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Abstract

Methods developed for the qualitative simulation of
dynamical systems have turned out to be powerful
tools for studying genetic regulatory networks. A
bottleneck in the application of these methods is
the analysis of the simulation results. In this paper,
we propose a combination of qualitative simulation
and model-checking techniques to perform this task
correctly and efficiently. By means of the example
of the network controlling the initiation of sporu-
lation in B. subtilis, we argue that this approach is
well-adapted to the kind of questions biologists ha-
bitually ask and the kind of data available to answer
these questions.

1 Introduction
Qualitative simulation is concerned with making predictions
of the behavior of dynamical systems when only qualitative
information is available. In QSIM [Kuipers, 1994], probably
the best-known approach towards qualitative simulation, the
variables of the system take qualitative values expressed in
terms of a totally-ordered set of landmark values. The struc-
ture of the system is described by means of a qualitative dif-
ferential equation, an abstraction of a class of ordinary dif-
ferential equations. A qualitative differential equation con-
sists of constraints on the qualitative value of the variables,
corresponding to basic mathematical equations. Qualitative
simulation exploits the qualitative constraints and continuity
properties of the variables to predict the possible qualitative
behaviors of the system. Given an initial qualitative state,
consisting of a qualitative value for each of the variables, the
simulation algorithm produces a branching tree of all reach-
able qualitative states.

Qualitative simulation provides a discrete view on the dy-
namics of a system. A qualitative behavior produced by
QSIM consists of a sequence of qualitative states, alternating
between time-points and time-intervals. The order of qualita-
tive states in the behavior expresses a temporal order of events
at which the qualitative value of some variable, and hence the
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qualitative state of the system changes. The abstraction of
the continuous behavior of a system into a sequence of qual-
itative states makes it possible to use model-checking tech-
niques for the verification of properties of the system [Clarke
et al., 1999]. The application of these techniques has been
proposed as a means to deal with one of the major prob-
lems of QSIM and other classical qualitative simulation meth-
ods: the analysis of the large number of possible sequences
of qualitative states predicted [Brajnik and Clancy, 1998;
Shults and Kuipers, 1997].

The aim of this paper is to explore the combined use of
qualitative simulation and model checking techniques in the
context of a biological application, the analysis of genetic
regulatory networks. These networks of regulatory interac-
tions between genes, proteins, metabolites, and other small
molecules underlie the development and functioning of all
living organisms. Mathematical methods supported by com-
puter tools are indispensable for the analysis of genetic regu-
latory networks, since most networks of interest involve many
genes connected through interlocking positive and negative
feedback loops, thus making an intuitive understanding of
their dynamics difficult to obtain [de Jong, 2002]. Currently,
only a few networks are well-understood on the molecular
level, and quantitative information on the interactions is sel-
dom available. This has stimulated an interest in qualitative
approaches towards the analysis of genetic regulatory net-
works.

In previous work we have developed a method for the qual-
itative simulation of genetic regulatory networks [de Jong
et al., 2002a; 2002b; 2001]. The method differs from tra-
ditional approaches towards qualitative simulation in that it
has been tailored to a class of piecewise-linear (PL) differen-
tial equations with favorable mathematical properties [Glass
and Kauffman, 1973; Mestl et al., 1995; Thomas and d’Ari,
1990]. This allows it to deal with large and complex net-
works of regulatory interactions. The qualitative simulation
method has been implemented in a publicly-available com-
puter tool, called Genetic Network Analyzer (GNA) [de Jong
et al., 2003]. The program has been used to analyze several
genetic regulatory networks of biological interest, including
the network controlling the initiation of sporulation in B. sub-
tilis.



In this paper, we will show how the graph of qualitative
behaviors produced by the simulation method can be refor-
mulated as a Kripke structure. Moreover, we will illustrate
how observed properties of the behavior of the genetic reg-
ulatory network can be expressed in the temporal logic CTL
[Clarke and Emerson, 1981]. This allows existing, highly-
efficient model-checking techniques [Clarke et al., 1999;
Cimatti et al., 2002] to be used to validate the model of the
network, that is, to check whether a statement in temporal
logic representing an observed property is satisfied by the
Kripke structure obtained from the model through simulation.
We will argue by means of the example of the sporulation net-
work that the chosen combination of qualitative simulation
and model checking is well-adapted to the kind of questions
biologists habitually ask as well as the kind of data available
to answer these questions.

In the next two sections of this paper, we briefly review
the qualitative modeling and simulation of genetic regulatory
networks. This will set the stage for a discussion of the com-
bined use of qualitative simulation and model-checking tech-
niques in section 4. The applicability of this approach to the
validation of actual genetic regulatory networks is the sub-
ject of section 5. We finish the paper with a discussion of the
approach in the context of related work (section 6).

2 Qualitative modeling of genetic regulatory
networks

The dynamics of genetic regulatory networks can be modeled
by a class of piecewise-linear (PL) differential equations of
the following general form [Glass and Kauffman, 1973; Mestl
et al., 1995; Thomas and d’Ari, 1990]:����������
	���
����
	������������ (1)

where �����������! ! " #�$�&%'	)( is a vector of cellular protein con-
centrations, and �*�+��, � �! " ! #�-, % 	)( , 
.� diag ��/ � �! ! " #�)/ % 	 .
The rate of change of each concentration �10 , 243657398 , is
defined as the difference of the rate of synthesis ,:0;���
	 and the
rate of degradation / 0 ���
	<� 0 of the protein.

The function , 0�=?> % @BADC > @&A is defined as

, 0 ���
	
��EFHG:IKJ 0 F�L 0 F ���
	#� (2)

where J 0 FNMPO
is a rate parameter,

L 0 F =�> % @BA�CRQ O � 2:S a
regulation function, and T a possibly empty set of indices of
regulation functions. A regulation function

L 0 F is the arith-
metic equivalent of a Boolean function expressing the logic
of gene regulation [Mestl et al., 1995; Thomas and d’Ari,
1990]. The function /:0 expresses the regulation of protein
degradation. It is defined analogously to ,:0 , except that we
demand that / 0 ���
	 is strictly positive. In addition, in order to
formally distinguish degradation rates from synthesis rates,
we will denote the former by U instead of J .

Figure 1 gives an example of a simple genetic regulatory
network. Genes a and b, transcribed from separate promot-
ers, encode proteins A and B, each of which controls the ex-
pression of both genes. More specifically, proteins A and B
repress gene a as well as gene b at different concentrations.

The network in figure 1 can be described by means of the
following pair of state equations:V�1W?��J&WYX:Z[���&W<�;\:]W 	^X:Z[���1_!�;\ �_ 	�� U W`�&W (3)V� _ ��J _ X Z ��� W �$\ �W 	^X Z ��� _ �$\ ]_ 	Y� U _ � _  (4)

Gene a is expressed at a rate J W MaO
, if the concentra-

tion of protein A is below its threshold \ ]W and the con-
centration of protein B below its threshold \ �_ , that is, ifX Z ���1W<�$\ ]W 	^X Z ���&_"�$\ �_ 	b� 2 . Recall that X Z ���`�$\c	 is a step
function evaluating to 1, if �ed�\ , and to 0, if � M \ . Protein
A is spontaneously degraded at a rate proportional to its own
concentration ( U W M�O is a rate constant). The state equation
of gene b is interpreted analogously.

3 Qualitative simulation of genetic regulatory
networks

The dynamical properties of the PL models (1) can be an-
alyzed in the 8 -dimensional phase space box f � f �hg ! " ig f % , where every f 0 , 2j3k5l3m8 , is defined asf 0 � Q � 07n�> @BApo O 3 � 0 3rqNs!t 0 S . qNs!t 0 is a parame-
ter denoting a maximum concentration for the protein. Given
that the protein encoded by gene 5 has u 0 threshold concentra-
tions, the 8 � 2 -dimensional threshold hyperplanes ��0Y�v\xw-y0 ,2z3|{ 0 3�u 0 , partition f into (hyper)rectangular regions that
are called domains [de Jong et al., 2002a]. Figure 2(a) shows
the subdivision into domains of the two-dimensional phase
space box of the example network. We distinguish between
domains like }�~ and }�� , which are located on (intersections
of) threshold planes, and domains like } � , which are not. The
former domains are called switching domains and the latter
regulatory domains.

When evaluating the step function expressions of (1) in
a regulatory domain, , 0 and / 0 reduce to sums of rate con-
stants. More precisely, in a regulatory domain } , ,:0 reduces
to some ���0 , and /c0 to some �^�0 . It can be shown that all
solution trajectories in } monotonically tend towards a sta-
ble equilibrium � � } 	
� Q � � � ��� � �� �! " ! !� � �%�� � �% 	 S , the target
equilibrium [Glass and Kauffman, 1973; Mestl et al., 1995;
Thomas and d’Ari, 1990]. The target equilibrium level� �0 � � �0 of the protein concentration � 0 gives an indication
of the strength of gene expression in } . If � � } 	�� }��� Q S ,
then all trajectories will remain in } . If not, they will leave} at some point. In regulatory domain } � in figure 2(b),
the trajectories tend towards � � } � 	�� Q ��J W � U W ��J _ � U _ 	 S .
Since � � } � 	�� } � � Q S , the trajectories starting in } will
leave this domain at some point. Different regulatory do-
mains generally have different target equilibria. For instance,
in regulatory domain }�� , the target equilibrium is given byQ � O �-JB_ � U _;	 S (not shown).

In switching domains, ,�0 and /:0 may not be defined,
because some concentrations assume their threshold value.
Moreover, , 0 and / 0 may be discontinuous in switching do-
mains. In order to cope with this problem, the system of
differential equations (1) is extended into a system of dif-
ferential inclusions, following an approach widely used in
control theory [Gouzé and Sari, 2003]. Using this general-
ization, it can be shown that, in the case of a switching do-
main } , the trajectories either traverse } instantaneously or



a b
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Figure 1: Example of a genetic regulatory network of two genes (a and b), each coding for a regulatory protein (A and B) (see
figure 4 for the legenda).
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Figure 2: Qualitative simulation of the regulatory network in figure 1. (a) Subdivision of the phase space into regulatory and
switching domains. (b) Analysis of the model in regulatory domain =?> , using the parameter inequalities (5)-(6). (c) Transition
graph resulting from a simulation of the example system starting in the domain =@> . Qualitative states associated with regulatory
domains and switching domains are indicated by unfilled and filled dots, respectively. Qualitative states associated with domains
containing an equilibrium point are circled [de Jong et al., 2002a].

remain in = for some time, tending towards a target equilib-
rium set ACBD=FE . Here, ACBD=FE is the smallest closed convex set
including the target equilibria of regulatory domains having
= in their boundary, intersected with the hyperplane contain-
ing = (see [de Jong et al., 2002a] for technical details). If
ACBD=�E�G@=IHJLK�M , then the trajectories may remain in = . If
not, they will leave = at some point.

Most of the time, precise numerical values for the thresh-
old and rate parameters in (1) are not available. However, the
above summary of the properties of PL models reveals that
a qualitative understanding of the dynamics of a regulatory
system can be obtained by knowing the relative position of
= and ACBD=FE . This relative position can be determined from
a set of qualitative constraints that are called parameter in-
equalities [de Jong et al., 2002a]. More precisely, the param-
eter inequalities specify a total ordering of the NPO threshold
concentrations of gene Q , as well as the possible target equi-
librium levels RTSOCU�V SO of W O in all regulatory domains =YX[Z .
The parameter inequalities for the example network described
by (3)-(4) are given by\^]`_ >a ]`_cba ][d a U�e a ]gfih�j a�k (5)\^]`_ >l ]m_ bl ]nd l Uoe l ]pfih�j l.q (6)

They constrain ACBD=r>4E to lie somewhere in = b9s , so that tra-
jectories starting in =r> reach one of the domains = b , =ut ,
and =Fv at some point. The information necessary to specify
the parameter inequalities can usually be inferred from the
biological data.

A domain = supplemented by the relative position of =
and ACBw=FE will be called a qualitative state of the system.
Given the qualitative state associated with = , it can be in-
ferred which domains can be reached by trajectories start-
ing in = . Since a qualitative state can be associated to each
of these domains in turn, this amounts to the computation
of transitions between qualitative states. In [de Jong et al.,
2002a], a simulation algorithm is described that recursively
generates qualitative states and transitions from qualitative
states, starting at the qualitative state associated with an ini-
tial domain =ux . This results in a transition graph, a directed
graph of qualitative states and transitions between qualitative
states. The transition graph contains qualitative equilibrium
states or qualitative cycles. These may correspond to equilib-
rium points or limit cycles reached by solutions, and hence in-
dicate functional modes of the regulatory system. Figure 2(c)
shows the transition graph generated for the example net-
work, when starting in the regulatory domain = > .

For the purpose of validating models of genetic regulatory
networks, it is usually more convenient to consider a refined
version of the transition graph. Here the qualitative states are
associated with (hyper)rectangular regions in the phase space
where the derivatives of the concentration variables have a
determinate sign. Often these hyperregions coincide with the
domains defined above, for instance in the case of regulatory
domain =r> , where yW a[z \

and yW l z \
. However, some-

times a domain may need to be divided into subdomains, to
each of which a separate qualitative state is associated. The



refined transition graph can be deduced from the transition
graph described in the previous paragraph. In what follows,
we assume that the transition graph generated by the qualita-
tive simulator is the refined transition graph.

The qualitative simulation method described in this section
has been implemented in Java 1.3 in the program Genetic Net-
work Analyzer (GNA) [de Jong et al., 2003]. GNA is available
for non-profit academic research purposes at [GNA, 2002].
The core of the system is formed by the simulator, which
generates a transition graph from a qualitative PL model and
initial conditions. The input of the simulator is obtained by
reading and parsing text files specified by the user. A graph-
ical user interface (GUI), named VisualGNA, assists the user
in specifying the model of a genetic regulatory network as
well as in interpreting the simulation results.

4 Analysis of genetic regulatory networks by
model checking

We have presented above how predictions of the behavior of
a genetic regulatory network can be obtained by qualitative
simulation. The model of the network, expressing hypothe-
ses on the genes and proteins involved and their mutual in-
teractions, can be validated by means of experimental data.
The validation of a model is complicated by the size of the
transition graphs obtained through simulation, which for net-
works with more than a dozen genes become too big to ana-
lyze by hand. In this section, we propose an approach based
on model checking, which combines formal precision with
computational efficiency.

4.1 Expressing observed properties in temporal
logic

As a first step in the validation of a model, we must express
properties of the observed behavior of a genetic regulatory
network in a formal language, here a temporal logic [Clarke
et al., 1999]. That is, we have to define the set of atomic
propositions that will be used to describe the states of the
system and choose an appropriate temporal logic.

The atomic propositions we will consider describe quali-
tative properties of the value of protein concentrations, since
the qualitative simulation method yields predictions of this
kind. More particularly, the atomic propositions concern the
range in which a protein concentration falls and the sign of
the derivative of the protein concentration. Let � 0 be the set
of concentration landmarks for gene 5 , defined as

� 0�� Q O �$\ �0 �" ! " !�$\�� y0 �����c�&0 S� Q � �0�� � �0 o } regulatory domain S  
We now introduce the variables � � 8 /
	<��� 0 	 and X 5 / 8 � V� 0 	 .
Definition 1 A state of a regulatory system is described using
the variables � � 8 /
	x��� 0 	 and X 5 / 8 � V� 0 	 , 2 3 5z3 8 . The do-
mains of these variables are �
� W#%�������� y�� and �
� 0�� %����� y�� , respec-
tively, where ��� W %�������� y � is the set of (semi-)open or closed
intervals � 0�� f 0 , such that  "!$# � � 0 	 ��%'&)(�� � 0 	 n � 0 , and
�
� 0��-%
���� y*� is the set

Q � 2 � O � 2 �'+ S .

� � 8 /
	<���B0 	 � � 0 is interpreted as meaning that the con-
centration �&0 lies between the two landmark concentrations
 "!$# � � 0 	 and %,&)(�� � 0 	 . X 5 / 8 � V� 0 	��|X 0 is interpreted as mean-
ing that the sign of the derivative of � 0 is positive, negative, or
zero, if X 0 equals 2 , � 2 , or

O
, respectively. The special value+ is used to express that

V�10 does not have a unique sign. This
may occur in certain switching domains, as a consequence of
the extension of the differential equations (1) to differential
inclusions (section 2).

We can define the set of atomic propositions in terms of
� � 8 /�	<��� 0 	 and X 5 / 8 � V� 0 	 .
Definition 2 The set of atomic propositions -/. is given by:

-/. � Q � � 8 /
	x��� 0 	 � � 0 ��X 5 / 8 � V� 0 	 ��X 0o
� 0 n ��� W %0�'�,��� y � ��X 0 n �
� 0�� %��$�� y � � 2K3 5 3 8�S  

� � 8 /�	<���1W�	 �21 O �;\ �W 1 , � � 8 /�	<���&_-	 �21�JB_ � U _#�3�4�x�1_51 ,X 5 / 8 � V�&W 	j� � 2 and X 5 / 8 � V�1_;	 � + are valid atomic
propositions.

Of the several temporal logics that exist, we have chosen
to use Computation Tree Logic (CTL) [Clarke and Emerson,
1981]. First, CTL allows us to quantify over behaviors of
the system. This is necessary, since an observation provides
information on one particular behavior, but not on all possible
behaviors. Second, efficient algorithms for performing CTL
model-checking exist [Clarke et al., 1999], which is a key
issue for the practical use of the method.

As an example of the use of CTL, consider the observation
that, in the system of figure 1, the concentrations ��W and �1_ in-
crease at first, while � W is steady and � _ decreases afterwards.
This can be expressed by means of the CTL statement:

6
7 ��X 5 / 8 � V� W 	
� 298 X 5 / 8 � V� _ 	
� 2
8 6�7 ��X 5 / 8 � V�&W�	
� O 8 X 5 / 8 � V�1_;	 � � 2 	;	  (7)

4.2 Translating transition graph into Kripke
structure

In the framework of CTL model checking, the system is de-
scribed by means of a Kripke structure. A Kripke structure:

over the set of atomic propositions -/. is a four-tuple: �<;>=���= A � � � T@? , where = is a finite set of states, =
A �A=

the set of initial states, � �B= gC= a total transition rela-
tion and T = = CEDGFIH

a function that labels each state with
the atomic propositions true in that state [Clarke et al., 1999].
We have to define how to generate a Kripke structure from
the transition graph produced by the qualitative simulator.

Recall from section 3 that a transition graph consists of
qualitative states and transitions between qualitative states.
Every qualitative state in the transition graph is defined asJLK �M;*= } �,N ? , where = } �O= } �4g6 ! ! �gA= } % is a
hyperrectangular region included in a domain } and N ���X � �! ! " !�-X % 	$( the sign vector of the derivatives

�� . The in-
formation contained in a qualitative state can be straightfor-
wardly expressed in terms of the atomic predicates -/. of
definition 2. This gives the following Kripke structure corre-
sponding to a transition graph.

Definition 3 A Kripke structure
: �k�*=��,= A � � � T 	 over

-/. corresponds to a transition graph produced by the quali-
tative simulator, if



1. = is the set of qualitative states in the transition graph;

2. =
A

is the set of initial qualitative states;

3. � � = g2= the transition relation, such that � � JLK � JLK ( 	
holds, iff there is a transition from

JLK
to

J@K ( in the
transition graph, or

JLK � JLK ( � ;*= } �'N ? and = } �} , such that � � } 	�� } �� Q S ;
4. T = = C DGFIH

such that for all
JLK � ;>= } �,N ? ,

T � JLK 	
� Q � � 8 /�	<���B0�	[� = } 0)�-X 5 / 8 � V�&0�	 ��X 0 o 2K3 5[3 8�S  
It can be shown that the transition relation in the definition is
total. The Kripke structure corresponding to the transition
graph obtained from qualitative simulation of the example
network in section 3 is shown figure 3.

4.3 Checking if model is validated by observations
When properties of the observed behavior of the system have
been expressed in CTL, and the transition graph obtained
through qualitative simulation translated into a Kripke struc-
ture, the validation of the model is straightforward to achieve.
Highly-efficient algorithms for CTL model checking have
been developed and implemented in publicly-available com-
puter tools. We will use NuSMV2, a symbolic model checker
that combines BDD-based and SAT-based model-checking
components [Cimatti et al., 2002].

The key steps of the approach advocated in this paper can
be summarized as follows:

1. Perform a qualitative simulation of the genetic regula-
tory network;

2. Translate the resulting transition graph into a Kripke
structure;

3. Formulate properties of the observed behavior of the
system as a CTL statement;

4. Use NuSMV2 to test the validity of the model of the
network.

The validation of the model gives rise to one of two results.
First, there may be a qualitative behavior predicted from the
model satisfying the observed properties of the system. In
this case, we say that the model is corroborated by the obser-
vations. Second, if there is no qualitative behavior predicted
from the model satisfying the observed properties of the sys-
tem, then the model is invalidated by the observations. It has
been shown that the transition graph produced by the qualita-
tive simulation algorithm is guaranteed to cover all possible
solutions of the PL model of the genetic regulatory network
[de Jong et al., 2002a]. This is critical for the decision to
reject or revise a model when it is invalidated by the observa-
tions.

The approach sketched above can be illustrated by means
of the simple network of two genes and their mutual inter-
actions. Using the Kripke structure derived from the transi-
tion graph (figure 3), we can check whether the observation
formulated as the CTL statement (7) is consistent with the
model. The test of this property by means of NuSMV2 gives
a positive answer. The reader can verify that this answer is
correct by looking at the path � J@K � � JLK � � JLK �;� � JLK � � 	 in
the Kripke structure in figure 3.

5 Applicability of the approach
The previous section has given an outline of the use of model
checking techniques in the analysis of genetic regulatory net-
works. Although we have given a proof of principle by apply-
ing the approach to an example of a small network, one can
legitimately ask whether it is applicable to the genetic regu-
latory networks actually studied by biologists in their labo-
ratory. Below we will argue that this is indeed the case, il-
lustrating our arguments by means of the network controlling
the initiation of sporulation in the bacterium Bacillus subtilis.

5.1 Qualitative modeling and simulation of
sporulation network

Under conditions of nutrient deprivation, B. subtilis cells may
cease to divide and form a dormant, environmentally-resistant
spore instead [Burkholder and Grossman, 2000]. The deci-
sion to either divide or sporulate is controlled by a regula-
tory network integrating various environmental, cell-cyle, and
metabolic signals. A graphical representation of the network
is shown in figure 4, displaying key genes and their promot-
ers, proteins encoded by the genes, and the regulatory action
of the proteins.

Sporulation in B. subtilis is one of the best-understood
model systems for bacterial development. However, notwith-
standing the enormous amount of work devoted to the eluci-
dation of the network of interactions underlying the sporula-
tion process, very little quantitative data on kinetic parame-
ters and molecular concentrations are available. This has mo-
tivated the use of the qualitative simulation method described
in section 3 to model the sporulation network and to simulate
the response of the cell to nutrient deprivation.

The graphical representation of the network has been trans-
lated into a PL model supplemented by qualitative constraints
on the parameters [de Jong et al., 2003]. The resulting model
consists of nine state variables and two input variables. The
49 parameters are constrained by 58 parameter inequalities,
the choice of which is largely determined by biological data.
Simulation of the sporulation network by means of GNA re-
veals that essential features of the initiation of sporulation in
wild-type and mutant strains of B. subtilis can be reproduced
by means of the model [de Jong et al., 2003]. In particular,
the choice between vegetative growth and sporulation is seen
to be determined by competing positive and negative feed-
back loops influencing the accumulation of the phosphory-
lated transcription factor Spo0A. Above a certain threshold,
Spo0A � P activates various genes whose expression commits
the bacterium to sporulation, such as genes coding for sigma
factors that control the alternative developmental fates of the
mother cell and the spore.

5.2 Analysis of sporulation network by means of
model checking

Although the predictions obtained by qualitative simulation
lack numerical precision, the sporulation example illustrates
that they do nevertheless capture essential features of the dy-
namics of the regulatory system and provide interesting in-
sights into the underlying regulatory logic. However, the con-
clusions summarized above were arrived at through painstak-
ing manual analyses of the transition graphs produced by the
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Figure 3: Kripke structure corresponding to the transition graph obtained from the qualitative simulation of the example network
in section 3. The labeling function is shown separately in the adjacent table.
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Figure 4: Key genes, proteins, and regulatory interactions making up the network involved in B. subtilis sporulation. In order to
improve the legibility of the figure, the control of transcription by the sigma factors IKJ and IML has been represented implicitly,
by annotating the promoter with the sigma factor in question.



simulator, usually consisting of several hundreds of states.
The proposed model-checking approach can be used to speed
up the analysis and reduce interpretation errors. We will give
two examples to illustrate that experimental data used to val-
idate a model can be expressed in terms of temporal logic.

Figure 5 represents the expression of two genes in the
course of the sporulation process in a B. subtilis strain [Perego
and Hoch, 1988]. The authors have used an experimental
technique in which the specific activity of an enzyme (here�

-galactosidase) reflects the expression of the gene. The low-
est curve represents the expression of the gene hpr, which
“increased in proportion of the growth curve, reached a max-
imum level at the early stationary phase [( � 2 )], and remained
at the same level during the stationary phase” ([Perego and
Hoch, 1988], p. 2564). This interpretation can be expressed
by means of the CTL statement

6
7 ��X 5 / 8 � V��� � � 	 � 2 86�7 6�� � X 5 / 8 � V��� � � 	 �
O 	;	 , where ��� � � denotes the concen-

tration of Hpr.

Figure 5: Time-series data showing the expression of two
genes during sporulation in a wild-type B. subtilis strain
[Perego and Hoch, 1988].

Under conditions of nutrient deprivation, a fraction of the
cells in a B. subtilis culture enter sporulation, whereas the
other cells continue to divide. In [Chung et al., 1994] this
phenomenon is related to the observation that “within a cul-
ture of sporulating cells of B. subtilis, there are two dis-
tinct subpopulations, one that has initiated the developmen-
tal program [leading to sporulation]  " ! and one in which
early developmental gene expression remains uninduced”
(p. 1977). The gene sigF, shown in figure 4, is an exam-
ple of such a developmental gene. Representing the con-
centration of the protein encoded by sigF by the variable� � 0���� , the above expression can be translated into the fol-
lowing CTL statement:

6�7 � � � 8 /
	x��� � 0���� 	��	�
O �$\ � 0���� � 	 86�7 � � � 8 /
	<��� � 0����[	|�21 \ � 0����������x� � 0���� 1�	 . Here, \ � 0���� and���c� � 0��
� denote a threshold and maximum concentration of

the protein.

6 Discussion
We have presented an approach towards the analysis of ge-
netic regulatory networks based on the combination of qual-
itative simulation and model-checking techniques. The ap-
proach consists of the translation of the transition graph pro-
duced through qualitative simulation into a Kripke structure

and the expression of observed properties of the behavior of a
system in temporal logic. Using an existing efficient model-
checking tool, the validity of the model of a genetic regula-
tory network can be tested. We have shown the in-principle
feasibility of the approach on a simple network of two genes
and argued for its applicability to networks actually studied
by biologists.

The integration of qualitative simulation and model check-
ing has been proposed before as a remedy for the analysis of
the large number of qualitative behaviors produced by quali-
tative simulators. Shults and Kuipers [1997] have combined
QSIM and CTL � , whereas Brajnik and Clancy [1998] have
focused on QSIM and a variant of PLTL. Our work differs
from these approaches in that, apart from a different tempo-
ral logic, we employ a qualitative simulation method tailored
to a class of PL models. This allows us to deal with large
and complex genetic regulatory networks. Several groups are
currently working on the application of model-checking tech-
niques to the analysis biochemical networks. As in this paper,
Antoniotti et al. [2003] and Chabrier and Fages [2003] have
chosen CTL, but they work with either completely numerical
models or rather simple rule-based models. The advantage of
the qualitative models used in our approach is that they are at
the same time biologically valid and actually applicable.

Further work will focus on the implementation of the ap-
proach summarized in section 4.3 and its application to the
analysis of the initiation of sporulation in B. subtilis and other
regulatory processes in bacteria.
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dez, M. Page, T. Sari, and H. Geiselmann. Qualitative sim-
ulation of genetic regulatory networks using piecewise-
linear models. Technical Report RR-4407, INRIA, 2002.

[de Jong et al., 2002b] H. de Jong, J.-L. Gouzé, C. Hernan-
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