of q(t) will lead to a straightforward
solution of state estimation and of the related problem of fault detection.

4.2 General model

For a certain index N ∈ N0, let Q = {0, . . . , N − 1}. Assume that we are
given the matrix-valued functions

F : Q → Rn×n : q 7→ Fq

G : Q → Rn×m : q 7→ Gq

with n,m ∈ N. For t ≥ 0, let w(t) ∈ Rm be a zero-mean, normalized white
Gaussian process, and let ξ(t) ∈ Rn obey the stochastic differential equation

ξ̇ = Fq(t)ξ(t) + Gq(t)w(t) (4.1a)

with ξ(0) ∼ N (ξ̂0, Σ0), ξ̂0 and Σ0 known, uncorrelated with w. Next, assume
we are given functions

H : Q → Rp×n : q 7→ Hq

K : Q → Rp×r : q 7→ Kq

with p, r ∈ N. For k ∈ N0, let vk ∈ Rr be a zero-mean, normalized white
Gaussian sequence, and let yk ∈ Rp be defined as

yk = Hq(tk)ξ(tk) + Kq(tk)vk (4.1b)

where
T , {tk}k∈N0 ⊆ R+

is an assigned sequence satisfying tk < tk+1, t0 = 0, and v is uncorrelated
with ξ(0) and w. We will always assume that, for any q ∈ Q,

Var(Kqvk) = KqK
T
q > 0.
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Finally, let q(t) ∈ Q be the outcome of a homogeneous Markov chain of as-
signed (continuous) transition probability matrix T(δ) and initial probability
distribution p0. That is, for every i, j ∈ Q,

Ti,j(δ) = P[q(t + δ) = j|q(t) = i] (4.1c)

and p0(j) , P[q(0) = j]. We will make the further hypothesis that

P[q(t + δ)|q(t), ξ(0), w, v] = P[q(t + δ)|q(t)].

As a consequence,

P[q(t + δ) = j|q(t) = i, ξ(t)] = Ti,j(δ),

i.e. q(t + δ) is conditionally independent of ξ(t) given q(t).

For all t ∈ R+, all s ≥ t, any k ∈ N0 and any {s0, . . . , sk} ⊂ [0, t), the
following separation principle holds:

F(ξ(s), q(s)|ξ(t), q(t), ξ(s0), q(s0), . . . , ξ(sk), q(sk)) = F(ξ(s), q(s)|ξ(t), q(t)).

Therefore, the couple (ξ(t), q(t)) will be called the state of the system. In
particular, ξ and q will be referred to as the continuous state and the discrete
state, respectively.

The set of equations (4.1) is a non-Gaussian switching model which can-
not be studied with the standard tools of stochastic linear systems. How-
ever, the outcomes of q(t) are, with probability 1, piecewise-constant, right-
continuous functions. This was illustrated in Chapter 1. Therefore, for any
fixed trajectory q(t), say q̃, equations (4.1a) and (4.1b) form the well-defined
time-varying linear state-space model

{
ξ̇(t) = Fq̃(t)ξ(t) + Gq̃(t)w(t)
yk = Hq̃(tk)ξ(tk) + Kq̃(tk)vk

. (4.2)

The parameters of this system, which we will refer to as the conditioned
system, are fixed in time by q̃(t). As a consequence, for any t ≥ 0 and
` ∈ N0, the joint distribution

f(ξ(t), y`|q̃)

is a multivariate Gaussian.
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4.3 State estimation problem

The problem we are interested in is the optimal estimation of the system
state from the available measurements. Precisely, let

yk = {y0, . . . , yk}
denote the set of measurements up to index k. We want to compute the
min-square-error estimate estimate of the continuous state,

arg min
z
E[||ξ(t)− z(yk)||2], (4.3)

and the minimum-probability-of-error estimate of the discrete state,

arg min
z
P[q(t) 6= z(yk)], (4.4)

where z indicates in both cases a measurable function of data yk. For any
density function f(ξ(t)|yk), problem (4.3) is equivalent to the minimization
of

E[||ξ(t)− z(yk)||2|yk],

which results in the conditional expectation of ξ(t) given yk. Similarly, for
any distribution p(q(t)|yk), problem (4.4) is equivalent to minimizing

P[q(t) 6= z(yk)|yk],

which is solved by the maximum a posteriori estimate of q(t) given yk. Thus,
we wish to compute

ξ̂t|k , E[ξ(t)|yk] (4.5)

as an estimate of ξ(t), and

q̂t|k , arg max
j∈Q

P[q(t) = j|yk] (4.6)

as an estimate of q(t). As a measure of quality of estimate (4.5), we would
also like to compute the conditional variance

Σt|k , E[ξ̃t|kξ̃
T
t|k|yk] = Var(ξ(t)|yk), (4.7)

where ξ̃t|k , ξ(t)− ξ̂t|k is the estimation error. On the other hand, it would
be useful to determine the whole conditional distribution

pt|k(j) , P[q(t) = j|yk], (4.8)

with j = 0, . . . , N − 1, from which estimate (4.6) follows. In particular, we
are concerned with the cases of filtering, i.e. t = tk, and one-step prediction,
i.e. t = tk+1.
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4.4 Theoretical solution

In more generality, let us consider the computation of

f(ξ(t)|yk),

from which expressions (4.5) and (4.7) follow. Where unessential, we will
simply write ξ instead of ξ(t). By the total probability law,

f(ξ|yk) =

∫
dP[q̃|yk]f(ξ|yk, q̃), (4.9)

where q̃ indicates one trajectory of q, and integration is taken over a set of
trajectories of q(t) of probability 1. Since

f(ξ|yk, q̃) ∝ f(ξ, yk|q̃),

it must hold that, for certain parameters ξ̂ q̃ and Σq̃,

f(ξ|yk, q̃) ∼ N (ξ̂ q̃, Σq̃). (4.10)

Thus, equation (4.9) represents an average of Gaussian densities weighted by
the a posteriori distribution of process q(t) given yk. Note that

dP[q̃|yk] ∝ f(yk|q̃)dP[q̃], (4.11)

i.e. weighting only depends on the statistics of the measurements of the
conditioned system (4.2) and on the a priori description of q(t). In general,
density f(ξ|yk) is non-Gaussian, nor it can written in terms of a finite number
of parameters.

For every possible trajectory q̃, the mean of (4.10) is given by

ξ̂ q̃ = arg min
z
E[||ξ − z(yk)||2|q̃],

i.e. it may be found by solving the continuous state estimation problem asso-
ciated to system (4.2). To verify this, it suffices to apply Proposition 1.16 to
problem (4.3) using the conditioned distribution f(ξ|yk, q̃). Correspondingly,
the covariance matrix of (4.10) is given by

Σq̃ = E[ξ̃ q̃ ξ̃ q̃T |q̃],

where ξ̃ q̃ is the estimation error ξ − ξ̂ q̃.
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Therefore, the solution of the continuous state estimation problem is es-
sentially an average of the solutions of the linear estimation problems asso-
ciated to every possible trajectory q̃. It follows from (4.9) that, at a generic
time t, estimate (4.5) is given by

ξ̂ =

∫
dP[q̃|yk]ξ̂ q̃, (4.12)

i.e. it is itself a weighted average of the optimal estimates conditioned on q̃.
Similarly, covariance matrix (4.7) is given by

Σ =

∫
dP[q̃|yk]Σq̃ + {

∫
dP[q̃|yk]ξ̂ q̃ ξ̂ q̃T − ξ̂ξ̂T} (4.13)

where the extra term in braces is due to the nonlinearity of the variance
operator.

Turning to the discrete state estimation problem, consider the computa-
tion of (4.8). For any j ∈ Q, it holds that

pt|k(j) =

∫

{q̃:q̃(t)=j}
dP[q̃|yk] ∝

∫

{q̃:q̃(t)=j}
dP[q̃]f(yk|q̃), (4.14)

where (4.11) has been used. Hence, in principle, the estimation of q at any
time t depends only on the a priori statistics of process q(t) itself and on the
statistics of the data yk given q̃.

In general, the actual computation of integrals (4.12)÷(4.14) is impracti-
cable, mainly due to the large amount of trajectories of q(t) to be considered.
However, for certain definitions of the transition function (4.1c), explicit ex-
pressions may be found for (4.11) as well as for ξ̂ q̃ and Σq̃. In this case,
integrations may be either carried out exactly or approximated numerically
with arbitrary accuracy.

4.5 Conditioned filtering and prediction

For any fixed q̃, the linearity of (4.2) allows to compute ξ̂ q̃ and Σq̃ very
efficiently. For t equal to tk and tk+1, in particular, they may be computed
at once by way of conditional Kalman filtering and prediction.

Proposition 4.1 The following recursion holds: (i) Measurement update:
compute

ξ̂ q̃
tk|k = ξ̂ q̃

tk|k−1 + Lq̃
k[yk −Hq̃(tk)ξ̂

q̃
tk|k−1],

Σq̃
tk|k = Σq̃

tk|k−1 − Lq̃
kHq̃(tk)Σ

q̃
tk|k−1,
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with Lq̃
k = Σq̃

tk|k−1H
T
q̃(tk)[Hq̃(tk)Σ

q̃
tk|k−1H

T
q̃(tk)+Kq̃(tk)K

T
q̃(tk)]

−1; (ii) Time update:
solve, from t = tk to t = tk+1, the differential equations

dξ̂ q̃
t|k/dt = Fq̃(t)ξ̂

q̃
t|k,

dΣq̃
t|k/dt = Fq̃(t)Σ

q̃
t|k + Σq̃

t|kF
T
q̃(t) + Gq̃(t)G

T
q̃(t).

The initialization of the recursion is given by ξ̂ q̃
t0|−1 = ξ̂0 and Σq̃

t0|−1 = Σ0.

The differential equations of the time update step may be used to compute
ξ̂ q̃
t|k−1 and Σq̃

t|k−1 at any time t ≥ tk−1. Due to the nature of process q(t),
carrying out this step amounts to solving differential equations with piecewise
constant coefficients.

The a priori statistics of measurements yk given q̃ may also be computed
based on the equations of the linear system (4.2). However, it proves conve-
nient to exploit the results of Proposition 4.1.

Proposition 4.2 The a priori density function of measurements yk given q̃
may be computed iteratively as follows:

f(yk|q̃) = f(yk|yk−1, q̃)f(yk−1|q̃), (4.15)

with

f(yk|yk−1, q̃) = N (Hq̃(tk)ξ̂
q̃
tk|k−1, Hq̃(tk)Σ

q̃
tk|k−1H

T
q̃(tk) + Kq̃(tk)K

T
q̃(tk)). (4.16)

Iterations are initialized by

f(y0|y−1) = N (Hq̃(t0)ξ̂0, Hq̃(t0)P0H
T
q̃(t0) + Kq̃(t0)K

T
q̃(t0)).

Proof: Equality (4.15) is a simple application of Bayes’rule. Expression
(4.16) follows from the measurement equation of (4.2) as a consequence of
the conditional independence of vk and yk−1 given q̃. ¤

Together, Propositions 4.1 and 4.2 yield an iterative method for the compu-
tation of f(yk|q̃).

4.6 Recursive approach

In analogy to the discrete-time case, one may solve estimation at measure-
ment times by computing (4.5) and (4.6) recursively. Following the previous
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section, consider the computation of the a posteriori density of ξ(t`). By the
total probability law,

f(ξ(t`)|yk) =
∑
j∈Q

f(ξ(t`)|q(t`) = j, yk)pt`|k(j).

Thus, computing f(ξ(t`)|yk) and pt`|k(·), ` = k, k + 1, is equivalent to com-
puting the likelihood function

ft`|k(j) , f(ξ(t`)|q(t`) = j, yk),

and pt`|k(j), for j = 0, . . . , N − 1.

Proposition 4.3 For ` = k and ` = k + 1, pt`|k and ft`|k obey the following
two-step recursion on index k:

1. Measurement update: for j = 0, . . . , N − 1,

ptk|k(j) ∝ f(yk|yk−1, q(tk) = j)ptk|k−1(j)

ftk|k(j) ∝ f(yk|ξ(tk), q(tk) = j)ftk|k−1(j)

2. Time update: for j = 0, . . . , N − 1 and δk , tk+1 − tk,

ptk+1|k(j) =
∑
i∈Q

Ti,j(δk)ptk|k(i)

ftk+1|k(j) =
∑
i∈Q

f(ξ(tk+1)|q(tk) = i, q(tk+1) = j, yk)
ptk|k(i)

ptk+1|k(j)
Ti,j(δk)

The recursion is initialized by pt0|−1 , p0 and ft0|−1 , N (ξ̂0, Σ0).

Proof: Identical to that of Proposition 2.4, provided the substitution of x`,
q`, πqk,qk+1

with ξt` , q(t`) and Ti,j(δk). ¤

This result parallels Proposition 2.4, and the structure of the recursion is
again that of Figure 2.2. Quantities f(yk|yk−1, q(tk)) and f(yk|ξ(tk), q(tk))
appearing in step 1 are promptly computed by equations similar to (2.7) and
(2.8). On the contrary, the computation of f(ξ(tk+1)|q(tk), q(tk+1), y

k) is not
at all trivial. Take q(tk) = i and q(tk+1) = j. Let q̃k(t), tk ≤ t ≤ tk+1, denote
a portion of trajectory q(t) such that q̃k(tk) = i and q̃k(tk+1) = j. Then the
above term is given by the integral mixing

∫
dP[q̃k|q(tk) = i, q(tk+1) = j, yk]f(ξ(tk+1)|q̃k, y

k), (4.17)
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extended over all possible such q̃k. For every fixed q̃, density f(ξ(tk+1)|q̃k, y
k)

may be deduced from ftk|k(i) by solving the diffusion associated to the linear,
time-varying equation (4.1a), see [36]. On the other hand, the weighting term
may be computed for all q̃k in terms of ptk|k and T.

From a practical standpoint, applying this recursion to the calculation of
(4.5) is critical. The computation of (4.17) suffers from limitations analogous
to that of (4.12), and needs be carried out at each step k. Then, one further
integration, namely,

ξ̂t`|k =

∫
dξ(t`)ξ(t`)f(ξ(t`)|yk)

is required to get ξ̂t`|k from f(ξ(t`)|yk). On the other hand, implicit in the
scheme is the joint solution of both the discrete state and the continuous
state estimation problem. This gives a deeper understanding of the problem
at hand and might be the basis for the development of approximate recursive
estimation algorithms.

4.7 Single switch model

For certain choices of the transition matrix T, the complexity of the estima-
tion problem gets drastically reduced. This is the case, in particular, when
all but one of the states of process q(t) are absorbing. Let λj, j = 1, . . . , N−1
be assigned real parameters such that λj > 0. Let process q(t) have generator
matrix

G =




−Λ λ1 · · · λj · · · λN−1

0
... 0
0


 , (4.18)

where Λ , λ1 + . . .+λN−1. Then, by the equation T(δ) = eGδ, the transition
matrix of q(t) takes the form

T(δ) =




e−Λδ · · · λj

Λ

(
1− e−Λδ

) · · ·
0
... I
0


 . (4.19)

Note that, for any i ∈ Q \ {0}, any j ∈ Q \ {i} and any δ > 0, Ti,j(δ) = 0.
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Figure 4.1: Graphical representation of Markov process (4.19).

It follows that
P[q(t + δ) 6= i|q(t) = i] = 0.

In simple terms, process q(t) is not allowed to jump from a state i ∈ Q\ {0}
to a different one, that is, states 1, . . . , N − 1 are absorbing. On the other
hand, the probability of eventually jumping from state 0 to any of the states
j ∈ Q \ {0} is given by

lim
δ→+∞

1−T0,0(δ) = 1. (4.20)

A pictorial view of this setting is given in Figure 4.1.

Proposition 4.4 A continuous-time Markov chain q(t), t ≥ 0, with transi-
tion probability matrix (4.19) is of the form

q(t) =

{
0, t < t?

q?, t ≥ t?
. (4.21)

For s ≥ 0 and j ∈ Q \ {0}, the joint probability distribution of the random
variables t? and q? is given by

Ft?,q?(s, j) , P[t? < s, q? = j] =
λj

Λ
(1− e−Λs)p0(0) + p0(j). (4.22)

Proof: Due to the absorbing property of states Q \ {0}, at most one jump
from state 0 to a state q? ∈ Q \ {0} is allowed. Denote with t? the time at
which this jump occurs. The following chain of equalities hold:

P[t? < s, q? = j] = P[q(s) = j] = P[q(s) = j|q(0) = 0]P[q(0) = 0]+

+ P[q(s) = j|q(0) = j]P[q(0) = j] = T0,j(s)p0(0) + Tj,j(s)p0(j).

¤

Therefore, the outcomes of q(t) are completely characterized by the switching
time t? and the final state q?.
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Corollary 4.1 (i) For s ≥ 0 and j ∈ Q\{0}, the following expressions hold:

Ft?(s) , P[t? < s] = 1− p0(0)e−Λt,

pq?(j) , P[q? = j] =
λj

Λ
p0(0) + p0(j).

(ii) In the case p0(0) = 1, the “density” functions

ft?,q?(s, j) , ∂

∂s
Ft?,q?(s, j) (4.23)

ft?(s) , ∂

∂s
Ft?(s) (4.24)

are well defined over s ≥ 0, and it holds that

ft?,q?(s, j) = λje
−Λs,

ft?(s) = Λe−Λs,

pq?(j) =
λj

Λ
.

In particular, t? and q? are independent.

Proof: (i) The results follow by marginalization of Ft?,q?(s, j) with respect to
t? and q?, in the order. (ii) For p0(0) = 1, Ft?,q?(0, j) = 0 for all j ∈ Q\ {0},
i.e. the probability mass of the joint variable (t?, q?) is concentrated in s ≥ 0.
Thus, density functions are correctly defined in this domain. The expressions
of ft? and ft?,q? are found by differentiation of Ft? and Ft?,q? w.r.t. s, whereas
pq? just needs be evaluated for p0(0) = 1. Independence of t? and q? may be
verified by inspection. ¤

Thus, if p0(0) = 1, t? ∼ E(Λ). Note that the exponential distribution enjoys
the property of being memoryless. This will become apparent in the applica-
tions to state estimation. Moreover, parameters λj are naturally interpreted
as the relative probability of states j ∈ Q \ {0}. Otherwise, if p0(j) > 0
for some j ∈ Q \ {0}, the distribution of (t?, q?) gets slightly modified in
accordance with the probability that process q(t) already starts from an ab-
sorbing state. For the purpose of applications, this complication does not
add much insight and is not worth considering. Therefore, the assumption
that p0(0) = 1 will always be maintained in the sequel.

Let us now move to system (4.1). In light of Proposition 4.4, the model
may be rewritten as

{
ξ̇(t) = F̂ (t)ξ(t) + Ĝ(t)w(t)

yk = Ĥ(tk)ξ(tk) + K̂(tk)vk

(4.25)
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where, for s ≥ 0,

(F̂ , Ĝ, Ĥ, K̂)(s) =

{
(F0, G0, H0, K0), s < t?

(Fq? , Gq? , Hq? , Kq?), s ≥ t?
.

The system starts in the linear mode associated with q = 0 and jumps at
time t? to the linear mode associated with q = q?. This model is well suited
for (but not restricted to) the description of a real-world system subject
to abrupt faults, in which case the initial mode 0 corresponds to nominal
operating conditions, whereas modes 1 through N − 1 represent a set of
possible faulty behaviors. In the present context, the interest is focused
on the detection of the fault, i.e. on the estimation of t? and q? from the
available measurements. For this reason, in a loose sense, the expression
“fault detection” is used throughout this work to indicate either the model
resulting from (4.19) or the relevant estimation problem.

Remark. In certain situations, it is reasonable to think of a system fault as
depending on two factors: impulsive events stressing the system at unknown
times, and the intrinsic robustness of the system with respect to one such
event. An immediate way of modeling the occurrence of shocks is by way of
random, memoryless arrival times τk. On the other hand, based on suitable
test data, the response of the system to a shock may be described in terms
of the probability π0,j that the event will result in a fault of type j, for a
known set of typical faults indexed by j = 1, . . . , N − 1, with π0,0 indicating
the probability of sticking to the normal operating mode. Therefore, uniform
chains naturally fit the description of a system subject to faults. Moreover,
their equivalence to continuous-time Markov chains supports the use of this
tool for modeling systems undergoing abrupt changes. ¤

4.8 State estimation and fault detection

In the setting of fault detection, it is convenient to exploit the character-
ization of q(t) in terms of t? and q?. First consider the continuous state
estimation problem. Equation (4.9) specializes to

f(ξ|yk) =

∫
dP[t?, q?|yk]f(ξ|yk, t?, q?).

Next, consider the problem of estimating the discrete state. Since for every
j ∈ Q \ {0} the event {q(t) = j} is equivalent to Q̃ , {t? ≤ t, q? = j},
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equation (4.14) becomes

pt|k(j) =

∫

Q̃

dP[t?, q?|yk].

On the other hand, it holds that

pt|k(0) = 1−
N−1∑
j=1

pt|k(j).

Let us define, for j ∈ Q \ {0} and s ≥ 0,

fk
t?,q?(s, j) , ∂

∂s
P[t? ≤ s, q? = j|yk],

∝ f(yk|t? = s, q? = j)ft?,q?(s, j). (4.26)

with normalization factor

f(yk) =
N−1∑
j=1

∫ +∞

0

f(yk|t? = s, q? = j)ft?,q?(s, j)ds. (4.27)

For k = −1, (4.26) reduces to (4.23).

Proposition 4.5 The following expressions hold

f(ξ|yk) ∝
N−1∑
j=1

∫
f(ξ|yk, t? = s, q? = j)f(yk|t? = s, q? = j)ft?,q?(s, j)ds,

pt|k(j) ∝
∫ t

0

f(yk|t? = s, q? = j)ft?,q?(s, j)ds,

for every j ∈ Q \ {0}, with normalization factor given by (4.27).

Proof: The expression of f(ξ|yk) may be rewritten as

N−1∑
j=1

∫
f(ξ|yk, t? = s, q? = j)fk

t?,q?(s, j)ds,

to which (4.26) applies. Similarly, for any j ∈ Q \ {0} and Q̃ as above, the
expression of pt|k(j) may be recast as

∫

Q̃

fk
t?,q?(s, j)ds.
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Again, equation (4.26) applies. ¤

Therefore, the joint state estimation problem may be restated as that of
computing, for any t? and any q?, the quantities

f(ξ|yk, t?, q?) = N (ξ̂t?,q?

, Σt?,q?

), (4.28a)

i.e. the best conditioned estimate of ξ, and

f(yk|t?, q?), (4.28b)

i.e. the a priori conditioned distribution of the data. Observe that Propo-
sitions (4.1) and (4.2) may be rewritten in terms of t? and q? as well. This
yields an iterative method for the computation of (4.28a), with ξ = ξ(tk) and
ξ = ξ(tk+1), and of (4.28b).

It is also of interest to consider a more specific estimation problem, which
we refer to as fault detection. Precisely, we wish to compute the minimum
mean-squared error estimate of t?, i.e.

arg min
z
E[(t? − z(yk))2],

and the minimum-probability-of-error estimate of q?, i.e.

arg min
z
P[q? 6= z(yk)],

where z indicates a measurable function of data yk. By the arguments of
Section 1.6, the desired estimator of t? turns out to be

t̂?k , E[t?|yk], (4.29)

whereas that of q? is given by

q̂?
k , arg max

j∈Q\{0}
P[q? = j|yk].

In order to evaluate the quality of these estimates, we would also like to
compute the estimate error variance

E[(t? − t̂?k)
2|yk] = var(t?|yk) (4.30)

In more generality, we shall consider the density function

f ?
k (s) , ∂

∂s
P[t? ≤ s|yk],

from which (4.29) and (4.30) follow. Similarly, in place of q̂?
k , we shall

consider the distribution

p?
k(j) = P[q? = j|yk].
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Proposition 4.6 For every s ≥ 0 and j ∈ Q \ {0}, it holds that

p?
k(j) ∝

∫ +∞

0

f(yk|t? = s, q? = j)ft?,q?(s, j)ds,

f ?
k (s) ∝

N−1∑
j=1

f(yk|t? = s, q? = j)ft?,q?(s, j),

where the normalization factor is given by (4.27).

Proof: The result is obtained by marginalization of (4.26). ¤

Of course, this problem is strictly related to the discrete state estimation
problem. Indeed, the above quantities may also be computed in terms of
the distribution pt|k. In practice, though, both problems depend on the
computation of the (4.28). In this sense, they may be considered equivalent.

4.9 Discussion

In this chapter we have introduced the state estimation problem for jump
Markov linear systems with continuous dynamics and sampled measure-
ments. The problem has been studied in full generality and the theoretical
properties of the optimal solution have been discussed. Also, a recursive
solution of filtering and prediction at measurement time instants has been
illustrated. The simple scenario of a single Markovian switch has been inves-
tigated in more depth. The general results have been particularized to this
case. Moreover, a specific estimation problem, referred to as fault detection,
has been solved. The substantial equivalence of fault detection and discrete
state estimation has been pointed out.

From an analytic point of view, it is clear how the optimal state esti-
mates should be computed. This is especially evident in the case of a single
switch model, thanks to a very convenient characterization of the discrete
trajectories q(t). On a practical ground, however, several issues need to be
addressed. First of all, most of the random variables into play are distributed
according a continuous mixture of Gaussian densities. In general, this kind
of distribution is intractable, unless some approximations are introduced.
The second question to address is how to carry out integrations. Explicit
solutions are not conceivable, let apart certain trivial instances. Thus one
has to resort to numerical quadrature. Moreover, when the solution has to
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be computed online, elementary methods such as a priori gridding are prone
to fail, since the functions to be integrated are data-dependent. Therefore,
using adaptive numerical strategies is almost mandatory. To do this, one fun-
damental requirement is that the integrand terms be in explicit form w.r.t.
the integration variable. Finally, in order to make the solution practicable,
the computational complexity of the estimators should be of low polynomial
order. Needless to say, further approximations are required to achieve this.

Valuable answers to these issues may be given for the fault detection
problem. This will be done in Chapter 5, where an online algorithm for the
solution of the state estimation problem is derived. The theoretical tools of
Chapter 3 will be used.



Chapter 5

Fault detection algorithms

State estimation procedures for sampled switching systems are studied in
depth. We first discuss numerical issues arising in the implementation of
the estimators, and establish the basic requirements that the implementa-
tion must fulfill. Hence, the problem of conditioned Kalman filtering on
the sampled model is reduced to parametric discrete-time filtering over an
equivalent discrete-time model. The results of Chapter 3 are then applied to
make the dependency of the filter on the parameters explicit. This is used
to formulate numerical estimation procedures of arbitrary accuracy and rea-
sonable complexity. Linear complexity approximations are proposed based
on a limited-memory approximation. Numerical results are illustrated.

5.1 Introduction

By the results of Chapter 4, it is quite clear that the problem of fault detection
given data yk may be reduced to the computation of integrals such as

∫
gk(s, j, y

k)ft?,q?(s, j)ds, (5.1)

where the values taken by t? and q?, namely s and j, play the role of the
fixed trajectory q̃ and enter gk only through

x̂s,j
`+1|` = ξ̂ q̃

t`+1|`
P s,j

`+1|` = Σq̃
t`+1|`

(5.2)

with ` = 0, . . . , k − 1. For the time being, equation (5.2) is a mere change
of notation. For any fixed values of s and j, quantities x̂s,j

`+1|` and P s,j
`+1|` may
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be computed iteratively in the index `. This amounts to apply the Kalman
filter of Proposition 4.1 to the system (4.25).

We are now concerned with the online calculation of (5.1) for increas-
ing values of the index k. Since the closed-form solution is in general not
known, it is necessary to resort to some numerical quadrature method, i.e.
an approximation such as

∫
gk(s, j, y

k)ft?,q?(s, j)ds '
L∑

l=0

ak
l gk(s

k
l , j, y

k)ft?,q?(sk
l , j), (5.3)

where the sampling points sk
l and the weights ak

l depend on the method used.

If the sample points are independent of k, i.e. {sk
l } ≡ {s̄l}, the compu-

tation of gk(j, s̄l, y
k) for increasing values of k is immediate: for every l, one

only needs to update the conditioned estimates x̂s̄l,j
k|k−1 and P s̄l,j

k|k−1. This leads
to a very fast recursive integration strategy. Unfortunately, fixing the sam-
pling grid {s̄l} yields very poor approximations, unless a very large number
of samples L is used.

More effective approximations may be obtained by the use of adaptive
techniques. That is, for any index k, the initial choice of {sk

l } should be
refined driven by the actual form of the integrand of (5.1). In principle,
this allows to achieve better approximations with fewer samples. However,
sampling becomes data-dependent, i.e. {sk

l } = {sk
l (y

k)}. As a consequence,
in general,

{sk+1
l (yk+1)} 6= {sk

l (y
k)}.

In this case, for s = sk+1
l , quantities x̂s,j

k|k−1 and P s,j
k|k−1 are not available

from the previous step. Hence, computing x̂s,j
k+1|k and P s,j

k+1|k at s = sk+1
l ,

l = 1, . . . , L requires starting L “new” Kalman filters and running them up
to step k+1. This is to say, the evaluation of gk at sample points is no longer
recursive.

The gap between adaptive quadrature and recursive Kalman filtering may
be overcome by rearranging the computation of (5.2). Assume we are given
two parametric functions ψ, φ such that

x̂s,j
`+1|` = ψ{Ξ`(j, y

`), s},
P s,j

`+1|` = φ{Θ`(j), s}, (5.4a)

where Ξ` and Θ` are vectors of parameters independent of s. Assume that
the update of these parameters is independent of s. That is, for suitable
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transition functions Ψ` and Φ`,

Ξ`+1 = Ψ`{Ξ`, j, y
`},

Θ`+1 = Φ`{Θ`, j}. (5.4b)

In this case, at any step k, the evaluation of gk, i.e. of x̂s,j
`+1|` and P s,j

`+1|`,
` = 0, . . . , k − 1, at an arbitrary sampling point sl amounts to substituting
s = sl and the parameters Ξ` and Θ` in the expressions of ψ and φ. On the
other hand, the computation of x̂s,j

k+1|k and P s,j
k+1|k from x̂s,j

k|k−1 and P s,j
k|k−1 is

replaced by the computation of the parameters Ξk+1 and Θk+1 from Ξk and
Θk. In simple words, the recursive part is “split away” from the evaluation
part: instead of updating the expressions (5.2) at fixed values of t?, “the
whole functions” are updated. As a consequence, any approximation of the
form (5.3) shall just require the recursive update of Ξk and Θk.

In the next sections, we will show that expressions similar to (5.4a) may
indeed be derived, along with the update formulas (5.4b). To do this, we
will apply the tools of Chapter 3 to a suitable discretization of system (4.25).
Hence, we will build algorithms for the adaptive numerical solution of fault
detection as well as of continuous state filtering and prediction at measure-
ment instants. With the online implementation in mind, one section will be
devoted to suboptimal algorithms of lower computational complexity. Fi-
nally, we will illustrate numerical results showing the effectiveness of our
method.

5.2 Parametric discretization

Let the values of t? and q? be fixed. For any k ∈ N0, define the sampled state

xk , ξ(tk). (5.5)

For k ∈ N0, consider the model
{

xk+1 = Ak(t
?, q?) xk + uk

yk = Ck(t
?, q?) xk + Dk(t

?, q?) vk
. (5.6)

We wish to choose the parameters Ak(t
?, q?), Ck(t

?, q?), Dk(t
?, q?) and the

joint statistics of x0, {uk}, {vk} that make the discrete-time system (5.6)
equivalent to the sampled measurement system (4.25) at the sample times
T = {tk}. Precisely, we want to guarantee that the joint statistics of {yk}
and {xk} be the same as the joint statistics of {yk} and {ξ(tk)}.

In the rest of the section, we will make the following assumption.
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Assumption 5.1 The spectra of Fj and of −Fj are disjoint, ∀j ∈ Q.

Let us introduce a couple of preliminary results. The first is a classical result
in the theory of the Lijapunov equations.

Lemma 5.1 ([8], pp. 203–204) For any j ∈ Q, the equation

FjJj + JjF
T
j = −GjG

T
j (5.7)

admits a unique (symmetric) solution in Jj ∈ Rn×n.

Next, for arbitrary values a, b ∈ R and j ∈ Q, consider

Q ,
∫ b

a

eFj(b−s)GjG
T
j eF T

j (b−s)ds. (5.8)

Integrals like (5.8) arise in the computation of the statistics of uk.

Lemma 5.2 It holds that

Q = Jj − eFj(b−a)Jje
F T

j (b−a)

where Jj ∈ Rn×n is the solution of FjJj + JjF
T
j = −GjG

T
j .

Proof: For conciseness, let us drop the subscript indexes. First observe that
Assumption 5.1 implies the invertibility of F . Also notice that F and eFt

commute for any t ∈ R, and so do their transposed. Integration by parts
of Q – reading eF (b−s)G as derivative of −F−1eF (b−s)G and GT eF T (b−s) as
primitive of −GT eF T (b−s)F T – followed by left multiplication by F yields

FQ = −(GGT − eF (b−a)GGT eF T (b−a))−QF T .

By Lemma 5.1, this equation admits a unique solution in Q. By linearity, it
must be Q = J + J̄ , where J and J̄ are the unique solutions of

FJ + JF T = −GGT ,

F J̄ + J̄F T = eF (b−a)GGT eF T (b−a).

The latter equation may be rewritten as

F (−e−F (b−a)J̄e−F T (b−a)) + (−e−F (b−a)J̄e−F T (b−a))F T = −GGT ,

which is identical to the equation for J . Thus, it must hold that

−e−F (b−a)J̄e−F T (b−a) = J.
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Solving for J̄ and substituting the result into the expression of Q yields

Q = J + J̄ = J − eF (b−a)JeF T (b−a),

and the assertion is proven. ¤

For any k ∈ N0 and any j ∈ Q, define

Âk,j , eFj(tk+1−tk),

Ãk(t
?, j) ,

{
eF0(t?−tk), j = 0,
eFj(tk+1−t?), j = 1, . . . , N − 1,

,

Q̃k(t
?, j) , Jj − Ãk(t

?, j)JjÃ
T
k (t?, j),

where Jj is the unique solution of equation (5.7).

Proposition 5.1 Assume that t? ∈ (th, th+1), th, th+1 ∈ T , for some h ∈ N0.
The following definition of the parameters Ak(t

?, q?), Ck(t
?, q?), Dk(t

?, q?)
and of x0, {uk}, {vk} guarantees the equivalence of systems (4.25) and (5.6)
at the sample times T :

• {uk} and {vk} are white processes, mutually independent and indepen-
dent of x0, with x0 ∼ N (x̂0, P0), vk ∼ N (0, I) and uk ∼ N (0, Qk(t

?, q?)),
where x̂0 , ξ̂0 and P0 , Σ0;

• For k < h,

Ak(t
?, q?) = Âk,0 Qk(t

?, q?) = J0 − Âk,0 J0 ÂT
k,0

Ck(t
?, q?) = H0 Dk(t

?, q?) = K0 ;

• For k > h,

Ak(t
?, q?) = Âk,q? Qk(t

?, q?) = Jq? − Âk,q? Jq? ÂT
k,q?

Ck(t
?, q?) = Hq? Dk(t

?, q?) = Kq? ;

• For k = h,

Ak(t
?, q?) = Ãk(t

?, q?)Ãk(t
?, 0)

Qk(t
?, q?) = Ãk(t

?, q?)Q̃k(t
?, 0)Ãk(t

?, q?) + Q̃k(t
?, q?)

Ck(t
?, q?) = H0

Dk(t
?, q?) = K0.
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Proof: The choice of the joint description of x0 and {vk} is obvious. The
definition of parameters Ck and Dk is also immediate: indeed,

(Ck, Dk)(t
?, q?) =

{
(H0, K0), t? > tk
(Hq? , Kq?), t? < tk

,

where t? > tk if h ≥ k and t? < tk if h < k. Finding the parameters {Ak}
and the description of {uk} amounts to solving the dynamics of the original
system over the interval Tk , (tk, tk+1), for every index k ∈ N0. If k 6= h, i.e.
t? /∈ Tk, Fq(t) and Gq(t) are constant over Tk, hence

ξ(tk+1) = eFj(tk+1−tk)ξ(tk) + uk,

uk ,
∫ tk+1

tk

eFj(tk+1−s)Gjw(s)ds,

where j is equal to 0 or q? according to whether k < h or k > h, i.e. t? > tk+1

or t? < tk. As uk is a linear function of w(s), it is zero-mean Gaussian with
variance Qk(t

?, q?) given by

E[uku
T
k ] =

∫ ∫

Tk×Tk

E[w(s)w(s′)]eFj(tk+1−s)GjG
T
j eF T

j (tk+1−s′)dsds′

=

∫ ∫

Tk×Tk

δ(s− s′)eFj(tk+1−s)GjG
T
j eF T

j (tk+1−s′)dsds′

=

∫

Tk

eFj(tk+1−s)GjG
T
j eF T

j (tk+1−s)ds

= Jj − eFj(tk+1−tk)Jje
F T

j (tk+1−tk),

where Lemma 5.2 has been applied and j is defined as above. If instead
k = h, i.e. t? ∈ Tk, then Fq(t) and Gq(t) are piecewise constant:

(Fq(t), Gq(t)) =

{
(F0, G0), t ∈ (tk, t

?)
(Fq? , Gq?), t ∈ (t?, tk+1)

.

Discretization over (tk, t
?) yields

ξ(t?) = eF0(t?−tk)ξ(tk) + uk,0,

uk,0 ,
∫ t?

tk

eF0(t?−s)G0w(s)ds.

Discretization over (t?, tk+1) yields

ξ(tk+1) = eFq? (tk+1−t?)ξ(t?) + uk,q? = eFq? (tk+1−t?)eF0(t?−tk)ξ(tk) + uk
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with uk , eFq? (tk+1−t?)uk,0 + uk,q? and

uk,q? ,
∫ tk+1

t?
eFq? (tk+1−s)Gq?w(s)ds.

Again, uk,0 and uk,q? are both zero-mean Gaussian. Their variances are

Q̃k(t
?, 0) =

∫ t?

tk

eF0(t?−s)G0G
T
0 eF T

0 (t?−s)ds = J0 − eF0(t?−tk)J0e
F T

0 (t?−tk),

Q̃k(t
?, q?) =

∫ tk+1

t?
eFq? (tk+1−s)Gq?GT

q?e
F T

q? (tk+1−s)ds

= Jq? − eFq? (tk+1−t?)Jq?eF T
q? (tk+1−t?),

in the order, where again Lemma 5.2 has been applied. Moreover, as they
depend on disjoint portions of w(t) and w(t) is white, variables uk,0 and uk,q?

are mutually independent. Then uk is zero mean Gaussian with variance

Qk(t
?, q?) = eFq? (tk+1−t?)Q̃k(t

?, 0)eF T
q? (tk+1−t?) + Q̃k(t

?, q?).

Finally, since w(·) is independent x0 and {vk}, and {uk} is a linear transfor-
mation of w(·), {uk} is also independent of x0 and {vk}. ¤

Therefore, for every value of q?, all the parameters of system (5.6), namely

(Ak, Qk, Ck, Dk)(t
?, q?) (5.9)

may be written in the form of explicit functions of t?, with

t? ∈
⋃

h∈N0

(th, th+1).

In particular, they depend on t? only through simple matrix exponentials.
For simplicity, values of t? in T are not considered in the proposition. This
constitutes no loss of generality: because t? is a continuous random variable,

P[t? ∈ T ] = 0.

Remark. If Assumption 5.1 fails to hold, equation (5.7) may not have
a solution. It may be shown (see [34], pp. 278–281) that the equation is
satisfied by some Jj if and only if

[
Fj −GjG

T
j

0 −F T
j

]
∼

[
Fj 0
0 −F T

j

]
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where symbol “∼” denotes matrix similarity. If a solution exists, Lemma 5.2
and Proposition 5.1 hold without modifications. If, however, no such Jj ex-
ists, Lemma 5.2 no longer holds. As a consequence, the integration yielding
Qk(t

?, q?) cannot be solved explicitly. ¤

5.3 Conditioned Kalman filtering revisited

We are now interested in conditioned Kalman filtering and prediction at
the sample times T . Based on the discrete-time system (5.6), we wish to
compute, for ` = k, k + 1, explicit expressions for the quantities

x̂t?,q?

`|k , E[x`|yk, t?, q?], (5.10a)

P t?,q?

`|k , Var(x̃`|k|yk, t?, q?), (5.10b)

where x̃`|k is the estimation error x`− x̂`|k. Observe that, by the equivalence
of systems (5.6) and (4.25) at sample times,

x̂t?,q?

`|k = ξ̂ q̃
t`|k,

P t?,q?

`|k = Σq̃
t`|k,

where q̃ is fixed by the values of t? and q?.

Proposition 5.2 For ` = k and ` = k + 1, the conditioned estimate (5.10a)
and the error covariance matrix (5.10b) may be computed iteratively as fol-
lows:

i. Measurement update: compute

x̂t?,q?

k|k = x̂t?,q?

k|k−1 + Lk(t
?, q?)[yk − Ck(t

?, q?)x̂t?,q?

k|k−1], (5.11a)

P t?,q?

k|k = P t?,q?

k|k−1 − Lk(t
?, q?)Ck(t

?, q?)P t?,q?

k|k−1, (5.11b)

with gain matrix Lk(t
?, q?) given by

P t?,q?

k|k−1C
T
k (t?, q?)

[
Dk(t

?, q?)DT
k (t?, q?) + Ck(t

?, q?)P t?,q?

k|k−1C
T
k (t?, q?)

]−1

;

ii. Time update: compute

x̂t?,q?

k+1|k = Ak(t
?, q?)x̂t?,q?

k|k , (5.12a)

P t?,q?

k+1|k = Ak(t
?, q?)P t?,q?

k|k AT
k (t?, q?) + Qk(t

?, q?). (5.12b)
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Iterations are initialized by x̂t?,q?

0|−1 = x̂0 and P t?,q?

0|−1 = P0.

Proof: Apply Proposition 1.1 to the system conditioned on t? and q?. ¤

Consider the values of t? in the interval (th, th+1), th, th+1 ∈ T , for some fixed
index h ∈ N0. It is evident by Proposition 5.1 that, for k 6= h, parameters
(5.9) are constant w.r.t. to t?. It follows that most of the recursion steps
(5.11) and (5.12) do not depend on t? themselves. However, in general, they
update quantities that do depend on t?. Therefore, it may be expected that
a suitable reformulation of the update rules allows to isolate the dependency
on t? out of the recursion. For any k ∈ N0 and ` = k, k + 1, define

x̂∞`|k , x̂+∞,q?

`|k , (5.13a)

P∞
`|k , P+∞,q?

`|k , (5.13b)

where the informal notation “t? = +∞” stands for q(t) ≡ 0.

Corollary 5.1 (i) Expressions (5.13) are independent of q?. They may be
computed by running iteration (5.11)÷(5.12) with parameters

(Ak, Qk, Ck, Dk)(t
?, q?) = (Âk,0, J0 − Âk,0J0Â

T
k,0, H0, K0).

(ii) If t? > th, h ∈ N0, th ∈ T , then for any k ≤ h it holds that

x̂t?,q?

k|k−1 = x̂∞k|k−1, x̂t?,q?

k|k = x̂∞k|k,

P t?,q?

k|k−1 = P∞
k|k−1, P t?,q?

k|k = P∞
k|k.

In particular, the above quantities are independent of t?.

Proof: (i) Just notice that the results of Proposition 5.1 for the case k < h
equally hold for any trajectory q(t) such that q(t) = 0, t ∈ (tk, tk+1). (ii) By
(i), right-hand side and left-hand side quantities obey the same recursion in
k up to index k = h. ¤

Thus, over the time intervals before t?, the recursion is completely indepen-
dent of t?, the system being conditioned on the trajectory q(t) ≡ 0.

Corollary 5.2 If t? ∈ (th, th+1), h ∈ N0, th, th+1 ∈ T , then it holds that

x̂t?,q?

h+1|h = Ah(t
?, q?)x̂∞h|h,

P t?,q?

h+1|h = Ah(t
?, q?)P∞

h|hA
T
h (t?, q?) + Qh(t

?, q?),
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with
Ah(t

?, q?) = Ãh(t
?, q?)Ãh(t

?, 0),

Qh(t
?, q?) = Ãh(t

?, q?)Q̃h(t
?, 0)Ãh(t

?, q?) + Q̃h(t
?, q?).

Proof: For k = h, substitute the results of Corollary 5.1 and Proposition 5.1
into equations (5.12). ¤

The time update step of index k = h is where the value of t? comes into play
in the recursion (5.11)÷(5.12). Let us now apply the results of Chapter 3 to
the recursion starting at index k = h + 1 with initial state given by x̂t?,q?

h+1|h
and P t?,q?

h+1|h.

Corollary 5.3 If t? ∈ (th, th+1), h ∈ N0, th, th+1 ∈ T , then, for k ≥ h + 1,

x̂t?,q?

k|k = x̂¦k|k + A−1
k Uk(I + SkP

t?,q?

h+1|h)
−T (x̂t?,q?

h+1|h + P t?,q?

h+1|hMk), (5.14a)

P t?,q?

k|k = P ¦
k|k + A−1

k Uk(I + SkP
t?,q?

h+1|h)
−T P t?,q?

h+1|hU
T
k A−T

k , (5.14b)

and

x̂t?,q?

k+1|k = x̂¦k+1|k + Uk(I + SkP
t?,q?

h+1|h)
−T (x̂t?,q?

h+1|h + P t?,q?

h+1|hMk), (5.15a)

P t?,q?

k+1|k = P ¦
k+1|k + Uk(I + SkP

t?,q?

h+1|h)
−T P t?,q?

h+1|hU
T
k . (5.15b)

Quantities Uk, Sk, Mk, x̂¦ and P ¦ obey the usual iterations, provided the
initializations Uh = I, Sh = 0, Mh = 0, x̂¦h+1,h = 0, P ¦

h+1,h = 0 and M̃h = 0.

Proof: Note that f(xh+1|yh, t?, q?) = N (x̂t?,q?

h+1|h, P
t?,q?

h+1|h). Then, for k ≥ h+1,
the results of Propositions 3.1÷ 3.2 and Corollary 3.2 may be applied to sys-
tem (5.6) with time origin k = h + 1 conditioned on t?, q? and on yh. ¤

For any k ≥ h + 1, these equations make the dependency on t? of estimates
(5.10) explicit. Observe that parameters Uk, Sk, Mk, x̂¦ and P ¦ do not
depend on t?. However, they depend on h through the initialization, and on
q?. Where necessary, we will write Uk(h, q?), Sk(h, q?), Mk(h, q?), x̂¦(h, q?)
and P ¦(h, q?).

So far, we have given formulas for the computation of the functions (5.10)
by fixing the value of t? within intervals. Let us now fix index k. Assume
that the quantities Uk(h, q?), Sk(h, q?), Mk(h, q?), x̂¦`|k(h, q?), P ¦

`|k(h, q?), with
` = k, k + 1 and x̂∞`|h, P∞

`|h, with ` = h, h + 1, are available for h = 0, . . . , k.
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For changing values of t?, estimates (5.10), ` = k, k + 1 may be evaluated
piecewise according to the partitioning

(t0, t1), . . . , (th, th+1), . . . , (tk, tk+1), (tk+1, +∞). (5.16)

Specifically, Corollary 5.3 and Corollary 5.2 provide evaluation formulas for
t? ∈ (th, th+1), with h ≤ k, whereas Corollary 5.1 accounts for t? ≥ tk+1.

5.4 Implementation

All the quantities required in the evaluation of x̂t?,q?

`|k and P t?,q?

`|k may be com-
puted iteratively in the index k. Algorithm 5.1 outlines an implementation of
the method. The procedure is identical for every q? ∈ Q\{0}. For shortness,
we dropped q? from the notation. At step k, the measurement update yields
all the parameters needed to evaluate x̂t?,q?

k|k and P t?,q?

k|k for almost every value
of t?. Similarly, the time update provides all parameters for the evaluation
of x̂t?,q?

k+1|k and P t?,q?

k+1|k. The update formulas are those given in the previous
sections. They require the computation of the discrete-time system parame-
ters. In principle, these may be computed offline except for Ãk and Q̃k – see
Proposition 5.1 – whose values depend on t?. Matrix Jj needs to be com-
puted for every j ∈ Q before execution. In practice, this is done by standard
numerical techniques which solve equation (5.7) via Schur transformation of
matrices Fj and F T

j [5].

Remark. Parameters Sk, Uk and P ¦
`|k, P∞

`|k, ` = k, k + 1, do not depend

on data yk. Therefore, they may also be computed offline. If, for a certain
T > 0 and every k ∈ N0, tk+1 − tk = T , with tk, tk+1 ∈ T , then

Sk(h, q?) = Sk−h(0, q
?),

Uk(h, q?) = Uk−h(0, q
?),

P ¦
`|k(h, q?) = P ¦

`−h|k−h(0, q
?).

In this case, it suffices to compute Sk, Uk and P ¦
`|k for h = 0. ¤

Consider Proposition 4.2. For ` = 0, . . . , k, the following function may
also be evaluated piecewise:

f(y`|y`−1, t?, q?) = N (Hjx̂
t?,q?

`|`−1, HjΣ
t?,q?

`|`−1H
T
j + KjK

T
j ), (5.17)
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Algorithm 5.1 Conditioned estimation algorithm

{Initialization}
set x̂∞0|−1 = µ0

set P∞
0|−1 = P0

k ⇐ 0

loop {Iterations}

{Measurement update}
for h = 0, . . . , k − 1 do

compute





x̂¦k|k(h)
P ¦

k|k(h)
Uk(h)
Sk(h)
M̃k(h)
Mk(h)

from





x̂¦k|k−1(h) P ¦
k|k−1(h)

P ¦
k|k−1(h)

Uk−1(h)
Sk−1(h) Uk−1(h) P ¦

k|k−1(h)

M̃k−1(h) P ¦
k|k−1(h)

Mk−1(h) M̃k−1(h) Uk−1(h) P ¦
k|k−1(h)

end for
compute x̂∞k|k from x̂∞k|k−1, P∞

k|k−1
compute P∞

k|k from P∞
k|k−1

{Time update}
for h = 0, . . . , k − 1 do

compute x̂¦k+1|k(h) from x̂¦k|k(h)
compute P ¦

k+1|k(h) from P ¦
k|k(h)

end for
compute x̂∞k+1|k from x̂∞k|k
compute P∞

k+1|k from P∞
k|k

{Initialization of the next step}

set





x̂¦k+1|k(k)
P ¦

k+1|k(k)
Uk(k)
Sk(k)
M̃k(k)
Mk(k)

=





0
0
I
0
0
0

k ⇐ k + 1

end loop
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where j = 0 or j = q? according to whether t? > tk+1 or t? < tk+1. Hence,

f(yk|t?, q?) =
k∏

`=0

f(y`|y`−1, t?, q?).

Therefore, all the quantities involved in the state estimation problem are
expressed in the form of piecewise explicit functions of t?.

For ξ = ξ(t`) = x` and convenient functions g and z, the solution to the
state estimation problem given in Propositions 4.5÷4.6 may be reduced to
integrals such as

∫ +∞

0

g(x̂t?,q?

`|k , P t?,q?

`|k )f(yk|t?, q?)z(t?)dt?. (5.18)

In particular, integral
∫ +∞

0

x̂t?,q?

`|k f(yk|t?, q?)f(t?, q?)dt?,

involved in the computation of ξ̂t`|k, is found by setting g(x̂t?,q?

`|k , P t?,q?

`|k ) =

x̂t?,q?

`|k and z(t?) = f(t?, q?). Similarly, in the computation of

t̂?k ∝
∑
q?

∫
t?f(yk|t?, q?)f(t?, q?)dt?,

one just needs to set g ≡ 1 and z(t?) = t?f(t?, q?). Along the same lines,
integrals for the computation of f(yk), pt|k and Σt`|k are easily recovered.
Integration over a finite interval is obtained by using an indicator function
in the definition of z(t?). Define

f∞(y`|y`−1) , N (H0x̂
∞
`|k, H0P

∞
`|kH

T
0 + K0K

T
0 ).

Proposition 5.3 Let g be a function of x̂t?,q?

`|k and P t?,q?

`|k , with ` = k or k+1,

and let z be a function of t? having primitive Z. Then, integral (5.18) may
be computed as follows:

k∑

h=0

VhIh + g(x̂∞`|k, P
∞
`|k)Vk(Z(+∞)−Z(tk+1)) (5.19)

where

Vh ,
h∏

l=0

f∞(yl|yl−1),

Ih ,
∫ th+1

th

g(x̂t?,q?

`|k , P t?,q?

`|k )
k∏

l=h+1

f(yl|yl−1, t?, q?)z(t?)dt?.
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Proof: The result is obtained by partitioning the integral according to (5.16)
and recalling the independence of x̂t?,q?

`|k and P t?,q?

`|k from t? for t? ≥ tk+1. ¤

Using Proposition 5.3, we can exploit the properties of Algorithm 5.1 for the
numerical solution of the estimation problems. Every integration appearing
in (5.19) is over an interval of type (th, th+1), with th, th+1 ∈ T . It may
be evaluated by any quadrature method using the parametric expressions of
x̂t?,q?

`|k and P t?,q?

`|k with parameters fixed by index h. Infinite support integra-
tions are avoided by the use of estimates x̂∞`|k, P∞

`|k and direct evaluation of

Z(t`). Incidentally, the primitive of the functions of our interest, namely
z(t?) = (t?)df(t?, q?) with d ∈ N0, is

Z(t?) = −d!
λq?

Λd+1

d∑

l=0

(Λt?)d−l

(d− l)!
e−Λt? ,

for which Z(+∞) = 0.

5.5 Low-complexity approximations

According to Proposition 5.3, the computation of integral (5.18) requires
approximating O(k) finite-support integrals, each involving the evaluation of
O(k) factors depending on t?. Therefore, the computational demand grows
rather fast with index k. In certain situations, however, estimates (5.10)
become practically independent of the remote values of t?. In this case, the
computation of (5.18) may be largely simplified.

Proposition 5.4 Assume that tk+1 − tk = T , ∃T > 0, for any tk, tk+1 ∈ T .
(i) The system

(Âk,j, Jj − Âk,jJjÂ
T
k,j, Hj, Kj) (5.20)

is time-invariant. (ii) If system (5.20) is controllable and detectable, then,
for any fixed t?,

x̂t?,j
`|k

k−→ x̂0,j
`|k, (5.21a)

P t?,j
`|k

k−→ P 0,j
`|k . (5.21b)

Proof: (i) The result follows by the definition of the parameters. (ii) (Sketch)
Assume w.l.o.g. that t? < th+1 for some index h. For k > h, system (5.6)
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is time-invariant with parameters (A,Q, C, D) given by (5.20). Consider
` = k + 1. Controllability and detectability of (A,Q, C, D) guarantee that

P t?,j
k+1|k

k−→ P ,

regardless of the initial value P t?,j
h+1|h [52], that is, regardless of the value of

t?. This proves (5.21b). Moreover, P is stabilizing, i.e. the predictor state
evolution matrix A(I − LC), with

L = PCT (CPCT + DDT )−1,

is strictly stable. Denote with x̂ss
k+1|k the steady-state predictor associated to

the constant gain L. Then [52],

x̂t?,j
k+1|k

k−→ x̂ss
k+1|k

regardless of the initial condition x̂t?,j
h+1|h, that is, regardless of the value of t?.

Convergence (5.21a) follows. ¤

In the light of (5.21a) and (5.21b), for t? ∈ (th, th+1) and k ≥ h + d, d ∈ N,
it is reasonable to consider the approximation

(x̂t?,j
`|k , P t?,j

`|k ) ' (x̂0,j
`|k, P

0,j
`|k ). (5.22)

Index d plays the role of a “forgetting time” and is chosen based on the
properties of system (5.20). As a consequence, for l > h + d, we get the
approximation

f(yl|yl−1, t?, q?) ' f 0,q?

(yl|yl−1), (5.23)

where
f 0,q?

(yl|yl−1) , N (Hq?x̂0,q?

l|l−1, Hq?P 0,q?

l|l−1H
T
q? + Kq?KT

q?).

Corollary 5.4 Assume that (5.22) holds with equality. Then, for k ≥ d,
integral (5.18) is given by

g(x̂0,q?

`|k , P 0,q?

`|k )Sk +
k∑

h=k−d+1

VhIh + g(x̂∞`|k, P
∞
`|k)Vk(Z(+∞)−Z(tk+1)) (5.24)

where Sk is computed iteratively as follows:

Sk = f 0,q?

(yk|yk−1)Sk−1 + Vk−dĨk,
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with

Ĩk =

∫ tk−d+1

tk−d

k∏

l=k−d+1

f(yl|yl−1, t?, q?)z(t?)dt?.

Iterations are initialized by Sd−1 , 0.

Proof: For k ≥ d, it holds that g(x̂t?,q?

`|k , P t?,q?

`|k ) = g(x̂0,q?

`|k , P 0,q?

`|k ). Hence, the

summation in (5.19) may be written as

g(x̂0,q?

`|k , P 0,q?

`|k )Sk +
k∑

h=k−d+1

VhIh

with

Sk ,
k−d∑

h=0

Vh

∫ th+1

th

k∏

l=h+1

f(yl|yl−1, t?, q?)z(t?)dt?.

Observe that, for t? ∈ (th, th+1) and h = 0, . . . , k − d − 1, (5.23) holds for
l = k. Then, for any k > d,

Sk =
k−d−1∑

h=0

Vh

∫ th+1

th

f 0,q?

(yk|yk−1)
k−1∏

l=h+1

f(yl|yl−1, t?, q?)z(t?)dt? +

Vk−d

∫ tk−d+1

tk−d

k∏

l=k−d+1

f(yl|yl−1, t?, q?)z(t?)dt?

= f 0,q?

(yk|yk−1)Sk−1 + Vk−dĨk.

Finally, for k = d,

Sd = V0Ĩd = V0Ĩd + f 0,q?

(yd|yd−1)Sd−1,

provided Sd−1 , 0. ¤

The result is identical for every q? ∈ Q \ {0}. In this case, at step k, inte-
gration (5.18) only requires the computation of O(d) finite-support integrals,
each involving the evaluation of O(d) factors depending on t?. In partic-
ular, x̂t?q?

l,l−1 and P t?q?

l,l−1 only need to be evaluated for h = k − d + 1, . . . , k

and l = h + 1, . . . , k, with t? ∈ (th, th+1). Similarly, x̂t?q?

`,k and P t?q?

`,k only
need to be evaluated for h = k − d + 1, . . . , k. Therefore, parameters Ul,
Sl, Ml, x̂¦l,l−1, and P ¦

l,l−1 only need to be available for h = k − d + 1, . . . , k
and l = h + 1, . . . , k, whereas x̂¦`,k and P ¦

`,k only need to be available for
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h = k − d + 1, . . . , k. In practice, a modification of Algorithm 5.1 of O(d)
complexity may be implemented for their computation and storage. Finally,
Vh may be computed by the recursion

Vh = f∞(yh|yh−1)Vh−1,

for h ≥ 0, with V−1 , 1. At step k, it needs to be available for h = k−d, . . . , k
only. The new procedure for the computation of integral (5.18) is summarized
in Algorithm 5.2. The overall complexity is of O(d) in both memory and
computations.

Remark. The assumption that (5.22) hold with equality is never satisfied.
However, the approximation of (5.18) provided by Corollary 5.4 can be made
arbitrarily good by choosing a sufficiently large value for d, at the expense
of an increase in computational effort. As a last note, Corollary 5.4 is of
practical use whenever (5.22) is a reasonable approximation. In this sense,
the assumptions of Proposition 5.4 are not strictly necessary. ¤

5.6 Numerical results

In this section we will show numerical results for a specific example of single
switch system. We will pursue a qualitative analysis of the estimation of
both the switching time and the state of the system at the sample times tk.
In particular, we are interested in the probability distribution of the current
discrete state, i.e. ptk|k, and in the minimum-mean-squared-error estimates

of t?, that is t̂?k, and of the continuous state ξtk , that is ξ̂tk|k. This amounts
to running Algorithm 5.1 and to carry out a numerical evaluation of the
estimates, in accordance with the results of Section 5.4.

Let Q = {0, 1, 2}. Consider the system (4.1) with tk , k · T , T = 0.5,
and parameters ξ̂0 = 0, Σ0 = 0.1 · I. We chose all 4-tuples (Fq, Gq, Hq, Kq)
to be ([−0.4 0.6

cq −0.5

]
,

[
0.2 0.1
0.1 0.2

]
,

[
1 0
0 1

]
,

[
0.1 0
0 0.1

])

where c0 = 0, c1 = 1, c2 = −2. That is, only the state evolution matrix
changes with q. This modifies the character of the continuous-time system
from stable (q = 0, stable node) to unstable (q = 1, saddle) or oscillatory (q =
2, stable focus), according to the different spectra σ(F0) = {−0.4,−0.5},
σ(F1) = {−1.22, 0.32}, σ(F2) = {−0.45± i 1.09}. In this setting y is simply
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Algorithm 5.2 Approximate estimation

{Initialization}
set V−1 = 1
set x̂0,q?

0|−1 = x̂0

set P 0,q?

0|−1 = P0

for k = 0, . . . d− 1 do

compute





f∞(yk|yk−1)
Vk

x̂0,q?

k|k
P 0,q?

k|k
x̂0,q?

k+1|k
P 0,q?

k+1|k

from





x̂∞k|k−1 P∞
k|k−1

Vk−1 f∞(yk|yk−1)
x̂0,q?

k|k−1 P 0,q?

k|k−1

P 0,q?

k|k−1

x̂0,q?

k|k
P 0,q?

k|k
for h = 0, . . . , k do

approximate Ih

end for
compute (5.19) {Integral}

end for

set Sd−1 = 0
k ⇐ d

{Iterations}
loop

compute





f∞(yk|yk−1)
Vk

x̂0,q?

k|k
P 0,q?

k|k
x̂0,q?

k+1|k
P 0,q?

k+1|k

from





x̂∞k|k−1 P∞
k|k−1

Vk−1 f∞(yk|yk−1)
x̂0,q?

k|k−1 P 0,q?

k|k−1

P 0,q?

k|k−1

x̂0,q?

k|k
P 0,q?

k|k
for h = k − d + 1, . . . , k do

approximate Ih

end for
compute f0,q?

(yk|yk−1) from x̂0,q?

k|k−1 and P 0,q?

k|k−1

approximate Ĩk

compute Sk from f0,q?
(yk|yk−1), Sk−1, Vk−d and Ĩk

compute 5.24 {Approximate integral}

k ⇐ k + 1

end loop
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a noisy version of the state x. The Markov chain underlying the evolution
of q(t) is assumed to have generator of the form (4.18). The chain is set to
start from q(0) = 0 with probability one, i.e. p0 = 1. Switching intensities
are fixed to λ1 = 0.06, λ2 = 0.08. With this choice, P[q? = 1] ' 0.43,
P[q? = 2] ' 0.57, i.e. jumps towards q = 2 are privileged. Moreover, the a
priori expected switching time is E[t?] ' 7.14.

In the simulations, we started off the system from ξ(0) = 0. We then
randomly generated ξ and y up to time kmax · T , with kmax = 30, for a jump
of q(t) occurring at time t̄? = 5.25, i.e. significantly before the expected value
of t?. We considered both q̄? = 1 and q̄? = 2 as final discrete state. Note
that the values assumed by t? (i.e. t̄?) and q? (i.e. q̄? = 1 and q̄? = 2, in
turn) have been chosen manually by the programmer, i.e. they have not been
simulated as random variables. This simplifies the analysis and of course does
not affect the validity of our estimation methods. Also notice the exiguity
of measurements, which is precisely the kind of situation for which model
(4.1) is conceived. The procedures of Section 5.4 are then applied to the
data yk, k = 0, . . . , kmax. Approximations of Section 5.5 are not used here.
Numerical integrations are carried out by a standard iterative Simpson’s
adaptive quadrature algorithm [28]. Terminating conditions are chosen so to
guarantee a relative error less than 10−6.

Figures 5.1(a) and 5.1(b) show, for different values of k, the a posteriori
density of t? given yk, for the cases q̄? = 1 and q̄? = 2. The evolution
from the exponential prior to a density roughly concentrated around the
true switching instant may be observed. Notice the exponential tails of the
curves for t? > tk. For q̄? = 1, in particular, the almost indistinguishability
of the curves associated to k = 18 and k = 24 reflects the fast convergence
of f(t?|yk) to an almost invariant density.

The evolution of the conditioned expectation of t? and of the conditioned
probability distribution of q(tk) given yk are reported in Figure 5.2(a) and
Figure 5.2(b), for q̄? = 1 and q̄? = 2. One may note that, even before the
switch happens, ptk|k(0) adjusts to values that are significantly smaller than
the prior probability p0(0) = 1. This fact reveals that certain fluctuations of
the state due to the input noise u may also be explained in terms of a mode
switch, and is accompanied by an increase in ptk|k(1) and ptk|k(2). Typically,
the latter grows faster than the former, since λ2 > λ1. For q̄? = 1, where the
initial fluctuations of ptk|k(1) are rather limited, t̂?k grows in a quasi-linear
fashion. This is primarily due to the memoryless nature of (unconditioned)
random variable t?, and may be explained as follows. Under the condition
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Figure 5.1: Density functions f(t?|yk) plotted for k = 0, 8, 16 and 24. Actual
switch time: t̄? = 5.25 (dash-dotted line).
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Figure 5.2: Evolution of the estimate t̂?k (above) and of the distribution ptk|k
(below; left bar: ptk|k(0), center bar: ptk|k(1); right bar: ptk|k(2)). Actual
switch time: t̄? = 5.25 (dash-dotted line).
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that t? > tk,

E[t?|yk, t? > tk] =

∫ +∞

0

t?f(t?|yk, t? > tk)dt? =

∫ +∞

tk

t?Λe−Λ(t?−tk)dt?

= Λ−1 + tk,

where Λ−1 is the a priori expectation of t?. Thus, if condition t? > tk could
be determined with certainty from the data yk, the estimate of t? would just
increase linearly in time, because tk = kT . In general, however, probability
P[t? > tk|yk] = ptk|k(0) is less than one even before the actual switch. Indeed,
the optimal estimate of t? may be written as

E[t?|yk] = (Λ−1 + tk)pk|k(0) + E[t?|yk, t? ≤ tk](1− pk|k(0)).

Moreover, as 0 ≤ E[t?|yk, t? ≤ tk] ≤ tk for all yk, one gets

Λ−1pk|k(0) + tkpk|k(0) ≤ E[t?|yk] ≤ Λ−1pk|k(0) + tk.

This provides bounds on the estimates t̂?k in terms of the a posteriori prob-
ability of a switching event – the larger the value of ptk|k(0), the tighter the
bounds.

After the switch occurs, a small number of measurements suffice to detect
the new discrete state of the system. The estimates of the switch time t? also
converge to the true value t̄? quite closely. However, comparison of the plots
for q̄? = 1 and q̄? = 2 suggests that detecting a switch toward the unstable
mode is “easier” than detecting a switch toward the damped oscillatory one.
This is especially evident in the transient period following the switch. In
fact, contrary to the discrete state value q = 1, both q = 0 and q = 2 give
rise to stable modes, which keep the state of the system close to zero. Thus,
due to the stochastic nature of the system, the first few measurements taken
after t̄? are not sufficient to distinguish mode 0 from mode 2 when q̄? = 2.
On the other hand, they are quite indicative of the new system’s dynamics
when q̄? = 1. In general, the more “different” the modes are, the quicker the
algorithm is to detect the switch.

Plots of the estimates of the continuous state ξ at sample times tk are
finally drawn in Figure 5.3. The optimal estimates ξ̂tk|k are compared with

the true values ξk and with the best estimates x̂t̄?,q̄?

k|k one could produce in case
the switching event were known in advance. In both the cases q̄? = 1 and
q̄? = 2, estimates ξ̂tk|k follow the benchmark x̂t̄?,q̄?

k|k quite accurately, even in

the “transient” between the switch instant and the time when pk|k(q̄?) ' 1,
that is, when the final value of q(t) is determined with almost certainty. This
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Figure 5.3: Evolution of the sampled state ξ(tk) (solid line) and of its es-

timates x̂t̄?,q̄?

k|k (dotted line) and ξ̂tk|k (dashed line). Actual switch time:

t̄? = 5.25 (dash-dotted line).
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is only partially surprising. Indeed, ξ̂tk|k is obtained by computing a weighted

average of x̂t?,q?

k|k . The weighting term, f(t?, q?|yk), is proportional to factors

such as (5.17). In our case, for a fixed matrix H, yk = xk +Hvk, regardless of
the value of q(tk). This suggests that the quality of the state estimate x̂t?,q?

k|k
directly relates with the value of the corresponding weight f(t?, q?|yk): the
better the estimate is, the more relevant it is considered.

5.7 Discussion

We have presented an effective numerical implementation of state estimation
for single-switch sampled stochastic systems. The method we illustrated re-
lies on the characterization of the discrete-state trajectory in terms of the
switch time t? and of the final state q?. The linear system obtained by condi-
tioning on t? and q? has been replaced by an equivalent discrete-time system
with parameters depending on t? and q?. This allowed to operate condi-
tioned Kalman filtering in discrete-time. Using the superposition principle
presented in Chapter 3, we made the dependence on the continuous values of
t? explicit and suited for adaptive numerical integration. Simulations show
numerically accurate results and prove the effectiveness of Bayesian state
estimation for switching systems with sampled measurements.

In terms of numerical complexity, it should be noted that Algorithm 5.1
yields an explicit representation of x̂t?,q?

`|k and P t?,q?

`|k with O(k) parameters

and O(k) operations for each update cycle. If one considers a single-switch
discrete-time system, k + 1 different trajectories qk exist at time k for every
value of the final state q?, one for each possible switch instant k?, 0 ≤ k? ≤ k.
Associated to each value of k? are different conditioned Kalman estimates
x̂k?,q?

`|k , P k?,q?

`|k . Again, at time k, O(k) parameters are required to represent

these estimates, and O(k) operations need be carried out for their update.
Therefore, Algorithm 5.1 computes the parameters for the explicit represen-
tation of the continuous functions x̂t?,q?

`|k and P t?,q?

`|k at the same computational
cost of its discrete-time counterpart.

In Section 5.4, the optimal Bayesian estimators derived in Chapter 4 were
implemented. However, simulations suggest that certain suboptimal approx-
imations may perform nearly as well at a reduced computational cost. This
is the rationale of the suboptimal algorithm 5.2, which was proposed in Sec-
tion 5.5. In the discrete-time setting, the same idea motivates trajectory
merging, see e.g. [10], [55] and the remark in Section 2.4. In more generality,
the information provided by estimates conditioned on different discrete-state
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trajectories may be redundant. Therefore, devising suboptimal approxima-
tions based on a restricted set of trajectories may still yield good estimators
of the continuous-state. On the other hand, discriminating discrete-state tra-
jectories on the basis of similar data statistics is a hard task. This raises the
question of the distinguishability of discrete-state trajectories, which is an
unsolved problem for both discrete-time and sampled systems with Marko-
vian jumps.

The strategy we developed to solve state estimation for single-switch sys-
tems may appear a little peculiar. However, it should be noted that any
switching system may be viewed as a concatenation in time of single-switch
systems, provided the average dwell time in each discrete state is comparable
to the time the system modes take to reach steady-state. In more general-
ity, one may easily adapt the results of Sections 5.2÷5.3 to the case of an
arbitrary – though bounded – number of switches over a finite time interval,
the only requirement being that at most one switch occurs between two sub-
sequent measurements. In most cases, this approximation is expected to be
negligible and may lead to effective suboptimal estimators. In a discrete-time
setting, the idea of considering a maximum number of switches in a finite
number of steps was examined e.g. in [55]. It was shown that a drastic reduc-
tion in complexity may be obtained at a low probability of missing the true
trajectory. Derivation of analogous results and their application to generic
sampled switching systems is part of the aims of our future research.





Chapter 6

Mode estimation by hypothesis
testing

This chapter explores the application of sequential hypothesis testing to the
estimation of the discrete state trajectory of discrete-time switching linear
systems. Although the interest is focused on jump Markov systems, the topic
is discussed in rather general terms. We introduce a sequential rule for se-
lecting a subset of most probable trajectories, and show its equivalence to
a family of sequential likelihood ratio tests. We then focus on two issues.
First, we study the ability of the test to discriminate between different dis-
crete trajectories in connection with the structural properties of the system.
Second, we present very general results on the probability of discarding the
true trajectory and on how to choose the selection parameters so to keep this
probability below a prescribed bound.

6.1 Introduction

In the context of jump Markov linear systems, one important issue is to esti-
mate the whole discrete-state trajectory from a posteriori measurements. A
first glimpse to the issue was given in Chapter 2, where it was shown that
the a posteriori probability p(qk|yk) intervenes in the averaging of the condi-
tioned continuous state estimates. However, the problem is of interest per se,
for at least two reasons: 1) In certain applications such as communication by
randomly generated codes, see for instance [44], the continuous state mea-
surements play the role of a “signature” of the discrete state sequence. The
emphasis here is in recovering the sequence of symbols, less in estimating the



106 6. Mode estimation by hypothesis testing

continuous-state trajectory; 2) It is experimental evidence, see [54] and ref-
erences therein, that the performance in continuous-state and discrete-state
estimation are not “commensurable”. This is to say, situations exist where
producing a good estimate of the continuous state is far more difficult than
detecting the discrete state trajectory, or conversely, to the point that one
of the two solutions may not have practical meaning. In this sense, the two
problems should be regarded as different.

Given the switching model (2.1), recall that

p(qk|yk) ∝ f(yk|qk)p(qk) (6.1)

where in turn

f(yk|qk) =
k∏

`=0

f(y`|q`, y`−1).

Each of the factors is determined by the conditioned Kalman estimates x̂q`

`|`−1

and P q`

`|`−1 as in (2.4). Therefore, besides normalization, quantity (6.1) is

computable by k recursive operations for each possible trajectory qk. On the
other hand, since |Q| = N ,

|{qk}| = |{q0}| × |{q1}| × . . .× |{qk}| = Nk+1,

i.e. Nk+1 distinct trajectories exist at time k. As a consequence, that
maximum-a-posteriori estimation of qk is impracticable, because of the ex-
ponentially increasing number of probabilities p(qk|yk) that should be con-
sidered. On the other hand, the a posteriori probability of a large number of
trajectories shall be nearly zero.1 Since

p(qk+1|yk+1) ∝ f(yk+1|yk, qk+1)p(qk|yk),

a trajectory qk for which p(qk|yk) ' 0 is candidate to extend to trajecto-
ries qk+1 = (qk, qk+1) for which p(qk+1|yk+1) ' 0. Therefore, a reasonable
simplification is to discard at time k the trajectories with smaller p(qk|yk),
and to recast maximum-a-posteriori estimation as a search in the set of most
probable trajectories. The problem becomes that of determining a suitable
discard rule and to study how its application reflects into the estimation
performance.

1Information theoretic arguments show that the true trajectory lyes, with high prob-
ability, in a typical set [20], that is, a small subset of trajectories with high a priori
probability. Extensive application of these tools to discrete-state trajectory estimation is
a current direction of research. First results of this type may be found in [44, 45].
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In the next section, we will reformulate the discrete-state trajectory esti-
mation problem in abstract terms. Based on a hypothesis testing approach,
we will introduce a rule for trajectory selection and show its equivalence to
a family of sequential likelihood ratio tests between two alternatives. Next,
we will describe a measure of similarity between probability distributions.
This will be used to determine the ability of the test to discriminate between
different discrete trajectories. One section will be dedicated to discuss the
overall performance of the trajectory selection approach. Final comments,
hints and perspectives for our future research are reported in the concluding
section.

6.2 Trajectory selection

Consider the jump Markov linear system (2.1). At any time k ≥ 0, we
want to determine a set Θk ⊆ Qk+1 containing the trajectories with larger a
posteriori probability p(qk|yk).

Definition 6.1 Let qk ∈ Qk+1 and q̄k+` ∈ Qk+`+1. We say that qk is a
prefix of q̄k+`, and q̄k+` is an extension of qk, if

q̄k+` = (qk, qk+1, . . . , qk+`)

for some elements qk+1, . . . , qk+` ∈ Q.

Let Θk−1×Q denote the set of all possible extensions in Qk+1 of trajectories
in Θk−1. Define

p̃k , max
qk∈Θk−1×Q

p(qk|yk).

If Θk−1 = Qk, then p̃k is in correspondence with the maximum-a-posteriori
estimator of qk given yk.

Definition 6.2 At time k, we call selection rule of parameter κ, 0 ≤ κ ≤ 1,
a function Sk : Θk−1 ×Q → {0, 1} defined as follows:

Sk(q
k) =

{
0, if p(qk|yk) < κp̃k,

1, if p(qk|yk) ≥ κp̃k.
(6.2)

In general, threshold κ may depend on k.
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Definition 6.3 The most probable set of trajectories Θk is defined recur-
sively as follows:

i. Θ0 , Q;

ii. for k > 0, Θk = {qk ∈ Θk−1 ×Q : Sk(q
k) = 1}.

Therefore, Θk is built from Θk−1 by including the extensions having a pos-
teriori probability sufficiently close to the maximum. Threshold κ regulates
the size of set Θk: the larger the value of κ, the smaller the set Θk.

Proposition 6.1 Let q̄k−1 ∈ Θk−1. An extension q̄k of q̄k−1 belongs to Θk if
and only if

p(q̄k|yk) ≥ κp(qk|yk)

for all qk ∈ Θk−1 ×Q.

Proof: Sufficiency: Let q̃k be an element of Θk−1×Q such that p(q̃k|yk) = p̃k.
If p(q̄k|yk) ≥ κp(qk|yk) for all qk ∈ Θk−1 ×Q, then, in particular,

p(q̄k|yk) ≥ κp(q̃k|yk) = κp̃k,

whence Sk(q̄
k) = 1. Necessity: Let qk be any element in Θk−1 ×Q. Because

Sk(q̄
k) = 1,

p(q̄k|yk) ≥ κp̃k ≥ κp(qk|yk),

where the definition of p̃k has been used. ¤

Thus, the selection of the most probable extensions may be done by compar-
ing every possible pair of extensions. This result has an important theoretical
consequence.

Corollary 6.1 Let q̄k−1 ∈ Θk−1. An extension q̄k of q̄k−1 belongs to Θk if
and only if

f(yk|q̄k)

f(yk|qk)
≥ κ

p(qk)

p(q̄k)
(6.3)

for all qk ∈ Θk−1 ×Q.

Proof: Simple application of Bayes’rule. ¤

Therefore, the selection rule Sk is equivalent to a set of likelihood ratio tests
on the alternatives f(yk|qk), qk ∈ Θk−1 × Q. The test may be carried out
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by computing f(yk|qk) in place of p(qk|yk) for all trajectories qk whose prefix
qk−1 belongs to Θk−1, according to the update rule

f(yk|qk) = f(yk|qk, yk−1)f(yk−1|qk−1).

Note that, in general, neither of these alternatives is the true hypothesis,
since Θk−1 ×Q 6= Qk+1.

Remark. As a matter of fact, given two infinite sequences q∞ and q̄∞,
it may happen that q∞is never discarded on the basis of q̄∞ even when
q̄∞ is the true sequence. For instance, if f(yk|qk) = f(yk|q̄k) for every
k ∈ N0 – which is the case if e.g. q∞ ≡ i, q̄∞ ≡ j, i, j ∈ Q, i 6= j and
(Ai, Bi, Ci, Di) = (Aj, Bj, Cj, Dj) – then the test will be decided on the basis
of the a priori probabilities p(qk), p(q̄k) only. This raises the question of the
“distinguishability” of two sequences, and of course influences the expected
size of the most probable set Θk. As we shall see, since f(yk|qk, yk−1) is

determined by the Kalman estimate x̂qk

k|k−1, P qk

k|k−1, it is possible to establish

a connection between the performance of the test (6.3) and the structure of
the switching system (2.1). ¤

Remark. Given a set of most probable trajectories Θk, one may estimate
qk by solving

max
qk∈Θk

p(qk|yk) ∝ max
qk∈Θk

f(yk|qk)p(qk).

In general, the solution differs from the maximum-a-posteriori estimate

q̂k = arg max
qk∈Qk+1

p(qk|yk)

because the prefix q` of q̂k may have been discarded at time ` < k. Therefore,
two kinds of error need be considered. The first error is a wrong estimate
of the true trajectory when this belongs to Θk. This is essentially the same
error possibly affecting q̂k, and may be studied by the tools of Chapter 1.
The second error is the absence of the true trajectory in the set Θk. This
eventuality is typical of a trajectory selection scheme, and will be investi-
gated in a later section for a quite general choice of the selection rule. ¤

In the following, we will write (6.3) as the comparison

rk(yk) =
f1(y

k)

f0(yk)
≶ κk. (6.4)
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Here, f0(y
k) and f1(y

k) indicate the likelihood functions associated to two
sequences in Qk+1 whose a priori probabilities are taken on by the time-
varying threshold κk. The nature of the two sequences will be specified when
necessary.

6.3 Bhattacharyya product

Let f0 and f1 be two generic density functions in Rp.

Definition 6.4 The Bhattacharyya product of f0 and f1 is given by

B(f0, f1) ,
∫ √

f0(y)f1(y)dy. (6.5)

Note that f0, f1 ∈ L1. Therefore, f
1/2
0 and f

1/2
1 are functions of L2, and one

may write
B(f0, f1) = (〈f 1/2

0 , f
1/2
1 〉)2,

where 〈·, ·〉 stands for Hilbert product. This shows that the Bhattacharyya
product is well defined. An alternative expression is

B(f0, f1) = E0[
√

f0(y)/f1(y)],

where E0 indicates expectation w.r.t density f0.

Proposition 6.2 The following properties hold:

1. 0 ≤ B(f0, f1) ≤ 1, with B(f0, f1) = 1 if and only if f0 = f1 almost
everywhere;

2. B(f0, f1) = B(f1, f0);

3. B(f0, f1) = B(g0, g1) for every g0, g1 such that gi(y) = fi(y−z), z ∈ Rn;

4. P0[
f1(y)
f0(y)

> κ] ≤ κ−1/2B(f0, f1) for every κ > 0,

where P0[·] is the probability measure induced by f0.

Proof: Property 1 follows from f
1/2
i ∈ L2 and ||f 1/2

i || = 1. Property 2 is
obvious. Property 3 follows from the translation invariance of integration.
To prove Property 4, let

A , {y :
f1(y)

f0(y)
> κ} = {y : κ−1/2f

1/2
1 (y)

f
1/2
0 (y)

> 1}.



6.3. Bhattacharyya product 111

Then

P0[
f1(y)

f0(y)
> κ] =

∫

A
f0(y)dy ≤

∫

Rp

κ−1/2f
1/2
1 (y)

f
1/2
0 (y)

f0(y)dy = κ−1/2B(f1, f0).

¤

In particular, Property 4 will be used to evaluate the probability of error α0

in a likelihood ratio test.

Proposition 6.3 Let fi = N (µi, Σi), i = 0, 1, with Σi nonsingular. Then
B(f0, f1) is given by

ρ · exp

{
−1

4
(µ0 − µ1)

T (Σ−1
0 − Σ−1

0 (Σ−1
0 + Σ−1

1 )−1Σ−1
0 )(µ0 − µ1)

}
(6.6)

where
ρ = 2p/2 det(Σ−1

0 + Σ−1
1 )−1/2 det(Σ0)

−1/4 det(Σ1)
−1/4.

Proof: Writing integral (6.5) explicitly and completing the square at the
exponent, one gets

B(f0, f1) = ρ · exp{−1

4
µT

0 Σ−1
0 µ0 − 1

4
µT

1 Σ−1
1 µ1 +

1

4
µ̄T Σ̄−1µ̄}

with µ̄ , Σ−1
0 µ0 + Σ−1

1 µ1 and Σ̄ , Σ−1
0 + Σ−1

1 , compare [37]. Let now
η , µ0 − µ1. Substitute µ̄ = Σ−1

0 η + Σ̄µ1 in µ̄T Σ̄−1µ̄ and µ0 = η + µ1

in µT
0 Σ−1

0 µ0. Expand the products, collect all terms having leftmost factor
ηT and rightmost factor η, and verify that the remaining terms cancel out. ¤

Corollary 6.2 Let fi = N (µi, Σi), i = 0, 1, with Σi nonsingular. Then

max
µ0,µ1

B(f0, f1) = ρ,

attained for µ0 = µ1, and

lim
||µ0−µ1||→+∞

B(f0, f1) = 0.

Proof: It is shown in [3] that

Σ−1
0 − Σ−1

0 (Σ−1
0 + Σ−1

1 )−1Σ−1
0 > 0.

Hence, the exponent of (6.6) is a negative definite quadratic form in µ0−µ1.
Its maximum value is equal to zero and is found for µ0− µ1 = 0, whereas its
limit for ||µ0 − µ1|| → +∞ is −∞. ¤
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6.4 Stopping time of sequential testing

Consider a sequential test of the form (6.4). Assuming that f0 is the true
distribution of the measurements yk, we wish to evaluate the probability that
hypothesis f1 is rejected in finite time, that is,

f1(y
k)

f0(yk)
< κk

at some k ∈ N0. Also, an evaluation of the expected stopping time E0[k̄]
would be desirable, where

k̄ = inf{k :
f1(y

k)

f0(yk)
< κk}

and E0 indicates expectation taken w.r.t. f0. Define

Bk , B(f0(y
k), f1(y

k)).

Proposition 6.4 It holds that

P0[k̄ > k] ≤ κ
−1/2
k Bk.

Proof: Apply Property 4 to the inequality

P0[k̄ > k] = P0[
k⋂

`=0

{f1(y
`)

f0(y`)
≥ κ`}] ≤ P0[

f1(y
k)

f0(yk)
≥ κk].

¤

This provides a bound on the probability that the stopping time exceeds k.
To check whether

lim
k→+∞

P0[k̄ > k] = 0,

and to establish a bound on E0[k̄], one needs to study the evolution in time
of Bk. This will be done by considering the recursive equation

fi(y
k) = fi(yk|yk−1)fi(y

k−1). (6.7)

Let
B̂k|k−1 , sup

yk−1

B(f0(yk|yk−1), f1(yk|yk−1)).

Observe that, in light of expression (2.4),

fi(yk|yk−1) = N (ŷi
k|k−1, Λ

i
k) (6.8)

where ŷi
k|k−1 is a linear function of yk−1 and Λi

k is independent of the data.
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Proposition 6.5 It holds that B̂k|k−1 ≤ ρk, where

ρk , 2p/2 det{(Λ0
k)
−1 + (Λ1

k)
−1}−1/2 det(Λ0

k)
−1/4 det(Λ1

k)
−1/4.

Moreover, ρk < 1 or ρk = 1 according to whether Λ0
k 6= Λ1

k or Λ0
k = Λ1

k.

Proof: Application of Corollary 6.2 to (6.8) yields

B(f0(yk|yk−1), f1(yk|yk−1)) ≤ ρk.

Thus,

B̂k|k−1 = sup
yk−1

B(f0(yk|yk−1), f1(yk|yk−1)) ≤ sup
yk−1

ρk = ρk,

because ρk does not depend on yk−1. Observe that ρk is equal to the Bhat-
tacharyya product of two Gaussian distributions with equal mean and vari-
ances Λ0

k and Λ1
k. Hence, ρk ≤ 1, with ρk = 1 if and only if Λ0

k = Λ1
k. ¤

Proposition 6.6 The following inequality holds:

Bk ≤ B̂k|k−1Bk−1.

Proof: Applying equation (6.7) to the definition of Bk,

Bk =

∫ √
f0(yk)f1(yk)dyk

=

∫ {√
f0(yk−1)f1(yk−1) ·

∫ √
f0(yk|yk−1)f1(yk|yk−1)dyk

}
dyk−1

≤
∫ {√

f0(yk−1)f1(yk−1) · sup
yk−1

∫ √
f0(yk|yk−1)f1(yk|yk−1)dyk

}
dyk−1

=

∫ √
f0(yk−1)f1(yk−1)dyk−1 · sup

yk−1

∫ √
f0(yk|yk−1)f1(yk|yk−1)dyk

= Bk−1 · B̂k|k−1,

where the inequality holds because all integrands are nonnegative. ¤

Therefore, the sequence {Bk} is non-increasing. A sufficient condition for
{Bk} to be strictly decreasing after a certain time h ∈ N0 is that Λ0

k 6= Λ1
k

for all k ≥ h.
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Corollary 6.3 It holds that

P0[k̄ > k] ≤ κ
−1/2
k ρk · ρk−1 · . . . · ρ0.

Proof: Straightforward from Propositions 6.4÷6.6. ¤

These tools allow to evaluate the performance of test (6.4) on the basis of
the mutual properties of the (linear) systems indexed by i = 0 and i = 1.

Example. Consider a switching system (2.1) with Q = {0, 1}. For every
q ∈ Q let (Aq, Bq, Cq, Dq) be detectable and controllable, so that the algebraic
Riccati equation

P̄q = Aq[P̄q − P̄qC
T
q (CqP̄qC

T
q + DqD

T
q )−1CqP̄q]A

T
q + BqB

T
q

has a unique solution P̄q ≥ 0 [52]. Assume that Λ̄0 6= Λ̄1, where

Λ̄i , CiP̄iC
T
i + DiD

T
i .

Let i = 0 and i = 1 indicate the sequences

qk =

{
1, k < h,

0, k ≥ h,
,

for a certain h ∈ N0, and q̄k ≡ 1, in the order. Choose κk ≡ κ < 1.

For k < h, qk = q̄k. Thus, f0(y
k) = f1(y

k), and the test will not reject
hypothesis 1. Note that ρk = 1. For k = h + `, ` ∈ N0, qk and q̄k differ in
the last ` values, and one has

P0[k̄ > h + `] ≤ κ−1/2ρh+1 · . . . · ρh+`,

with ρh+1, . . . , ρh+` strictly less than 1. Since Λi
h+` → Λ̄i as ` → +∞, then,

for ` sufficiently large, ρh+` is approximately equal to

ρ̄ , 2p/2 det{(Λ̄0)−1 + (Λ̄1)−1}−1/2 det(Λ̄0)−1/4 det(Λ̄1)−1/4.

Therefore one gets the exponential decay

P0[k̄ > h + `] ≈ κ−1/2ρ̄`

whence [7] a finite expected stopping time E0[k̄], proportional to κ−1/2, and
P0[k̄ = +∞] = 0. ¤
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6.5 Accumulation of errors

The selection rule (6.2) may exclude the discrete-state trajectory underlying
the generation of the data from the most probable set Θk. For a given
trajectory qk, let

βqk

k , P[qk /∈ Θk|qk]

be the probability that qk is not in Θk at time k. Similarly, let

γqk

k , P[qk /∈ Θk|qk−1 ∈ Θk−1, q
k],

with qk−1 prefix of qk, be the probability that qk is discarded at time k.

For every fixed k, note that γqk

k decreases with κk, and that κk = 0 implies

γqk

k = 0. Hence, in principle, one may always choose a value of κk > 0 for

which γqk

k is strictly less than a prescribed positive bound.

Proposition 6.7 The following recursion holds:

βqk

k = βqk−1

k−1 + (1− βqk−1

k−1 )γqk

k .

In particular, {βqk

k } is non-decreasing, and βqk

k−1 = 1 implies βqk

k = 1.

Proof: Observe that P[qk−1 ∈ Θk−1|qk−1] = 1− P[qk−1 /∈ Θk−1|qk−1]. Then

βqk

k = P[qk /∈ Θk|qk−1 ∈ Θk−1, q
k] · P[qk−1 ∈ Θk−1|qk−1] +

P[qk /∈ Θk|qk−1 /∈ Θk−1, q
k] · P[qk−1 /∈ Θk−1|qk−1]

= γqk

k · (1− βqk−1

k−1 ) + 1 · βqk−1

k−1

because qk−1 /∈ Θk−1 implies that qk /∈ Θk. ¤

Next, denote with βk the unconditioned probability that the outcome of qk

will not be contained in Θk. That is,

βk , P[qk /∈ Θk],

where the probability is computed w.r.t. to the joint distribution F(yk, qk).
Observe that

βk =
∑

qk∈Qk+1

βqk

k p(qk). (6.9)
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Proposition 6.8 It holds that

βk = βk−1 +
∑

qk−1∈Qk

{
(1− βqk−1

k−1 )p(qk−1)
∑
qk∈Q

γqk

k p(qk|qk−1)

}
.

In particular, {βk} is non-decreasing, and βk−1 = 1 implies βk = 1.

Proof: Applying Proposition 6.7 to the equation (6.9) one gets

βk =
∑

qk−1

∑
qk

(βqk−1

k−1 + (1− βqk−1

k−1 )γqk

k )p(qk−1)p(qk|qk−1)

=
∑

qk−1

βqk−1

k−1 p(qk−1) +
∑

qk−1

(1− βqk−1

k−1 )p(qk−1)
∑
qk

γqk

k p(qk|qk−1),

where the identity
∑

qk
p(qk|qk−1) = 1 was used. ¤

Corollary 6.4 Assume that γqk

k ≡ γk, γk ∈ [0, 1], for all qk ∈ Qk+1. Then,

βk = βk−1 + (1− βk−1)γk. (6.10)

Proof: By Proposition 6.8, if γqk

k ≡ γk, then

βk = βk−1 + γk

∑

qk−1

(1− βqk−1

k−1 )p(qk−1)
∑
qk

p(qk|qk−1)

= βk−1 + γk{1−
∑

qk−1

βqk−1

k−1 p(qk−1)},

whence the result. ¤

When {γqk

k } ≡ {γk} – e.g. if thresholds κk are chosen so that the probabilities

γqk

k are independent of qk – both {βk} and {βqk

k } take the form (6.10). Let
us now study how the probability of error βk evolves in correspondence to a
specific sequence {γk}.

Proposition 6.9 (i) For l = 1, 2, let β
(l)
k and γ

(l)
k satisfy (6.10). If, at a

given k > 0, β
(1)
k−1 ≥ β

(2)
k−1 and γ

(1)
k ≥ γ

(2)
k , then β

(1)
k ≥ β

(2)
k . (ii) Let β

(l)
0 = 0,

l = 0, 1. If γ
(1)
k ≥ γ

(2)
k for all k > 0, then β

(1)
k ≥ β

(2)
k for all k ∈ N0.
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Proof: (i) It holds that

β
(1)
k = β

(1)
k−1 + (1− β

(1)
k−1)γ

(1)
k ≥ β

(1)
k−1 + (1− β

(1)
k−1)γ

(2)
k = γ

(2)
k + (1− γ

(2)
k )β

(1)
k−1

≥ γ
(2)
k + (1− γ

(2)
k )β

(2)
k−1.

(ii) The result follows by applying (i) iteratively on k > 0. ¤

This result is quite intuitive. In essence, it tells that smaller values of κk

– i.e. larger values of γk – result in a larger probability that qk /∈ Θk.
Since κk influences the size of Θk – the larger the κk, the larger the Θk –
we are interested in choosing the smallest values of κk that keep βk within
some prescribed bound. For d ≥ 1 and an arbitrary c ∈ (0, 1), consider the
sequence

γk = c · k−d, k > 0.

Proposition 6.10 For β0 < 1, the following holds:

i. If d = 1, limk→∞ βk = 1;

ii. If d > 1, limk→∞ βk < 1.

Proof: (i) It is equivalent to show that ηk → +∞, where ηk = βk/(1− βk).
Simple manipulations yield

ηk =
ηk−1 + γk

1− γk

.

Since γk ≤ c < 1, it holds that ηk ≥ η̃k, where, for k > 0, η̃k obeys

η̃k = η̃k−1 + c · k−1,

and η̃0 , η0. Hence,

lim
k→∞

ηk ≥ lim
k→∞

η̃k = η0 + c · lim
k→∞

k∑

`=1

`−1 = +∞.

(ii) We may equivalently prove that ηk , − log(1 − βk) → η̄ with η̄ < +∞.
Using (6.10) one gets

ηk = − log{(1− βk−1)(1− γk)} = ηk−1 − log(1− γk).
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For t ∈ (0, +∞), consider γ(t) , c · t−d. Note that γ(k) = γk. Using the de
l’Hospital rule, it is easily proven that, for any ε ∈ (0, d− 1) ,

lim
t→+∞

− log(1− c · t−d)

t−(1+ε)

H
=

c · d
1 + ε

· lim
t→+∞

t−(d−1)+ε

1− c · t−d
= 0.

Therefore, there must exist some index ` such that − log(1 − γk) ≤ k−(1+ε)

for all k > `. It follows that, for k > `, ηk ≤ η̃k, where η̃k obeys

η̃k = η̃k−1 + k−(1+ε).

with η̃` = η`. Then,

lim
k→+∞

ηk ≤ lim
k→∞

η̃k = η` + c ·
+∞∑

k=`+1

k−(1+ε) < +∞.

¤

In our case, β0 = 0 because Θ0 = Q by definition. For choices of κk such
that γk ≤ c · k−d, d > 1, the probability βk that qk /∈ Θk may be bounded
away from 1. Note that, for c = 0, βk ≡ 0, whereas, for c = 1, βk = 1
for k > 0. With the aid of continuity arguments, Proposition 6.9 suggests
that the bound may be made as close to zero as desired, provided the choice
of a value of c small enough. In fact, one may alternatively consider the
brute-force approximation

βk = βk−1 + (1− βk−1)γk ≤ βk−1 + γk = β0 +
k∑

`=1

γk = c ·
k∑

`=1

`−d,

which yields

lim
k→+∞

βk ≤ c ·
+∞∑

`=1

`−d = c · γ̄,

where γ̄ =
∑

`−d is finite for d > 1. Thus, if β̄ is a desired bound for βk, one
shall choose the sequence {κk} so that, for some d > 1, γk ≤ c · k−d, with
c = β̄/γ̄.

6.6 Discussion

We have studied the application of hypothesis testing to the problem of
estimating the trajectory of the discrete-state jump Markov system. The
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estimation problem was restated in terms of a maximum-a-posteriori search
in a restricted set of most probable trajectories. This set is updated in time
by a sequential trajectory selection rule based on the a posteriori probability
of the trajectories given data yk. We have shown the equivalence of this
rule to a family of sequential tests between two alternative trajectories. The
ability of one such test to distinguish trajectories has been related to the
mutual properties of the system modes. This was done by way of a convenient
measure of similarity between likelihood functions. Next, we considered the
eventuality that, at a certain time k, the true trajectory lyes out of the most
probable set of trajectories. The probability βk of this event was shown
to increase monotonically according to a simple update depending on the
probability of discarding the true trajectory at each step k. Conditions were
found for keeping the asymptotic probability of error below a prescribed
bound.

The selection of a subset of most probable trajectories has been considered
in several works, compare [55, 10, 2, 24] among the others. This is motivated
by the need of handling the exponentially growing number of possible trajec-
tories by finite complexity estimation algorithms. Moreover, it is a fact that
most of the trajectories prove indistinguishable on the basis of the measured
data yk [54]. However, a large part of the currently available algorithms for
trajectory estimation do not seem to have solid theoretical foundations. Our
work attempts to determine the performance that an estimation algorithm
may achieve on the basis of the structural properties of the switching system.
A second aim is to provide an algorithm with known estimation performance.
In the same spirit, an information-theoretic approach was recently pursued
in [44, 45].

A number of questions deserve more investigations. In Section 6.5 we
showed that bounding the error probability βk away from one requires the
probability γk of discarding the true trajectory at time k to decrease as k−d,
with d > 1. In principle, this decay may be achieved by choosing increasingly
large thresholds κk. However, raising the threshold κk inevitably leads to
larger trajectory sets Θk. We argue that, in general, no choice of the sequence
{κk} can simultaneously guarantee an upperbound for βk strictly less than 1
and a finite bound for the size of Θk. If this were the case, the very statement
of the problem should be put into question. In fact, the results of Section
6.4 suggest that trajectories that differ only in the remote past may not
be distinguishable on the basis of future data. Therefore, one may consider
reformulating trajectory estimation as the detection of states qk−`, . . . qk given
yk, where index ` relates to the actual “memory” of the system. The same
idea motivates the truncated maximum likelihood method presented in [53].
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Along these lines, it seems reasonable to determine the set of most probable
trajectories Θk out of a finite set of trajectories that differ in the last ` states.
It is our intention to make these observations more precise by introducing
notions of distinguishabiliy of two sequences. Hopefully, this will lead to
consistent problem statements and will help both the development and the
comparison of finite-complexity estimation algorithms.



Perspectives

We introduced a continuous-time dynamics jump Markov model and consid-
ered a general state estimation problem. In the basic case of a single-switch
model we derived algorithms for both state estimation and fault detection.
An algorithm of linearly increasing complexity has been tested in a simulated
example. We plan to extend this work in several directions. Qualitative eval-
uation of the fault detection algorithm shall be supported by a quantitative
analysis based on multiple Monte Carlo runs, for a sufficiently large set of
model choices. We expect to obtain indications on the variance of the es-
timates of the continuous state and of the switch time as well as on the
probability of error in the detection of the final discrete state. Performance
comparison with the suboptimal estimation algorithm 5.2 would also be of
interest. Implementation of state estimation algorithms for models with more
complex switching is our second concern. This will require the study of con-
venient approximations of the optimal Bayesian estimators. In the spirit of
the DE algorithm for JMLS, selection of a subclass of most probable tra-
jectories shall be studied and exploited in approximate conditioned Kalman
filter averaging. We believe that an adaptation of the results of Chapters 3
and 5 will come to help. Testing and application of the estimation algorithms
on real-world problems is our ultimate goal.

The application of hypothesis testing to the detection of the discrete-state
sequence of JMLS was also considered. This strategy is aimed at restricting
the detection problem to an exhaustive maximum-a-posteriori search over
a subset of most probable sequences. The ability of the test to discrimi-
nate sequences was examined on the basis of a measure of similarity between
conditioned predictors. Results on the probability of pruning the true se-
quence were derived. The work we illustrated in Chapter 6 is by no means
definitive. It represents our initial effort to produce finite-complexity de-
tection algorithms with known statistical performance. We are currently
working on an adaptive rule for the iterative pruning of unlikely sequences.
In our intentions, this should yield a small, possibly bounded-size subset of
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sequences where the true trajectory lies with high prescribed probability. In a
system-theoretic perspective, intuition leads to consider an issue of sequence
distinguishability. However, no accepted statement of this property exists.
The problem is blurred by the stochastic nature of switching and typically
involves finite-memory estimators, which puts the statement of the sequence
detection problem into question. In the future, we plan to exploit tools of
information theory to establish a precise connection between achievable per-
formance and the properties of the model at hand.
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[11] P. Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and
queues. Springer-Verlag, New York, 1999.

[12] R. Chen and J. S. Liu. Mixture Kalman filters. Journal of the Royal
Statistical Society – Series B, 62:493–508, 2000.

[13] E. Cinquemani. A superposition principle for the Kalman filter. Systems
and Control Letters, 2004. Submitted.

[14] E. Cinquemani, A. Chiuso, A. Ferrante, R. Frezza, G.B. Gennari,
A. Masiero, F. Nori, and G. Picci. Real-time hybrid estimation and iden-
tification algorithms for distributed sensor data processing. Technical
report, University of Padova, Italy, May 2004. Project IST-2201-37170
RECSYS.

[15] E. Cinquemani and M. Micheli. State estimation in stochastic hybrid
systems with sparse measurements. IEEE transactions on automatic
control, January 2005. Submitted.

[16] E. Cinquemani, M. Micheli, and G. Picci. Fault detection in a class of
stochastic hybrid systems. In Proceedings of the 43th IEEE conference
on decision and control, Paradise Island, Bahamas, December 2004.

[17] E. Cinquemani, M. Micheli, and G. Picci. State estimation and predic-
tion in a class of stochastic hybrid systems. In Proceedings of the 16th
International Symposium on Mathematical Theory of Networks and Sys-
tems, Leuven, BE, July 2004.

[18] O. L. V. Costa. Linear minimum mean square error estimation for
discrete-time Markovian jump linear systems. IEEE Transactions on
Automatic Control, 39(8):1685–1689, August 1994.

[19] O. L. V. Costa and S. Guerra. Stationary filter for linear minimum mean
square error estimator of discrete-time Markovian jump systems. IEEE
Transactions on Automatic Control, 47(8):1351–1356, August 2003.

[20] T.M. Cover and J.A Thomas. Elements of information theory. John
Wiley & sons, New York, 1991.

[21] A. Doucet and C. Andrieu. Iterative algorithms for state estimation of
Jump Markov linear systems. IEEE Transactions on Signal Processing,
49(6):1216–1227, June 2001.

[22] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo meth-
ods in practice. Springer-Verlag, New York, 2001.



BIBLIOGRAPHY 127

[23] A. Doucet, N.J. Gordon, and V. Krishnamurthy. Particle filters for state
estimation of jump Markov linear systems. IEEE Transactions on Signal
Processing, 49(3):613–624, March 2001.

[24] A. Doucet, A. Logothetis, and V. Krishnamurthy. Stochastic sampling
algorithms for state estimation of Jump Markov linear systems. IEEE
Transactions on Automatic Control, 45(2):188–201, 2000.

[25] R. J. Elliott, F. Dufour, and D. D. Sworder. Exact hybrid filters in
discrete time. IEEE Transactions on Automatic Control, 41(12):1807–
1810, December 1996.

[26] A. Ferrante, G. Picci, and S. Pinzoni. Silverman algorithm and the struc-
ture of discrete-time stochastic systems. Linear Algebra and its Applica-
tions (Special Issue on Linear Systems and Control), 351–352:219–242,
2002.

[27] E. Fornasini and G. Marchesini. Appunti di teoria dei sistemi. Edizioni
libreria Progetto, Padova, 1994.

[28] W. Gander and W. Gautschi. Adaptive quadrature – revisited. BIT
Numerical Mathematics, 40:84–101, 2000.

[29] A. Germani, C. Manes, and P. Palumbo. Polynomial filtering for stochas-
tic systems with Markovian switching coefficients. In Proceedings of the
42nd IEEE Conference on Decision and Control (CDC 2003), pages
1392–1397, Maui, Hawaii, December 2003.

[30] W. Glover and J. Lygeros. A stochastic hybrid model for air traffic con-
trol simulation. In Hybrid Systems: Computation and Control (Proceed-
ings of the 7th International Workshop), Berlin, March 2004. Springer-
Verlag.

[31] J. Hespanha. Stochastic hybrid systems: application to communication
networks. In Hybrid Systems: Computation and Control (proceedings),
pages 387–401, Berlin, 2004. Springer-Verlag.

[32] J. L. Hibey and C. D. Charalambous. Conditional densities for
continuous-time nonlinear hybrid systems with application to fault de-
tection. IEEE Transactions on Automatic Control, 44(11):2164–2169,
November 1999.

[33] M. W. Hofbaur and B. C. Williams. Mode estimation of probabilistic
hybrid systems. In Hybrid Systems: Computation and Control (HSCC
2002), Lecture Notes on Computer Sciences. Springer Verlag, 2002.



128 BIBLIOGRAPHY

[34] R.A. Horn and C.R. Johnson. Topics in matrix analysis. Cambridge
University Press, New York, 1991.

[35] J. Hu, J. Lygeros, and S. S. Sastry. Towards a theory of stochastic hybrid
systems. In Third International Workshop on Hybrid Systems: Compu-
tation and Control, Pittsburgh, PA, 2000. Springer Verlag Lecture Notes
on Computer Science, vol. 1790.

[36] A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic
Press, London, 1970.

[37] T. Jebara and R. Kondor. Bhattacharyya and expected likelihood ker-
nels. In Proceedings of the Sixteenth Annual Conference on Computa-
tional Learning Theory, Washington D.C., August 2003.

[38] M. Kijima. Markov Processes for Stochastic Modeling. CRC Press,
London, UK, 1997.

[39] X. Koutsoukos, J. Kurien, and F. Zhao. Monitoring and diagnosis of
hybrid systems using particle filtering methods. In Proceedings of the
Fifteenth International Symposium on the Mathematical Theory of Net-
works and Systems (MTNS ’02), University of Notre Dame, South Bend,
Indiana, August 2002.

[40] X. Koutsoukos, J. Kurien, and F. Zhao. Estimation of distributed hy-
brid systems using particle filtering methods. In Hybrid Systems: Com-
putation and Control (HSCC 2003). Springer Verlag Lecture Notes on
Computer Science, vol. 2623, Pittsburgh, PA, 2003.

[41] U. Lerner, R. Parr, D. Koller, and G. Biswas. Bayesian fault detection
and diagnosis in dynamic systems. In Proceedings of the 17th National
Conference on Artificial Intelligence (AAAI), pages 531–537, Austin,
Texas, July 2000.

[42] A. Logothetis and V. Krishnamurthy. Expectation maximization al-
gorithms for map estimation of jump Markov linear systems. IEEE
Transactions on Signal Processing, 47(8):2139–2156, August 1999.

[43] J. Lygeros and M. Prandini. Aircraft and weather models for probabilis-
tic collision avoidance in air traffic control. In Proceedings of the 41st
IEEE conference on decision and control, volume 3, pages 2427–2432,
Berlin, December 2002. Springer-Verlag.



BIBLIOGRAPHY 129

[44] N.C. Martins and M.A. Dahleh. An information theoretic approach to
the mode estimation of randomly switching FIR systems. In Proceedings
of the 11th Mediterranenan Control Conference, Rhodes, Greece, 2003.

[45] N.C. Martins and M.A. Dahleh. Rate distortion in the modal estimation
of switching FIR linear systems. In Proceedings of the 43rd Conference
on Decision and Control, pages 3575–3580, Paradise Island, Bahamas,
2004.

[46] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan. Interactive mul-
tiple model methods in target tracking: a survey. IEEE transactions on
aerospace and electronic systems, 34(1):103–123, January 1998.

[47] B. M. Miller and W. J. Runggaldier. Kalman filtering for linear systems
with coefficients driven by a hidden Markov jump process. Systems and
Control Letters, 31:93–102, 1997.

[48] K. P. Murphy. Switching Kalman filters. Report 98-10, Compaq Cam-
bridge Research Laboratory, 1998.

[49] I. V. Nikiforov. Optimal sequential detection and isolation of changes
in stochastic systems. Technical Report 2063, Institut National de
Recherche en Informatique et en Automatique (INRIA), September
1993.

[50] B. North, A. Blake, M. Isard, and J. Rittscher. Learning and classifica-
tion of complex dynamics. IEEE transactions on pattern analysis and
machine intelligence, pages 1016–1034, 2000.

[51] T. Pappas, A.J. Laub, and N.R. Sandell. On the numerical solution
of the discrete-time algebraic Riccati equation. IEEE Transactions on
Automatic Control, 25(4):631–641, August 1980.

[52] G. Picci. Filtraggio statistico (Wiener, Levinson, Kalman) e appli-
cazioni. Edizioni libreria Progetto, Padova, 1998.

[53] J. K. Tugnait. Adaptive estimation and identification for discrete sys-
tems with Markov jump parameters. IEEE Transactions on Automatic
Control, 27(5):1054–1065, October 1982.

[54] J. K. Tugnait. Detection and estimation for abruptly changing systems.
Automatica, 18(5):607–615, 1982.

[55] J.K. Tugnait and A.H. Haddad. A detection-estimation scheme for state
estimation in switching environments. Automatica, 15:477–481, 1979.



130 BIBLIOGRAPHY

[56] H.L. Van Trees. Detection, estimation and modulation theory (Part 1).
John Wiley & sons, New York, 1968.

[57] A. Wald. Sequential analysis. John Wiley & sons, New York, 1947.

[58] Q. Zhang. Hybrid filtering for linear systems with non-Gaussian distur-
bances. IEEE Transactions on Automatic Control, 45(1):50–61, January
2000.


