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Abstract. Alternative splicing is a key process in post-transcriptional
regulation, by which several kinds of mature RNA can be obtained from
the same premessenger RNA. Using a constraint programming approach,
we model the alternative splicing regulation at different scales (single site
vs. multiple sites), thus exploiting different types of available experimen-
tal data.

1 Introduction

Alternative splicing is a biological process occurring in post-transcriptional reg-
ulation of RNA. Through the elimination of selected introns, alternative splicing
allows generating several kinds of mRNA from the same premessenger RNA. The
combinatorial effect of splicing contributes to biological diversity, especially in
the case of the human immunodeficiency virus (HIV-1). Recent biological studies
show the impact that SR proteins have on the dynamics of post-transcriptional
regulation via the control of the splicing process [8]. SR proteins can be divided
into two functional classes: they may either activate or inhibit splicing. Due
to the complexity of alternative splicing regulation, the knowledge that can be
gained from experiments is limited. Each experiment focus on one splicing site.
In a first approach, we model SR regulation in this restricted context. Using
differential equations, we develop a qualitative model for the A3 splicing site in
HIV-1. The qualitative behavior depends on the values of the reaction kinetic
parameters. Experimental results available to us validate this first approach in
the equilibrium phase. Our second approach aims at validation on a higher scale.
The ultimate goal is to obtain a model that can be validated qualitatively both
on the scale of a single splicing site and on the scale of the whole HIV-1, in order
to represent the global effect of alternative splicing in the HIV-1 cycle.
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Our models are developed in a constraint programming framework [2, 3].
Constraint programming seems well-suited for modeling biological systems be-
cause it allows one to handle partial or incomplete information on the system
state. Each constraint gives one piece of information on the system. The overall
knowledge is accumulated in the constraint store. The constraint engine avail-
able in constraint programming systems operates on the constraint store. It may
add new information to the store or check whether some property is entailed by
the information already available.

While a constraint model may be refined whenever additional biological
knowledge becomes available, it allows one to make useful inferences even from
partial and incomplete information. Therefore, constraint programming seems
to be a natural computational approach to face the current situation in systems
biology as it is described by B. Palsson [16]: “Because biological information is
incomplete, it is necessary to take into account the fact that cells are subject to
certain constraints that limit their possible behaviors. By imposing these con-
straints in a model, one can then determine what is possible and what is not, and
determine how a cell is likely to behave, but never predict its behavior precisely.”

The organisation of the paper is as follows: we start in Sect. 2 with a de-
scription of the biological process of alternative splicing regulation. Based on
a number of biological hypotheses, we develop a continuous model of the regu-
lation at one splicing site. This model includes competition and compensation
of different proteins on two binding sites, ESE and ESS2. The single-site model
is validated in a qualitative way by extracting from the model a splice efficiency
function, which can be measured in experiments. In Sect. 3, we first simulate the
single-site continuous model in the hybrid concurrent constraint programming
language Hybrid cc [9, 10]. Then we derive a more global model involving two
generic splicing sites, which may be generalized to multiple sites. This means
that we model at two different scales, using the splice efficiency as an abstrac-
tion of the local model of one site in the more global context of different sites.
The two-site model uses the constraint solving and default reasoning facilities of
Hybrid cc. This allows us to make predictions on the global behavior even in
absence of detailed local information on some of the splicing sites.

2 The Biological Problem
of Alternative Splicing Regulation

2.1 Biological Process

Eukaryotic and virus gene expression is based on production of RNA contain-
ing intronic sequences. The process of splicing allows for intron elimination and
junction of exonic sequences [14], see Fig. 1. Splicing is a major biological pro-
cess in the HIV-1 life cycle: the viral RNA either remains unchanged to serve
as genomic RNA for new virions, or it is alternatively spliced to allow for the
production of virion proteins [26]. The viral genome, initially RNA, is integrated
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Fig. 1. Representation of the splicing process

into the host genome. In the HIV-1 case, splicing regulation is a complex phe-
nomenon involving 4 donors sites (SD) and 8 acceptors sites (SA), which may
yield 40 proteins [17].

This combinatorial complexity is achieved by regulating the selection of the
acceptor site [15, 17]. Protein factors control the regulation via binding sites. We
focus in our study on the acceptor site A3, where splicing can be repressed by
hnRNP A/B via the ESS2 binding site [4, 6], see Fig. 2. Recent experimental
studies carried out in our group [18] show that an ESE sequence can activate
splicing at the A3 site when SC35 and ASF/SF2 proteins bind to it. More specif-
ically, the ratio of hnRNP A/B and SR proteins determines the splice efficiency
at the A3 site.

2.2 Biological Hypotheses

We model the regulation by SR proteins in the restricted context of the A3
splicing site (see Fig. 2) under the following hypotheses:

– We study only one splicing site. Thus, we consider regulation at the scale
corresponding to our experimental results. These yield the splice efficiency
as the ratio of the mature RNA over premessenger RNA.
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Fig. 2. Regulatory elements of the A3 splicing site
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– We suppose that the splicing process involves two steps, relating three func-
tional classes of RNA: immature, intermediate, and mature RNA, see Fig. 1.
Intermediate RNA corresponds to immature RNA activated by proteins.
Mature RNA corresponds to mature RNA and introns in lariat.

– The protein concentration in experiments is saturated. Therefore, we as-
sume that it is constant, despite the binding of proteins to the RNA during
regulation.

– SR proteins have two functions. They regulate the splicing process, and they
initialize the splicing machinery.

– Regulation is controlled by the ESE and ESS2 binding sites, which are inde-
pendent. Thus, only indirect interaction is possible between ESE and ESS2.

– The SR proteins ASF/SF2 and SC35 may activate the first splicing reaction
by binding to the site ESE. We assume that these two proteins compensate
each other.

– The hnRNP proteins may inhibit the first splicing reaction by binding to
the site ESS2. On the other hand, if the SC35 proteins bind to ESS2, this
activates the first splicing reaction. Therefore we have a competition between
hnRNP and SC35.

– Due to a lack of experimental results, we assume Michaelis-Menten kinetics
for all proteins. Our goal is a qualitative model validated at equilibrium.
Thus, we do not consider transient states.

Our biological hypotheses are summarized in Fig. 3

Mature RNA

second reaction

first reaction

rnaI

rnaM

Intermediate RNA

Premessenger RNA
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SC35 hnRNPASF/SF2

rna

SC RASF

ESS2

Fig. 3. Schematic representation of the splicing site regulation

2.3 Formal Model

The biological hypotheses can be translated into a mathematical formalism,
which leads to a system of ordinary differential equations based on the Michaelis-
Menten relation [22]. The single-site model will later be integrated into a larger
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multi-site model, see Sect. 3. We describe the splicing process by three ordi-
nary differential equations (ODEs) corresponding to the three functional classes
of RNA. Two terms represent the first splicing reaction. The first term repre-
sents the cooperation between ASF/SF2 and SC35 in the regulation of ESE.
Since we assume compensation, only the sum of activator proteins is important.
We represent this interaction by a Michaelis-Menten function depending on the
quantity of immature RNA and controlled by the sum of the proteins ASF/SF2
and SC35 [13]:

ϕESE(ASF + SC)
kESE + ASF + SC

rna

The symbols used are given in Tab. 1. The second term captures the antago-
nistic function of hnRNP and SC35 proteins on the site ESS2. In this case, the
Michaelis-Menten function represents the inhibitive competition between two
proteins : hnRNP and SC35 [27]. It depends on the quantity of intermediary
RNA:

ϕR × R

kR(1 + SC
kSC+R )

rnaI

The second splicing reaction is modeled by a simple first order kinetic with con-
stant parameters κ and κ′. Different RNAs decrease proportional to the same
degradation factor λ. We formalize the biological process by the system of dif-
ferential equations:

d(rna)
dt

=
ϕR × R

kR(1 + SC
kSC+R )

rnaI − ϕESE(ASF + SC)
kESE + ASF + SC

rna − λ · rna

d(rnaI)
dt

=
ϕESE(ASF + SC)
kESE + ASF + SC

rna − ϕR · R
kR(1 + SC

kSC+R )
rnaI − κ · rnaI

+κ′ · rnaM − λ · rnaI
d(rnaM)

dt
= κ · rnaI − κ′ · rnaM − λ · rnaM

2.4 Validation of the Regulatory System

The formal model of regulation at a single-site can be directly simulated in the
constraint programming language Hybrid cc, see Sect. 3.1. However, before do-
ing this, it should first be validated with respect to existing biological knowledge.

A mathematical analysis of the ODE system in Sect. 2.3 shows that the
partial derivatives in the Jacobian matrix have two characteristic properties:

– the partial derivatives on the diagonal elements are negative.
– the partial derivatives on the extra diagonal elements are positive.
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Table 1. Symbols and units for the biological variables and parameters

Symbol Variables and Parameters unit

rna Immature RNA µM
rnaI Intermediary RNA µM
rnaM Mature RNA µM
ASF Protein ASF/SF2 µM
SC Protein SC35 µM
R Protein hnRNP µM
ϕESE Maximal affinity for the enhancer s−1

ϕR Maximal affinity of hnRNP s−1

kESE Half saturation coefficient for the enhancer µM
kSC Half saturation coefficient for SC35 µM
kR Half saturation coefficient for hnRNP µM
κ Reaction rate s−1

κ′ Reaction rate s−1

λ Degradation coefficient s−1

In our model, the RNA concentrations do not reach an equilibrium, but
continue to decrease until total degradation of RNA. However, the above two
properties imply that the splice efficiency defined by

efficiency (t) =
rnaM(t)
rna(t)

reaches an equilibrium [1]. From the condition d efficiency/dt = 0, we may derive
the following formula for the splice efficiency in the equilibrium phase:

efficiency =
κ · ϕESE(ASF + SC)(kR · kSC + kR · SC + R · kSC)

κ′(kESE + ASF + SC) · ϕR · R · kSC

It is reasonable to assume that this equilibrium is reached after a short tran-
sient phase, so that it can be measured by experiments. According to our formula,
the splice efficiency is

– an increasing function of the activators SC and ASF .
– a decreasing function of the inhibitor R.

Experimental results show that

– rnaM/rna increases with an increase of activator proteins.
– rnaM/rna decreases with an increase of inhibitor proteins.

These results of our model correlate with available experimental data. In
summary, the model may be considered as qualitatively validated under the
hypotheses described in Sect. 2.2. We next consider simulation in the concurrent
constraint language Hybrid cc.
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3 Multiscale Modeling and Simulation with Hybrid cc

3.1 Hybrid Concurrent Constraint Programming

In constraint programming, the user specifies constraints on the behavior of the
system that is being studied. Each constraint expresses some partial information
on the system state. The constraint solver may check constraints for consistency
or infer new constraints from the given ones. In concurrent constraint program-
ming (cc), different computation processes may run concurrently. Interaction
is possible via the constraint store. The store contains all the constraints cur-
rently known about the system. A process may tell the store a new constraint,
or ask the store whether some constraint is entailed by the information currently
available, in which case further action is taken [19]. One major difficulty in the
original cc framework is that cc programs can detect only the presence of infor-
mation, not its absence. To overcome this problem, [20] proposed to add to the
cc paradigm a sequence of phases of execution. At each phase, a cc program is
executed. At the end, absence of information is detected, and used in the next
phase. This results in a synchronous reactive programming language, Timed cc.
But, the question remains how to detect negative information instantaneously.
Default cc extends cc by a negative ask combinator if c else A, which im-
poses the constraints of A unless the rest of the system imposes the constraint c.
Logically, this can be seen as a default. Introducing phases as in Timed cc leads
to Timed Default cc [21]. Only one additional construct is needed: hence A,
which starts a copy of A in each phase after the current one.

Table 2. Combinators of Hybrid cc

Agents Propositions

c c holds now
if c then A if c holds now, then A holds now
if c else A if c will not hold now, then A holds now
new X in A there is an instance A[T/X] that holds now
A,B both A and B hold now
hence A A holds at every instant after now

always A same as (A, hence A)
when(c) A same as (if c then A, hence (if c then A))

unless(c) A else B same as (if c then B, if c else A)

Hybrid cc [9, 10] is an extension of Default cc over continuous time. First
continuous constraint systems are allowed, i.e., constraints may involve differen-
tial equations that express initial value problems. Second, the hence operator is
interpreted over continuous time. It imposes the constraints of A at every real
time instant after the current one. The evolution of a system in Hybrid cc is
piecewise continuous, with a sequence of alternating point and interval phases.
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All discrete changes take place in a point phase, where a simple Default cc
program is executed. In a continuous phase, computation proceeds only through
the evolution of time. The interval phase, whose duration is determined in the
previous point phase, is exited as soon as the status of a conditional changes [10].
Tab. 2 summarizes the basic combinators of Hybrid cc.

Hybrid cc is well-suited for modeling dynamic biological systems, as argued
in [2, 3].

3.2 Single-Site Model: Local Modeling

The single-site model from Sect. 2.3 with experimental values can be expressed
directly in Hybrid cc.

interval t, rna, rnaI, rnaM;
t=0; rna = 0.06; rnaI = 0; rnaM = 0;
always{ t’ = 200;
rna’ = (Pr*R*rnaI)/(kr*(1+(SC/ksc))+R)

-(Pese*(ASF+SC)*rna)/(kese+ASF+SC)-delta*rna;
rnaI’ = (Pese*(ASF+SC)*rna)/(kese+ASF+SC)

-(Pr*R*rnaI)/(kr*(1+(SC/ksc))+R)-k*rnaI+kk*rnaM-delta*rnaI;
rnaM’ = k*rnaI-kk*rnaM-delta*rnaM;

}
sample(rna, rnaI, rnaM);

During the simulation, we obtain the predicted equilibrium for the splice effi-
ciency, see Fig. 4. Under our hypotheses, which include protein competition and
compensation, the model correctly simulates the alternative splicing activity.
This supports the hypotheses made in the model such as the role of the ESE
and ESS2 binding sites.

3.3 Two Site Model: Global Modeling

A realistic model of alternative splicing has to reflect the combinatorial com-
plexity discussed in Sect. 2.1. Assuming that regulation is modular [12], the
single-site model may be seen as one module inside a larger framework. The
qualitative validation given in Sect. 2.4 justifies the introduction of the single-
site model into a larger scale model involving several splicing sites. To illustrate
this, we consider the generic example of two splice acceptor sites (SA) associated
with one donor site (SD), see Fig. 5.

The behavior at one splicing site can be captured by a single function, the
splice efficiency, which depends on the protein concentrations. This function is
used in a larger-scale global model that describes the choice between two acceptor
sites A3 and A4. In the HIV-1 case, the A3 site is the default splicing site. Only
if the splice efficiency eff1 gets smaller than eff2, regulation switches to the
other state.

Recent work [5] shows the linearity of the splicing kinetics. Thus, on the larger
scale, we may consider splicing as a linear process described by two ordinary
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Fig. 4. Variation of the pool of RNA and the splice efficiency in the splicing
reaction
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differential equations involving some kinetic constant. The first system represents
the default behavior characterized by the constant Ka4. Following local changes
on a single-site, the model may exhibit a different behavior, characterized by the
kinetic constant Ka3. Thus, in this example, only the kinetic constants change,
while the overall structure of the ODE system remains the same.

This default behavior can be naturally expressed in Hybrid cc using the
combinator unless(c) A.
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always {
if (eff1 <= eff2) {rna’ = -Ka3*rna;

rnam1’ = 0;
rnam2’ = Ka3*rna;};

unless ((eff1 <= eff2)) {rna’ = - Ka4*rna;
rnam1’ = Ka4*rna;
rnam2’ = 0;};

}

Note that unless(c) A is not equivalent to if ¬c then A. The second alterna-
tive will be chosen if the solver cannot verify that (eff1 <= eff2). This may
have two reasons:

– (eff1 <= eff2) is false, i.e. (eff1 > eff2), or
– (eff1 <= eff2) is unknown (default behavior).

Simulation in Hybrid cc yields the behavior illustrated in Fig.6. We observe
the switch from the first system of ODEs to the second when eff2 passes the
upper threshold for eff1.
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Fig. 6. Variation of RNA with a variation of splice efficiency

4 Conclusion and Further Research

Our approach combines mathematical and computational methods. Mathemati-
cal analysis allows us to validate the single-site model in a qualitative way. This
is possible using the experimental data obtained in our group. The validation
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shows the consistency of our biological hypotheses. Based on this, we can ex-
tract the splice efficiency as a suitable abstraction of the local behavior at one
site inside a more global model involving different sites. For the experimental
biologist, the single-site model may serve as a computational tool to evaluate his
knowledge on a fine-grained biological process.

On the computational side, the constraint solving and default reasoning ca-
pabilities of Hybrid cc allow us to exploit as much as possible the incomplete
knowledge that is typical for ongoing biological research. Indeed, default be-
havior may compensate the lack of experimental data. Thus, using constraint
programming, we can delimit with our model the possible splicing behavior.
Similar to mathematical analysis, constraint reasoning therefore may provide a
powerful qualitative validation.

The combination of mathematical analysis and computational methods is
also the key to the multiscale modeling developed in this paper. It leads to
the qualitative validation represented by the extraction of the splice efficiency
function. The splice efficiency characterizes the modularity of the regulation.
Thus, the smaller-scale behavior is represented in the larger-scale model, based
on the single-site splice efficiency. The extraction of a suitable criterion on the
smaller scale is crucial to understanding an experimental process from a systems
biology perspective. Furthermore, constraints can be used to handle the problem
of missing data in a multiscale model. Different scales usually correspond to
biological experiments yielding different types of results. Despite the variety of
possible experiments, these must be integrated into a global model in order to
better understand the biological process.

Multiscale modeling requires a close interaction between biological and com-
putational approaches, as illustrated by Fig.7.

Computational Biological problem
cycleexperiment cycle

Model 

validation  & simulation

in vitro experimentsConstraint programming

Refinement in biological & computional approach

Biological experiment

validation tools inferred biological properties

Fig. 7. Representation of ideal interactions for modeling biology
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In the context of alternative splicing regulation, we are currently working
on new experimental data for the quantitative validation of our models. On
the computational side, we have integrated our model into a general HIV-1
model [11]. Preliminary results show that the modification of a splice constant
may induce different behaviors in the HIV-1 life cycle model. Using the extended
model, we may validate several biological hypotheses on the global effect of
alternative splicing in the full HIV-1 life cycle.
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Bilodeau, P., Stoltzfus, C.M., Gattoni, R., Stévenin, J., Branlant, C.: A complex
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