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Abstract: This paper addresses the problem of output feedback Model Predictive Control for
stochastic linear systems, with hard and soft constraints on the control inputs as well as soft
constraints on the state. We use the so-called purified outputs along with a suitable nonlinear
control policy and show that the resulting optimization program is convex. We also show how the
proposed method can be applied in a receding horizon fashion. Contrary to the state feedback
case, the receding horizon implementation in the output feedback case requires the update of
several optimization parameters and the recursive computation of the conditional probability
densities of the state given the previous measurements. Algorithms for performing these tasks
are developed.
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1. INTRODUCTION

Over the last decades Model Predictive Control (MPC)
has been successful in addressing industrial problems due
mainly to its ability to handle input and state constraints.
In the deterministic setting there exists a plethora of liter-
ature that settles tractability and stability of MPC, see for
example, [Mayne et al., 2000, Bemporad and Morari, 1999,
Maciejowski, 2001] and the references therein. Results in
the stochastic case, however, are fewer.

Research on stochastic MPC is broadly subdivided into
two parallel lines: the first treats multiplicative noise that
enters the state equations, and the second caters to ad-
ditive noise. The case of multiplicative noise has been
treated in [Primbs and Sung, 2009, Cannon et al., 2009a,b,
Couchman et al., 2006]. In [Primbs and Sung, 2009], the
noise enters the state equation multiplicatively, mixed
hard state-input constraints are relaxed into expectation
constraints, and results pertaining to feasibility and sta-
bility are presented for the full state feedback case. The
authors in [Couchman et al., 2006] treat the case of uncer-
tain output measurement matrix (C) and solve the MPC
problem under probabilistic constraints on the outputs and
full state feedback. In [Cannon et al., 2009a] the stochas-
tic MPC problem is treated under full state feedback
and multiplicative noise entering the state equation. The
proposed scheme comprises a pre-stabilizing linear state
feedback part (which we call a pre-stabilizing controller,)
and an open-loop part. The pre-stabilizing feedback gain
is computed off-line and just the open-loop part is left to
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online optimization. [Cannon et al., 2009b] extends the in
[Cannon et al., 2009a] to the case of additive noise as well.
However, both results [Cannon et al., 2009b] and [Cannon
et al., 2009a] involve a pre-stabilizing controller and hence
no hard control bounds can be imposed.

We focus in this article on the additive noise case. The
approach proposed here stems from and generalizes the
idea of affine parametrization of control policies for finite-
horizon linear quadratic problems proposed in [Ben-Tal
et al., 2004, 2006], utilized within the robust MPC frame-
work in [Ben-Tal et al., 2006, Löfberg, 2003, Goulart et al.,
2006] for full state feedback, and in [van Hessem and
Bosgra, 2003] for output feedback with Gaussian state
and measurement noise inputs. More recently, this affine
approximation was utilized in [Skaf and Boyd, 2009] for
both the robust deterministic and the stochastic setups
in the absence of control bounds, and optimality of affine
policies in the scalar deterministic case was reported in
[Bertsimas et al., 2009] within the robust framework. In
[Bertsimas and Brown, 2007] the authors reformulate the
stochastic programming problem as a deterministic one
with bounded noise support and solve a robust optimiza-
tion problem over a finite horizon, followed by estimating
the performance when the noise can take unbounded val-
ues. Similar approach was utilized in [Oldewurtel et al.,
2008] for affine input policies. We also mentions related
works employing randomized algorithms as in [Batina,
2004, Blackmore and Williams, 2007, Maciejowski et al.,
2005]. Results on obtaining lower bounds on the value
functions of the stochastic optimization problem have been
recently reported in [Wang and Boyd, 2009], and a novel
stochastic MPC scheme based on the scenario approach
has appeared in [Bernardini and Bemporad, 2009].



In this article we restrict attention to discrete-time linear
time-invariant controlled systems with affine stochastic
disturbance inputs and noisy measurement outputs. Over
a single optimization horizon N , the control input at each
time step t is chosen from the class of nonlinear causal
strategies, i.e., as a nonlinear function of all measured out-
puts up to time t. In the affine feedback case this strategy
has been shown to be one-to-one equivalent to feedback
from the so-called purified outputs [Ben-Tal et al., 2006],
with the main difference being that the latter results in
a convex optimization problem. As in the affine feedback
case, we also use the purified outputs formulation in the
design of our feedback strategies. However, as we have not
assumed any compactness on the possible noise affecting
the state and measured outputs, it is generally impossible
to guarantee the satisfaction of the hard constraints on
the control inputs. Therefore, we utilize the method pro-
posed in [Hokayem et al., 2009, Chatterjee et al., 2009],
in which we saturate the signal being used for feedback
(in this case the purified outputs) before utilizing them
to construct the control input vectors. This yields a nat-
ural way of dealing with possibly unbounded noise that
may affect the system under hard control bounds without
losing convexity. Furthermore, we generalize this method
to incorporate certain expectation-type constraints. To
apply this formulation in a receding horizon fashion, it
is necessary to compute certain time-dependent matrix
parameters (expectations) of the optimal control problem.
In turn, this requires propagating the conditional density
of the state with respect to the measured outputs. We
report formulas for propagating this conditional density.
In the case of Gaussian noise acting on the system, we
provide a low-complexity algorithm (essentially similar to
Kalman filtering) for updating this conditional density
and efficient solutions for the computation of the time-
dependent optimization parameters.

Notation. Hereafter, N+ := {1, 2, . . .} is the set of natural
numbers and N := N+∪{0}. Let Ex0

[·] denote the expected
value given x0, and tr(·) denote the trace of a matrix. Let

‖·‖p denote the standard `p norm and ‖v‖M =
√
vTMv

denote the weighted `2-norm, for M > 0. For any matrix
M , (M)i denotes its i-th row.

2. PROBLEM STATEMENT

Consider the following affine discrete-time stochastic dy-
namical model:

xt+1 = Axt +But + wt + l,

yt = Cxt + vt,
(1)

where t ∈ N, xt ∈ Rn is the state, ut ∈ Rm is the control
input, yt ∈ Rp is the output, wt ∈ Rn is a random process
noise, and vt ∈ Rp is a random measurement noise. The
matrices A, B, and C are known and l ∈ Rn is a known
constant vector. We assume that at any time t, the output
vector yt is observed. We shall require hereafter that the
control input vector is bounded at each instant of time t,
i.e.,

ut ∈
{
u ∈ Rm

∣∣ ‖u‖∞ 6 Umax

}
∀ t ∈ N, (2)

where Umax > 0 is some given saturation bound. Note that
the process model (1) with constraints (2) can handle a
wide range of convex polytopic input constraints [Hokayem
et al., 2009].

Fix an optimization (or prediction) horizon N ∈ N+, and
consider the following cost at time t

Jt=EYt

[
N−1∑
k=0

(
‖xt+k‖2Qk

+ ‖ut+k‖2Rk

)
+‖xt+N‖2QN

]
, (3)

where Yt = σ{y0, y1, . . . , yt} is the σ-algebra generated
by the output vectors up to time t, and Qk = QTk > 0,
QN = QTN > 0, and Rk = RTk > 0 are given matrices of
appropriate dimension.

The evolution of the system (1) over a single optimization
horizon N starting at time t can be described in a compact
form as follows:

Xt = Axt + BUt +DWt + L, Yt = CXt + Vt (4)

where Xt =

 xt
xt+1

...
xt+N

, Ut =

 ut
ut+1

...
ut+N−1

, Wt =

 wt
wt+1

...
wt+N−1

,

Yt =

 yt
yt+1

...
yt+N

, Vt =

 vt
vt+1

...
vt+N

, A =

 I
A
...
AN

, B =
0 ··· ··· 0

B
. . .

...

AB B
. . .

...
...

. . . 0
AN−1B ··· AB B

, D =


0 ··· ··· 0

I
. . .

...

A I
. . .

...
...

. . . 0
AN−1 ··· A I

, C = diag{C,

· · · , C}, L = D

 ll...
l

, and the inputs are required to satisfy

Ut ∈
{
U ∈ RNm

∣∣ ‖U‖∞ 6 Umax

}
∀t ∈ N. (5)

Using the compact notation above, the cost function Jt in
(3) can be rewritten as

Jt = EYt

[
‖Xt‖2Q + ‖Ut‖2R

]
, (6)

where Q = diag{Q0, · · · , QN} and R = diag{R0,
· · · , RN−1}.
In practice, it may be also of interest to impose further
some soft constraints both on the state and the input
vector. For example, one may be interested in imposing
quadratic or linear constraints on the state, both of which
can be captured via the constraint

EYt

[
‖Xt‖2S + LTXt

]
6 α, (7)

where S = ST > 0. Moreover, expected energy expendi-
ture constraints can be posed as

EYt

[
‖Ut‖2S̃

]
6 βk, (8)

where S̃ = S̃T > 0. In the absence of hard input con-
straints, such expectation-type constraints are commonly
used in the stochastic MPC [Primbs and Sung, 2009,
Agarwal et al., 2009] and in stochastic optimization in
the form of integrated chance constraints [Klein Haneveld
and van der Vlerk, 2006]. This is partly because it is
not possible, without posing further restrictions on the
boundedness of the process noise wt, to ensure that hard
constraints on the state are satisfied. For example, in the
standard LQG setting nontrivial hard constraints on the
system state would generally be violated with nonzero
probability. Moreover, in contrast to chance constraints
where a bound is imposed on the probability of constraint



violation, expectation-type constraints tend to give rise
to convex optimization problems under weak assump-
tions [Agarwal et al., 2009, Klein Haneveld and van der
Vlerk, 2006].

At each time t ∈ N, we are interested in solving the
following optimization problem

min
Ut∈G

{Jt | (4), (5), (7), (8)} , (9)

where G is the class of all causal output feedback policies.
An explicit solution to Problem (9) over the general class
of causal output feedback policies is extremely difficult
to obtain in general, see, for example, [Bertsekas, 2000,
2007]. A feasible way to circumvent this difficulty is to
restrict G to a specific subclass of policies. This will result
in a suboptimal solution to (9), but may yield a tractable
optimization problem. This is the track we pursue.

3. TRACTABLE CONTROL POLICIES

Given the dynamical system (1), and guided by the setup
in [Ben-Tal et al., 2006], let us recall the definition of the
so-called purified outputs. For any t ∈ N, define the model

x̄t+1 = Ax̄t +But + l,

ȳt = Cx̄t,

zt = yt − ȳt,
(10)

where x̄t ∈ Rn. The vectors zt are called purified outputs
and can be computed over the optimization horizon N
using (10) and the measured outputs yt. The dynamics in
(10) over the optimization horizon N starting at time t
can be compactly written as

X̄t = Ax̄t + BUt + L,

Ȳt = CX̄t,

Zt = Yt − Ȳt,
(11)

where X̄t =
[
x̄Tt , · · · , x̄Tt+N

]T
, and all other terms are

defined as in (4). A particularly convenient choice of the
initial condition is x̄t = x̂t|t = EYt [xt], i.e., the optimal
Bayesian estimate of xt in a mean-square sense, which we
will assume from now on and will specify how to compute
x̂t|t in Section 4. It follows from (4) and (11) that

Zt = C(Xt − X̄t) + Vt = CA(xt − x̄t) + CDWt + Vt. (12)

Therefore, the purified outputs do not depend on the
control inputs vector Ut.

We shall utilize the purified outputs zt in designing the
control inputs over a single optimization horizon N , and
restrict the feedback functions to lie in the class of causal
nonlinear feedback policies of the form

ut+` = ηt+` +
∑̀
i=0

θt+`,t+iϕi(zt+i) ∀` = 0, · · · , N − 1

(13)
where ϕi(zt+i) is a shorthand for the vector

[
ϕ1
i (z

1
t+i), . . . ,

ϕpi (z
p
t+i)

]T
, where zjt+i is the j-th element of the vector

zt+i and ϕji : R → R is any function with sup
s∈R
|ϕji (s)| 6

ϕmax < ∞. The feedback gains θ`,i ∈ Rm×p and the
affine terms η` ∈ Rm must be chosen based on the control
objective, while observing the constraints (2). With this
definition, the value of u at time ` depends on the values
of the measured outputs from time t up to time t+ ` only.

Of course, this choice of policies is generally suboptimal,
but it will ensure the tractability of a large class of
optimal control problems. Note that we have chosen to
saturate the measurements we obtain from the vectors zt
before inserting them into the control vector. This way
we do not need to assume that the noise distributions
are defined over a compact domain, which is a major
difference with respect to robust MPC approaches, see,
for example, [Bertsimas and Brown, 2007, Mayne et al.,
2000] and references therein. The choice of the element-
wise saturation functions ϕi(·) is left open. As such, we
can accommodate standard saturation, piecewise linear,
and sigmoidal functions, to name a few.

The control input sequence over the optimization horizon
N starting at time t can be written as

Ut = ηt + Θtϕ(Zt) (14)

where ηt :=

[ ηt

...
ηt+N−1

]
, ϕ(Zt) :=

[
ϕ0(zt)

...
ϕN−1(zt+N−1)

]
, and Θt

has the following structure

Θt :=


θt,t 0 ... 0

θt+1,t θt+1,t+1

...
...

...
. . . 0

θt+N−1,t θt+N−1,t+1 ... θt+N−1,t+N−1

 (15)

Problem (9) can now be written in terms of the new policy
in (14) as

min
(ηt,Θt)

{Jt | (4), (5), (7), (8), (14), and (15)} . (16)

Our choice of using the purified outputs for feedback
and the policy structure in (14) ensures convexity of the
optimization problem (16), as seen in the next result.

Assumption 1. x0, (wt)t∈N, and (vt)t∈N comprise mutually
independent zero-mean i.i.d. random vectors for all t ∈ N,
with known probability densities.

Proposition 2. The optimization problem (16) is convex
and equivalent to the following quadratically constrained
quadratic optimization problem:

min
(ηt,Θt)

2tr
(
ΘT
t BTQ(AΛxϕt +DΛwϕt + LΛϕt

T
)
)

+ 2ηTt BTQ(Ax̂t|t + L) + ‖ηt + ΘtΛ
ϕ
t ‖

2
M

+ tr
(
ΘT
tMΘt(Λ

ϕϕ
t − Λϕt Λϕt

T
)
)

subject to

the structure of Θt in (15),

|(ηt)i|+ ‖(Θt)i‖1 ϕmax 6 Umax ∀i = 1, · · · , Nm,

2tr
(
ΘT
t BTS(AΛxϕt +DΛwϕt + LΛϕt

T
)
)

+ 2ηTt BTS(Ax̂t|t + L) + ‖ηt + ΘtΛ
ϕ
t ‖

2
BTQB

+ tr
(
ΘT
t BTQBΘt(Λ

ϕϕ
t − Λϕt Λϕt

T
)
)

+ LT (Ax̂t|t + Bηt + BΘtΛ
ϕ
t + L)

+ tr
(
ATSAΣxt

)
+ tr

(
DTSDΣW

)
+ LTSL+ 2x̂Tt|tA

TSL 6 α, (17)

‖ηt + ΘtΛ
ϕ
t ‖

2
S̃ + tr

(
ΘT
t S̃Θt(Λ

ϕϕ
t − Λϕt Λϕt

T
)
)

6 β, (18)



where M = R + BTQB, Σxt
= EYt

[xtx
T
t ], ΣW =

E[WtW
T
t ], Λϕt = EYt

[ϕ(Zt)], Λxϕt = EYt
[xtϕ(Zt)

T ],
Λwϕt = EYt

[Wtϕ(Zt)
T ], and Λϕϕt = EYt

[ϕ(Zt)ϕ(Zt)
T ].

Moreover, the resulting optimization problem is feasible
whenever α > tr

(
ATSAΣxt

)
+ tr

(
DTSDΣW

)
+ LTSL+

2x̂Tt|tA
TSL+ LT (Ax̂t|t + L) and β > 0.

The proof of Proposition 2 is omitted in the interest of
space. The optimization problem in Proposition 2 is a
quadratically constrained quadratic program (QCQP) in
the optimization parameters (ηt,Θt) and is a quadratic
program (QP) whenever the constraints (17)-(18) are not
present. As such, one may use software packages such as
cvx [Grant and Boyd, 2000] or yalmip [Löfberg, 2004] to
solve it.

Constraints on the variation of the inputs of the form

‖PUt‖∞ 6 ∆max, where P =

 I −I 0 ··· 0
0 I −I ··· 0

...
...

0 ··· 0 I −I

, can be

translated into a constraint similar to that in (5). Note also
that some of the block gains in the matrix Θt in (15) can
be set to zero, hence reducing the number of optimization
variables and as such the computational burden.

The matrices Λϕt ,Λ
xϕ
t ,Λwϕt ,Λϕϕt are fixed parameters of

the optimization problem determined by the conditional
density of xt given Yt. In general, no closed-form expres-
sion exists, hence the computation of Λϕt ,Λ

xϕ
t ,Λwϕt ,Λϕϕt

must be performed numerically prior to optimization.
In light of (12), the choice of x̂t|t affects the statis-
tics of Zt and hence the optimization problem via
Λϕt ,Λ

xϕ
t ,Λwϕt ,Λϕϕt . The computation of the conditional

statistics f(xt|Yt), x̂t, and Σxt
will be discussed in Sec-

tion 4.

4. MPC IMPLEMENTATION OF THE OPTIMAL
CONTROL POLICY

To apply the procedure of Section 3 in an MPC fashion,
one needs to be able to compute the expectations in the
cost and constraints at every time step. That is, for all
t ∈ N we need to compute the following quantities

Λϕt = EYt
[ϕ(Zt)], Λwϕt = EYt

[Wtϕ(Zt)
T ],

Λϕϕt = EYt [ϕ(Zt)ϕ(Zt)
T ], Λeϕt = EYt [(xt − x̂t)ϕ(Zt)

T ]

Λxϕt = x̂tΛ
ϕ
t
T

+ Λeϕt ,
(19)

where Zt = CA(xt − x̂t|t) + CDWt + Vt. We define the
quantity x̂t|t as x̂t|t = EYt [xt], i.e., the optimal causal
Bayesian estimate of xt in a mean-square sense. The com-
putation of (19) requires propagating in time conditional
density of the state given the previous and current output
measurements, denoted by f(xt|Yt). We propose an itera-
tive method for the computation of f(xt|Yt). The iterative
computation will naturally involve the computation of
densities f(xt|Yt−1), where we set f(x0|Y−1) = f(x0) —
the probability density of the initial state x0. For t, s ∈ N0,
define x̂t|s = EYs

[xt] and Pt|s = EYt
[(xt−x̂t|s)(xt−x̂t|s)T ].

We posit the following extra assumption.

Assumption 3. In addition to Assumption 1, we require
that wt ∼ N (0,Σw), vt ∼ N (0,Σv) and x0 ∼ N (x̂0, P0),
where 0 < Σw ∈ Rn×n, 0 < Σv ∈ Rp×p, 0 < P0 ∈ Rn×n
and x̂0 ∈ Rn are known.

Proposition 4. Let Assumption 3 hold. Then f(xt|Yt) and
f(xt+1|Yt) are the probability densities of Gaussian dis-
tributions N (x̂t|t, Pt|t) and N (x̂t+1|t, Pt+1|t), respectively,
with Pt|t > 0 and Pt+1|t > 0. For all t ∈ N their condi-
tional means and covariances can be computed iteratively
as follows:

x̂t|t= x̂t|t−1+Pt|t−1C
T (CPt|t−1C

T +V )−1(yt−Cx̂t|t−1),
(20)

Pt|t = Pt|t−1 − Pt|t−1CT (CPt|t−1C
T + V )−1CPt|t−1,

(21)

where

x̂t+1|t = Ax̂t|t +But, (22)

Pt+1|t = APt|tA
T +W, (23)

x̂0|−1 = x̂0, and P0|−1 = P0.

A proof of Proposition 4 may be found in Kumar and
Varaiya [1986]. In particular, the matrix Pt|t plays the role
similar to that of Σxt in Proposition 2, and together with
x̂t|t, Pt|t characterizes the conditional density f(xt|Yt).
Proposition 4 states that the conditional mean and covari-
ances of xt can be propagated by an iterative algorithm
which closely resembles the Kalman filter. Since the system
is generally nonlinear due to the fact that ut is a nonlinear
function of the previous outputs, we cannot assume that
the probability distributions in the problem are Gaussian
(in fact, the a priori distributions of xt and of Yt are not)
and the proof cannot be developed in the standard linear
framework of the Kalman filter. Intuitively, Proposition
4 holds due to the fact that once the measurements are
available, the input becomes a fixed known quantity, which
renders the system conditionally linear and Gaussian.

At any time t, the matrices (19) may be computed by nu-
merical or Monte Carlo integration with respect to the in-
dependent Gaussian measures of wt, . . . wt+N−1, of vt, . . .
vt+N−1, and of xt given Yt. Due to the large dimensionality
of the integration space, this approach may be impractical
for online computations. One alternative approach relies
on the observation that the matrices in (19) depend on xt
via the difference xt − x̂t|t. Since xt − x̂t|t is conditionally
zero-mean given Yt, we can write the dependency of the
matrices in (19) on the time-varying statistics of xt given
Yt as follows: Λxϕt (x̂t|t, Pt|t) = x̂t|tΛ

ϕ
t (Pt|t)

T + Λeϕt (Pt|t),
Λϕt (Pt|t), Λeϕt (Pt|t), Λwϕt (Pt|t), and Λϕϕt (Pt|t). Therefore,
one may apply Algorithm 1. This procedure allows one
to move most of the computational burden off-line. Yet it
requires being able to compute and store several matrix
functions in a parametric form, or some finite approx-
imation. A more appealing alternative is to exploit the
convergence properties of Pt|t. The following result can be
inferred, for instance, from [Kamen and Su, 1999, Theorem
5.1].

Proposition 5. Assume that Σv > 0. If (C,A) is detectable

and (A,Σ
1/2
w ) is stabilizable, then the (discrete-time) alge-

braic Riccati equation in P ∈ Rn×n

P = A[P − PCT (CPCT + Σv)
−1CP ]AT + Σw (24)

has a unique solution P ∗ > 0, and the sequence Pt+1|t
defined by (21) and (23) converges to P ∗ as t tends to ∞,
for any initial condition P0 > 0.



Algorithm 1 Parametric SMPC implementation

Require: x̂0 = E[x0] and P0 = E
[
(x0 − x̂0)(x0 − x̂0)T

]
1: Compute the parametric expressions

Λϕt (Pt|t),Λ
eϕ
t (Pt|t),Λ

ϕ
t (Pt|t),Λ

wϕ
t (Pt|t),Λ

ϕϕ
t (Pt|t)

for arbitrary positive semidefinite matrices P ∈ Rn×n;
2: Initialize x̂0|−1 = x̂0 and P0|−1 = P0

3: t = 0
4: loop
5: Measure yt
6: Compute x̂t|t and Pt|t via (20)–(21)
7: Evaluate Λxϕt using x̂t|t
8: Solve the optimization problem in Proposition 2
9: Apply the first input u∗t

10: Compute x̂t+1|t and Pt+1|t using (22)–(23)
11: t = t+ 1
12: end loop

The assumption that Σv > 0 can be relaxed to Σv > 0 at
the price of some additional technicality [Ferrante et al.,
2002]. As a consequence of this result, under detectability
and stabilizability assumptions, Pt|t converges to

P ◦ = P ∗ − P ∗CT (CP ∗CT + Σv)
−1CP ∗, (25)

which is the asymptotic error covariance matrix of the
estimator x̂t|t. Thus, neglecting the initial transient, it
makes sense to just apply Algorithm 2. By this proce-

Algorithm 2 Asymptotic SMPC implementation

Require: x̂0 = E[x0]
1: Compute P ∗ in (24) and P ◦ in (25)
2: Compute the time-invariant matrices

Λϕt (P ◦),Λeϕt (P ◦),Λϕt (P ◦),Λwϕt (P ◦),Λϕϕt (P ◦)

3: Initialize x̂0|−1 = x̂0
4: t = 0
5: loop
6: Measure yt
7: Compute x̂t|t via (20)
8: Evaluate Λxϕt using x̂t|t
9: Solve the optimization problem in Proposition 2

10: Apply the first input u∗t
11: Compute x̂t+1|t via (22)
12: t = t+ 1
13: end loop

dure, virtually all the burden associated with computing
the required matrices in Proposition 2 is moved off-line.
Note that the feasibility of the optimization problem in
step 8 of Algorithm 1 depends on Pt|t, whereas that of
step 10 of Algorithm 2 depends on P ∗. Under the same
assumptions of Proposition 5, upper bounds on Pt|t may
be determined and exploited to facilitate the feasibility
analysis in Proposition 2.

5. EXAMPLE

Let us consider the following system

xt+1 =

[
1 1
0 1

]
xt +

[
0
1

]
ut + wt, yt = xt + vt,

with wt ∼ N (0, 10I), and vt ∼ N (0, 0.1I). We set
the problem parameters to the following: N = 2 is the
optimization horizon, ϕmax = 0.5 is the saturation limit,

Umax = 2 is the bound on the control inputs, and Rk =
0.01, Qk = 2I are the weights in the optimization problem.

We simulated the system in the discrete time interval
[0, 100] under three control paradigms: the first is us-
ing receding horizon control via Algorithm 1, the sec-
ond is using receding horizon control via Algorithm 2,
and the third is using the standard LQG controller and
post-saturating the resulting input. Note that we have
not utilized the constraints (7) and (8) in this exam-
ple. Simulations were performed in MATLAB. For Al-
gorithms 1 and 2, the optimization problem at each
step was solved using the software package cvx [Grant
and Boyd, 2000]. The computation of the matrices
Λϕt (Pt|t),Λ

eϕ
t (Pt|t),Λ

ϕ
t (Pt|t),Λ

wϕ
t (Pt|t),Λ

ϕϕ
t (Pt|t) in Algo-

rithm 1 and in Algorithm 2 (using P ◦ instead for Pt|t)
was done via the classical Monte Carlo integration [Robert
and Casella, 2004, Section 3.2] using 105 samples. The
time-evolution of the standard deviations of the state for
100 simulated runs with random initial conditions and
noise outcomes in all of the above three scenarios are
depicted in Figure 1(top). This shows a better behavior
of the system using either Algorithm 1 or 2 versus the
saturated LQG method. The improvement is quantified
in Figure 1(bottom), which shows the average cost accu-
mulated by the system over time. The total average cost
incurred in the saturated LQG case at time 100 is 696769
units, whereas the same cost computed for Algorithm 1
is 430821.7 units and for Algorithm 2 is 430848.8 units.
As such either of our methods provided slightly more
than 38% dip in the cost. The save in the cost by using
Algorithm 1 instead of Algorithm 2 for this example is
only 0.006%.
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Fig. 1. Standard deviation of the states (top) and the
average cost (bottom)

6. CONCLUSIONS

We studied the problem of stochastic MPC with linear
dynamics, hard input constraints, and soft constraints on



both the state and the control. We demonstrated that
using a subclass of causal feedback policies from the so-
called purified outputs we obtain a convex underlying
optimization problem. In this setup we required that the
conditional density of the state given the previous outputs
be propagated recursively, and we discussed how this can
be done when the random noise is Gaussian.
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J. Löfberg. Minimax Approaches to Robust Model Predic-
tive Control. PhD thesis, Linköpings Universitet, 2003.
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