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Overview

1. General question of biological regulation:

the MetaGenoReg project

2. Biological system: the glucose-acetate diauxie in E. coli

3. Methodological approach
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4. Metabolic model

5. Integrating gene and metabolic models



1. General question of biological regulation

� Cellular regulation involves several levels, including:

� Gene regulatory networks

� Metabolic regulation

� These levels interact:

� Gene expression impacts metabolism through changes in enzyme 
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concentrations

� Conversely metabolism influences gene expression

� What is the rationale articulating both types of regulation? 

� Are they interchangeable ? 

� How much are they constrained?

� What is the relative importance of gene and metabolic regulation?



‘Hierarchical’ analysis 

module 1
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module 2

X1 X2
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MetaGenoReg project outline

� Modelling combined metabolic and gene regulation

� Reduce and simplify in order to understand the system’s behaviour

� Develop a method for joint modelling combining different approximations 

suited to both types of regulation

� Measure their respective contribution
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� Analyse the model’s strengths and weaknesses from a 
systemic point of view 

� Understand the biological rationale underlying the distribution of 
regulation between metabolism and gene expression



2. Biological system
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Glucose-acetate diauxie

� Well-characterised transition
in E. coli

� Involves major changes

� at the metabolic level:

gluconeogenesis vs. glycolysis
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� at the gene expression level

� Strong interaction between metabolic 
and gene expression levels

Oh et al. (2002), J Biol Chem. 277(15):13175-83.



� Interactions between metabolism and gene expression involve 
complex regulatory networks

Genetic and metabolic control of glycolysis and gluconeogenesis

Carbon assimilation in E. coli

Baldazzi et al. (2010), PLoS Comput. Biol., 6(6):e1000812
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3. Methodological approach

� Development of integrated model of upper-part of carbon 
assimilation in E. coli

� Kinetic model consisting of 41 variables and more than 100 
parameters

� Main problems with model: lack of parameter values, lack of 
data to estimate parameter valuesdata to estimate parameter values

� Basic assumption for model reduction : on the time-scale of 
gene expression, metabolism is a fast process

In bacteria, time constants for gene expression are typically of the order 

of (tens of) minutes, whereas time constants in metabolism are typically 

of the order of seconds
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Model reduction using time-scale hierarchy
� How is time-hierarchy exploited to formally reduce kinetic model 

of integrated genetic and metabolic network?

� Basic form of kinetic model

� Concentration variables

� Reaction rates

� Stoichiometric matrix

� Time-scale hierarchy motivates distinction between fast
reaction rates                    and slow reaction rates              , 
such that

Typically, enzymatic and complex formation reactions are fast, protein 

synthesis and degradation are slow
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Model reduction using time-scale hierarchy
� Separation of fast and slow reactions motivates a linear 

transformation                        of the variables

such that

� We call                 slow variables and                      fast � We call                 slow variables and                      fast 
variables , while                         and                             are 
stoichiometric matrices for slow reactions and                           
is stoichiometric matrix for fast reactions

Slow variables are typically total protein concentrations , fast variables 

metabolites and biochemical complexes
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Model reduction using time-scale hierarchy

� Separation of fast and slow variables allows original model to 
be rewritten as coupled slow and fast subsystems

� Under quasi -steady -state approximation (QSSA) , fast � Under quasi -steady -state approximation (QSSA) , fast 
variables are assumed to instantly adapt to slow dynamics

Mathematical basis for QSSA is given by Tikhonov’s theorem
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⇒

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall

Khalil (2001), Nonlinear Systems, Prentice Hall, 3rd ed.



Model reduction using time-scale hierarchy

� QSSA implicitly relates steady-state value of fast variables to 
slow variables

� This gives reduced model on the slow time-scale

Reduced model describes direct and indirect dependencies between 

slow variables (total protein concentrations)

Mathematical representation of effective gene regulatory network

� Notice

� Generally function      is not easy to obtain due to nonlinearities

� Function      depends on unknown parameter values
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Jacobian matrix and regulatory structure

� Derivation of interaction structure between slow variables 
by computation of Jacobian matrix

Direct regulation by Indirect regulation 

� Implicit differentiation of                                 yields

where                                                        is Jacobian matrix of fast system
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Direct regulation by 
transcription factors

Indirect regulation 
through metabolism

Concentration control coefficients



Determination of interaction signs
� Can we derive signs for regulatory interactions (elements of 

Jacobian matrix), without knowledge on rate laws and 
parameter values? 

� Idea: exploit fact that signs of elasticities are known

Rate laws are generally monotone functions in variables
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Determination of interaction signs
� Can we derive signs for regulatory interactions (elements of 

Jacobian matrix), without knowledge on rate laws and 
parameter values? 

� Idea: exploit fact that signs of elasticities are known

Rate laws are generally monotone functions in variables

� Notice� Notice

� Reversible reactions: signs of                           change with flux direction

16



Determination of interaction signs

� Resolution of signs of (large) algebraic expressions defining 
interaction signs by means of computer algebra tools

Symbolic Math Toolbox in Matlab

� Use of additional constraints in sign resolution

� Stability assumption for fast system : necessary condition for stability 

is that coefficients of characteristic polynomial                             have 

same sign

� Experimental determination of some of the signs of concentration 

control coefficients in                (if available)
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Application to E. coli carbon assimilation

� Development of model of carbon assimilation network, analysis 
under following conditions:

Glycolysis/gluconeogenesis (growth on glucose/pyruvate)

66 reactions and 40 species
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Baldazzi et al. (2010), PLoS Comput. Biol., 6(6):e1000812



Application to E. coli carbon assimilation

� Development of model of carbon assimilation network, analysis 
under following conditions:

Glycolysis/gluconeogenesis (growth on glucose/pyruvate)

� Few fast variables couple metabolism to gene expression
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Glycolysis with allosteric effects



Network is densely connected
� Contrary to what is often maintained, gene regulatory network 

is found to be densely connected

� Strong connectivity arises from indirect interactions mediated 
by metabolism

� : transcriptional network consisting of direct interactions only

: gene regulatory network in glycolytic growth conditions � : gene regulatory network in glycolytic growth conditions 

including direct and indirect interactions

� Experimental evidence for indirect interactions
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Siddiquee et al. (2004), FEMS Microbiol. Lett., 235:25–33



Network is largely sign-determined
� Derived gene regulatory network for carbon assimilation in E. 

coli is largely sign-determined
Signs of interactions do not depend on explicit specification of kinetic 

rate laws or parameter values, but are structural property of system

� Sign-determinedness not expected on basis of work in ecology

Sufficient conditions for sign-determinedness can be formulated using 

expression for 
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Glycolysis with allosteric effects

Baldazzi et al. (2010), PLoS Comput. Biol., 6(6):e1000812



Interaction signs change with fluxes

� Radical changes in environment may invert signs of indirect 
interactions, because they change direction of metabolic fluxes 
and thus signs of elasticities

� Dynamic modification of feedback structure in response to 
environmental perturbations
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Network under glycolytic conditions Network under gluconeogenic conditions



Key findings and new questions
� Systematic derivation of effective structure of gene regulatory 

network on time-scale of gene expression

Weak assumptions on time-scale hierarchies and stability

� Obtained network is at the same time robust and flexible
� Robust to changes of kinetic properties (results not dependent on 

parameter values and rate laws)parameter values and rate laws)

� Flexible rewiring of network structure following radical changes in 

environment (changes in flux directions)

� Results on E. coli network raise several issues:

� To which extent do observations carry over to other regulatory systems 

in bacteria and higher organisms?

� How do indirect interactions affect dynamics of networks?
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Dynamical analysis of networks

� Reduced networks describe direct and indirect regulatory 
interactions between genes

� Qualitative dynamics of gene regulatory interactions can be 
described by PL models 

� Translation of network diagrams into PL models

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29

� Straightforward for direct interactions…

� … but also possible for indirect interactions
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Cya  concentration (M) Crp  concentration (M)



Qualitative analysis of PL models

PL models using step functions

xa = κa s-(xa , θa2) s-(xb , θb ) – γa xa
.

xb = κb s-(xa , θa1) – γb xb 
.

Models easy to analyze, using inequalities
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de Jong et al. (2004), Bull. Math. Biol., 66(2):301-40

Batt et al. (2007), Automatica, 44(4):982-89

Predictions of qualitative dynamics, robust
for large variations in parameter values
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� PL models for growth on glucose and growth on acetate

� Models have13 equations and require specification of few dozen

parameter inequalities

� Calibration of PL models by means of qualitative data

� Literature data

Development of PL model

� Extension of previous model of network of global regulators

� Hypotheses (educated guesses)
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Ropers et al. (2006), Biosystems, 84(2):124-152; Ropers et al. (2009), in press



Aim of analysis of PL model

� Aims of analysis of network dynamics:

� Predict evolution of gene expression levels 

after diauxic shift

� Study role of indirect interactions mediated 

by metabolism

� Modeling of batch experiments� Modeling of batch experiments
� Grow bacteria in M9 with glucose to steady 

state (glycolysis)

� Continue growth on (excreted) acetate after 

glucose exhaustion (gluconeogenesis)

Brice Enjalbert, personal communication



� Cross-inhibition between Fis and Crp predicted to play central 
role in adaptation of gene expression upon glucose depletion

� Predicted gene expression profiles verified by means of 
reporter gene measurements

Some preliminary results
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Fis

Crp



Towards quantitative models?

� Above approach leads to models that view metabolism as 
intermediary between gene regulatory interactions

� However, metabolism is not explicitly modeled

PL models aggregate and approximate complex rate functions in 

reduced model
f (     )⇒
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� Moreover, models provide qualitative instead of quantitative 
picture of dynamics

Qualitative models help provide intuitive idea of global system dynamics, 

but for some questions quantitative precision is required

f (     )⇒



Towards quantitative models?

� Another approach explicitly models metabolism and gene
expression, followed by integration of two parts

� Approach based on suitable approximations of

⇒
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� Approach based on suitable approximations of

• Approximations should provide good phenomenological description of 

metabolic rate laws

• Minimal number of parameters to facilitate identification of parameter

values from experimental data 



4. Metabolic model

� Toy model entirely specified with ODEs

� ‘Experimental’ object used to test the quality of various 
reductions and approximations by comparison of simplified 
models with complete ODE model

� A suitable approximation would ideally allow us to calculate 
analytically
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analytically



Which approximations?

� Various types of linearisation of metabolic effects

� Compare reduced / approximated models 
with complete ODE-specified model 
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Assessing approximations of metabolism

� Randomly change enzyme concentrations in a 25-fold range on 
benchmark model (Matteo Brilli)

� Test steady-state obtention



Approximation 1, from MCT

v = diag f(x) · e

dX/de = ΓΓΓΓ · dv/de

∆lnX ~ (diag X0)-1 · Γ Γ Γ Γ · diag f(X0) · ∆e

Linearization around steady-state using control coefficients



Approximation 2, linlog

Linearization of kinetic laws:

v(x) ~ diag e · ( A + B · lnx )

Steady-state implies:Steady-state implies:

N · v(X) = 0

lnX ~ - ( N · diag e · B )-1 · N · diag e · A



Approximation 3, hyperbolic

Suggested from earlier work by Kacser:

∆(1/X) ~  (diag X0 )-1 · CX · diag e0 · ∆(1/e) 

∆(1/J) ~  (diag J )-1 · CJ · diag e · ∆(1/e) ∆(1/J) ~  (diag J0 )-1 · CJ · diag e0 · ∆(1/e) 

Linearization around steady-state using control coefficients



Metabolite estimates

Root mean square Log deviation



Flux estimates

Median flux absolute Log deviation



Model of E. coli carbon metabolism

� Simplified model

� 32 reactions 

� 17 metabolites 

� Linlog approximation
J ~ diag e · ( A + B · lnX )

� Independent linear regression 
possible for each reaction if 
sufficient data available :

� Fluxes

� Enzyme expression

� Metabolite concentrations



Issues with metabolic model identification

� Difficulties to obtain high quality complete datasets (fluxes, 
metabolite and enzyme concentrations) with sufficient numbers 
of distinct observations

� Missing data can be handled efficiently by EM or maximum 
likelihood methods (Berthoumieux et al., submitted)

� Identifiability issues arise when there is insufficient variability or � Identifiability issues arise when there is insufficient variability or 
dependencies between metabolite concentrations because of

� Reactions close to equilibrium

� Steady-state constraints

� Homeostasis

� Usefulness of dynamic non steady-state measurements 

(difficult to obtain) 



Working around identifiability issues

� Use Principal Component Analysis on lnX
� Reduce metabolite data by Singular Value Decomposition

� Determine effective dimension of lnX from singular values σi , 

neglecting σi
2 smaller than experimental variance

ln ln T− =X X USV

� Reduce metabolite data and reformulate identification accordingly

� Estimate parameters Br for the reduced model such that

� One among an infinite number of choices for full parameters is  

lnT
r=Y U X

/ ln r− = =J e J / e B X B Y
T

r r=B B U



5. Integrating gene and metabolic models

� Identify separately the fast component (metabolic) and the slow 
component (gene expression)

� Use the resulting analytical model of metabolic steady-states as 
a ‘plugin’ function in the gene network model

⇒

� Critical issue: identification methods and, especially, quality and 
quantity of experimental data



Experimental data on metabolism

� Quantification of extra-cellular metabolites by means of nuclear 
magnetic resonance (NMR) spectroscopy

Brice Enjalbert, personal communication



Experimental data on metabolism

� Quantification of intra-cellular metabolites by means of mass 
spectrometry

Brice Enjalbert, personal communication



Isotope Dilution Mass Spectrometry



Experimental data on metabolism

� Quantification of intra-cellular metabolites by means of mass 
spectrometry

Brice Enjalbert, personal communication



� Quantification of gene expression by means of fluorescent and 
luminescent reporter genes

� Expression of reporter gene is proportional to expression of target gene

Experimental data on gene expression

Global 
regulator

GFP

E. coli 
genome

Reporter 
gene

excitation

emission



Experimental data on gene expression

Hans Geiselmann, personal communication



Prospect: 
Roles of metabolic and gene regulation
� Identify parameters of the reduced system from data

� Study the metabolic response in the model 
when gene regulation is abolished

� Evaluate (quantify) the contribution of gene regulation 
to the metabolic response
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� Conversely calculate the contribution of metabolic effects 
to gene regulation

� Understand the biological rationale underlying the distribution of 
regulation between metabolism and gene expression


