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Outline

• The problem of genetic network identification
• A traditional approach: Boolean networks
• Identification of Ordinary Differential Equation (ODE) models

● The general problem
● Linearization methods (steady-state, time series)
● Boolean-like methods (time series)

• Identification of stochastic models: A quick view
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The problem of genetic network 
identification
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Objective

• Determine a mathematical description of the structure and behavior 
of a network of genes

• Structure: genes and 
    their interconnection
• Behavior: inhibition vs. 
     activation, dynamics

(Cantone et al., Cell 2009)
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Scale

• Different levels of detail: 
• genes, but also mRNA, transcription factors, protein complexes...
• expression: binding, DNA unfolding, transcription, translation, ...

(Wikipedia)
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Information content

• Modelling framework depends on available data...
• Type, quality, quantity
• System excitation, experimental conditions

• ... and on the use of the model
• Understanding the functioning of a biological system
• Prediction (response of an organism to perturbations/stimuli)
• Control (industrial exploitation, targeted chemicals for medical therapies...)

DNA microarray

(Wikipedia)
GFP fusions (courtesy of Z.Lygerou)

Gene reporter systems (Ronen et al, PNAS 2002)
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Modelling: A world of tradeoffs

• Qualitative vs. quantitative
• Mechanistic vs. phenomenological
• Fitting accuracy vs. predictive 
  power (overfitting!)

(Johnson et al, Science, 2008)

light

• Complexity vs. identifiability
• Static vs. dynamic
• Black-box vs. grey-box vs.
  white-box

Example: 
circadian rhythm
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The identification circle

• Model hypothesis:
• Choice of modelling framework
• Application of first principles
• Use of a priori knowledge

• Experiment design:
• Address unknown model parts
• Excite system in conditions 

appropriate for later use

• Identification
• Collect data via experiment
• Find model(s) that explains data

• Validation
• Determine confidence level
• Test model against new data

Model
hypothesis

Identification

Validation Experiment
design

Today's focus: formal statement of 
gene network inference problems

and solution with selected methods
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A traditional approach: 
Boolean networks
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Boolean models
• N Boolean variables representing n genes

• Boolean regulation function

• Dynamic Boolean networks (discrete time):
 

• Can associate regulatory interaction graph 
● n nodes (genes), arcs (incoming arcs of node i = effective inputs of bi)

1

2

n

...
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Identification

• Description of qualitative gene expression data

• Approximation of quantitative data
• Discrete math & graph theory for analysis of stability, oscillations, ...
• Learning of regulation rules from transitions observed in the data

t
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X1                0           0            1          1           1            1           1

X2                1           1            0          0           0            0           0
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E
xp

r. 
le

ve
l



12

REVerse Engineering ALgorithm 

• Based on information-theoretic concepts

 
● Functions of probability distribution of X
● Estimated from the observed trajectories of X
● Used to determine the effective inputs of a Boolean update map, e.g.

● Specific form of update map determined from the observed transitions
• May cope with noise (measurement error)
• Worst case: evaluation of all possible combinations of inputs

● Bound complexity with maximum allowable number of inputs

(Liang et al, 1998)
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Simulation example
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Discussion

• Well established analysis/identification methods
• Large understanding of dynamic effects of Boolean maps
• Effective network reconstruction for qualitative data
• Wasteful use of quantitative data due to discrete approximation:
  New experimental techniques allow for more!
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Identification of ODE models
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The model family

• Vector of concentrations:
• ODE model:

 

• Depending on the identification approach and on the data, specific 
(parametric) form for rate functions
• Common choice: unregulated degradation 
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• Linear model plus saturation (Jaeger et al, Nature 2004):

• Piecewise affine models (Glass & Kauffman, 1973, de Jong, ... ):

Model family: examples
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The data

• Measurement model 

  (not always used in full detail)
• Data set
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The problem

• Identification: find “the best” model of the data in a family of alternatives 
• Typical formulation: optimization of a (problem-dependent) cost function

• Cost function describes the ability of a model to explain the data
● Minimization of the data fitting error
● Penalization of overly complicated models to avoid overfitting

• In general, cost function is non-convex
● Non-uniqueness of the solution
● Optimization heuristics are needed
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Linearization methods: steady state

• Working assumption: 
●  all concentrations converge to an equilibrium
●  small, fixed perturbations modify the system equilibrium
●  perturbations are known, equilibria can be measured

• What perturbations ?
● Changes in concentration of chemicals in the medium
● Gene knockout/overexpression

• Idea: infer local dynamics around unperturbed equilibrium from 
several known perturbations of the system

u=0

u=1
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Linearized dynamics

• True dynamics without perturbation

• Linearization about equilibrium

• Perturbed equilibria
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Identification of linearized model

• Perform repeated perturbation experiments until equilibrium

• Collect observed results in data matrices

• Solve the least-squares problem

• Solution well defined if B known and M large enough 



23

Discussion

• A is network regulation matrix, B is (known?) perturbation effect

• Explicit solution (Frobenius norm):

  warning: no zero elements ( Overfitting ! )
• Penalization of complexity: several semi-empirical strategies
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Linearization methods: Time Series Network Identification

• Assumes linear dynamics (system evolving near equilibrium)

• Allows for time-dependent (small) perturbation experiments
• Attempts to solve the equation

  with the following time-course data (from a single experiment)

• In practice derivatives not known, resort to discretized dynamics
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Identification from time-series

• Discretized linear dynamics (equidistant measurement samples)

• Solution of the approximate equality

• Also identifies perturbation matrix
• Regularized solution via Principal Component Analysis (PCA) 
• Conversion to continuous-time network parameters 
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Principal Component Analysis

• Singular Value Decomposition (SVD) of a matrix

• PCA principle: eliminate contributions from smallest singular values

• i=1 , ... , r are called the principal components of M
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PCA in linear regression

• Problem: find combination H of rows of M that is closest to Y+: 

• Idea: exploit PCA to project Y+ on the approximate row space of M
• Define:

  Then:

• Low-rank solution, elimination of noise (non-principal components)
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Experiment
Synthetic gene regulatory
network in Yeast
(Cantone et al., Cell 2009)
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Results
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Qualitative validation

 



31

Boolean-like methods

• Recall Boolean update map:

• Algebraic equivalent (Plahte et al, 1998): apply the transformation

• Boolean-like model: define ODE
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Example (Boolean model)

Gene Expressed when Boolean model
1 G2 not expressed
2 G1 expressed or G4 not expressed
3 G4 expressed and G1 not expressed
4 G2 expressed



33

Example (Boolean-like ODE)

Gene More active when ODE model
1 G2 low
2 G1 high or G4 low
3 G4 high and G1 low
4 G2 high
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Plausibility ?

• Experimental evidence that often (Gjuvsland et al, 2007)
● Transcription factors combine into Boolean-like input functions
● Sigmoidal functions relate transcription factor concentrations and 

transcription rates
● Post-transcriptional, transport, (and reaction) processes at equilibrium can 

be described by sigmoidal functions

• Still a phenomenological framework, but ...
● Easy to interpret biologically
● Accurate and flexible
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Tractability ? 

• General Boolean-like model:

• Structure identification: based on data, decide
● The number of summands
● The sigmoids in each product
● The signs of the sigmoids

... combinatorial explosion and identifiability issues !!

• Parameter identification: paramaters of each sigmoid, rates 

• Intractable problem. But, good starting point
● Structured expression
● Reduction to specific families of Boolean-like functions
● Approximation



36

Piecewise Affine models

• Simple idea: abstract nonlinearities by switches

• Dynamical models with Boolean-type events
• Coarse approximation, but ...

• Powerful analysis (de Jong et al. 2004) & identification (Porreca et 
al, 2009) tools!
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Example: double-inhibition network
Courtesy of G.Ferrari-Trecate
(apologies for notational changes...)
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PWA models: key features
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PWA models: key features cont'd
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PWA model identification
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Data segmentation and classification

• Given one time series
• Variable sampling time
• Extends to multiple time series

• Use statistical procedures to
• Find segments with exponential behavior in each concentration profile
    (fit parameters and check that fitting residuals are compatible with noise)
• Partition data into sets with the same exponential model
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Threshold reconstruction

• Find minimal sets of thresholds that separate data clusters (multicuts)
● Find all thresholds that separate two clusters 
● Define and exploit partial order relations among multicuts to find the minimal 

ones
● Combinatorial number of multicuts: exploit branch-and-bound optimization 

techniques to avoid exploring all possibilities
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Optimal models

• Search of minimal multicuts: complexity reduction
• Identifiability issues:

●  Cannot discriminate certain models on the basis of the data
     (pool of equivalent models providing alternative biological hypotheses) 
●  Cannot fix thresholds, only bounds can be established 
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Example: carbon starvation in E.coli



45

Model and simulation
(Ropers et al., Biosystems, 2006)
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Identification from simulated data
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Models with unate structure

• Unate functions: Boolean rules monotone in each input variable
• Transcription factors with unambiguous role (activator XOR repressor)
• Arguably, the experimentally observable rules ? ( ↔ identifiability) 
• Includes most of the known gene activation rules

• Boolean-like ODE model: preserves monotonicity properties
• Model:

• Sign pattern:
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structure

• Goal: use a priori knowledge to reduce the family of network structures
• Intuition: many Boolean expression rules are unlikely/uncommon
• Evidence: (Szallasi et al 1998, Kauffman et al 2004, ... )

out of 139 gene activation rules analyzed in (Harris et al., 2002), 99% are
“Canalizing Functions”, 95% are “Hierarchically Canalizing Functions”, 90% 
are “H0  H∪ 1”
● CFs: at least one (canalizing) 
     value of at least one (canalizing) 
     variable determines the value 
     of the function
● HCFs: when the canalizing 
     variable takes its non-canalizing 
     value, a second variable is 
     canalizing, etc. We focus on H0 U H1

Boolean rules

CF UnateH0  H∪ 1HCF
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The class H0 U H1

• Class H0: 

• Class H1: 

• Boolean-like ODE model with H0 U H1-structure:

Structure:

Parameters:
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Identification of H0 U H1 models

• Given concentration and synthesis rate measurements

●    For known degradation rate, can compute synthesis rates from x:

• Estimate

● Structure:

● Parameters:

(Ronen et al 2002, Brown et al 2008,...)
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Mixed-Integer Parametrization
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Identification via MI optimization

• Weights wk compensate for variable measurement accuracy
• Complexity penalization C(p), p number of effective parameters

● Several statistical criteria (FPE, MDL, ...)
• Mixed Integer (nonlinear) programming: effective heuristics
• Highly non-convex: 

● For fixed structure parameters, cannot guarantee optimality of solution
● Post-processing for the correction of artifacts (local minima)
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Identification example

• 6-gene E.coli carbon 
  starvation response 
  network
• Model in exponential
  growth phase:

• Observation: All but third equation have H0 U H1-structure

(Ropers et al, 2006)
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Identification scenario

• Simulated data
• Samples every 5 min over 1200 min
• 5% noise
• Realistic parameters and initial cond.
• Dynamics excited in the experiment:

• All equations have H0 U H1-structure!
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Results: data fitting
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Results, noise on synthesis rates

• Just one spurious sigmoid
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Results, noise on rates and concentrations

• Several spurious sigmoids:
● Least squares do not account for noise on concentrations !
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Discussion

• Computational complexity still high, need to reduce model family
● A priori: use general and system-specific biological knowledge 
● Via preprocessing: certain model structures are falsified by the data, e.g.:

• Explicit account of all noise sources
● Existing solutions (Total Least Squares) 
     are computationally intensive
● Development of ad-hoc statistical tests

?
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Identification via sign patterns: rationale

• Given: protein concentrations & synthesis rates 

• Step 1: Exploit monotonicity properties 

 to invalidate sign patterns  

• Step 2: Search best fitting model structure with valid sign pattern 
• Enumerate valid sign patterns of increasing level of complexity
• Fit model structures with valid sign pattern to the data

– Parametrization of model structures S(p) with sign pattern p
– Prior knowledge embedded in the definition of S(p)

• Evaluate fitted models based on a statistical test on the fitting errors
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Complexity

1 1 -1 1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 4
1 1 -1 0 1 -1 -1 0 3

Pattern 1 0 -1 0 2
1 0 0 0 0 0 -1 0 1

0 0 0 0 0

Superpatterns

Subpatterns

Sign patterns: definitions and properties

• Given data pairs: 
• Definition: p is inconsistent if the property

 
 is falsified for some k,l

• Definition: subpattern and superpattern

• Subpatterns of inconsistent  patterns are also inconsistent
• Superpatterns of consistent patterns are also consistent
• Minimal consistent and maximal inconsistent patterns exist
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Algorithm 1: original version (full data)
• Protein concentrations & synthesis rates
• Time-course noisy data, known variance:
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Comments

• Separate identification of regulation function of each gene
• Hierarchical search of model structures of increasing complexity 

• Stops when a good model is found (statistical test on the model residuals)
• Favors simple over complicated models
• Returns pool of biological alternatives

• What is a statistically good model? 
• Under the null hypothesis that the estimated model is correct, the fitting 

residual is distributed as 
• Use this property to define confidence levels (threshold on the fitting 

residuals) on the model estimate
• Limitations: Nonconvex parameter fitting, Data requirements
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Test on a repressilator system
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Performance results

Index Range Description

Step 1 [0,1] Probability that the true p is deemed consistent
[0,1] Percentage of sign patterns eliminated from the search in Step 2

Step 2 [0,1] Probability that the true structure is In the pool of identified models
≥1 Average number of models in the pool

R eliability
S electivity
A ccuracy
D ispersion



65

Simulated identification on E.coli model

● 6-gene carbon starvation 
response  network

● Model in exponential 
growth phase

● All but third equation 
have H0 U H1-structure 
(all have unate structure) 

(Ropers et al, Biosystems 2006)



66

Identification scenario

● Simulated data collected every 10 min 
● Measurements over 1200 min
● Various noise levels
● Performance from 100 simulated runs
● Realistic parameters and initial cond.
● Dynamics excited in the experiment:

● All excited dynamics have H0 U H1-
structure

 Use this as a “reference” model
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Results on E.coli
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Algorithm 2: extension to partial data

• Assuming only protein concentrations are available:
1. Reconstruct missing information (synthesis rates, variances) 
2. Apply Algorithm 1 (unchanged)

• Option 1: Deconvolution

• Well established (Bayesian) methods for regularized estimates
• Severe over- and under-smoothing observed in practice

• Option 2 (our choice): Data fitting + Bootstrapping
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Residual resampling

• Randomized procedure to infer statistics of any functional of the regression curve

• Applicable to any type of regression curve (But sensitive to this choice!)

• Our implementation computes statistics of protein concentration and synthesis 
rate measurements from a single 
protein concentration dataset.
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Experiment on IRMA
Synthetic gene network 
in Yeast (Cantone et al., Cell 2009)
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Mathematical model

• We attempt identification in the class of models with H0 U H1-structure
• Different but similar analytical form
• Test for flexibility of the approach
• Known delays can be accounted for

(Cantone et al., Cell 2009)
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Results: full data
• Comparison with TSNI (Cantone et al., Cell 2009) 
• True protein concentrations (very few data points)
• Rates simulated from the model (“what-if” performance test)
• Evaluation of network reconstruction performance, but not of parameter fit
• PPV=TD/TD+FD and Se=TD/TD+FU (T=True, D=Detected, U=Undetected edges)

Porreca et al, Bioinformatics 2010
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Results: partial data

• Additional assumptions (no self-regulation) 
• Loss of accuracy

• Parameter estimates (when applicable, 
not shown)

• Sign of interaction (possibly due to low 
data quality)

• Direction of regulation (bad!)
• Still better than TSNI...

To be compared with...
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Identification of stochastic models:
A quick view
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Introduction: stochastic gene expression

• At the cell level, protein synthesis depends on random events
• Binding/unbinding of activators/repressors and RNApol to DNA, ...
• Environmental conditions (temperature, availability of free RNAP,... )

• Classical stochastic gene expression model:
• Describes the formation and degradation of single molecules
• Time resolution, no spatial resolution (homogeneous reaction volume) 
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Regulation and noise

•  Example: regulated gene expression and protein degradation

• This modelling framework describes the random nature of the events 
internal to the gene expression mechanism (intrinsic noise)

• Random fluctuations of the event rates, due to changes external to 
the gene expression mechanism, are not modelled (extrinsic noise) 
[Many contributors: Paulsson, Elowitz, Alon, Arkin, ...]
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Network modeling: Chemical Master Equation 

• Generalization of the stochastic modelling framework seen before to 
any biochemical (regulatory) network

 

•  Infinite-dimensional linear equation in the probabilities p

•  No closed-form solution, but finite-complexity approximations
[Recent references: Gillespie, Khammash, ...]
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Experimental measurement of p

[Taniguchi et al., Science 329, 533 (2010)]
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Identification: Finite State Projection method

• Form a vector p* with the probabilities of most likely states X*
• Approximate the CME with the linear equation

 
• For any t and any x* in X*, p*(t) is an approximation of p(x*;t)

(theoretical guarantees for “smart” choice of X*)
• Solve the optimization problem

where yk are empirical measurements of p* at times tk 

(histograms from measurements of x* over many cells)
[Finite State Projection: Munsky and Khammash, J. Chem. Phys 124 (2006)]
[Use in identification: Munsky et al, Mol Syst Biol 5:318 (2009)]
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Identification: Other methods

• Moment matching: [e.g. work by J.Hespana]
• Instead of probabilities, consider vector of all moments z and a truncation z*

evolving according to the equations depending on the model parameters

and fit the equation for z* to the corresp. empirical statistics from many cells

• At stochastic steady state: [Taniguchi et al., Science 329, 533 (2010)]
• System evolves until stochastic equilibrium where p does not change
• Use asymptotic approximation with a Gamma distribution

to fit (combinations of the) model parameters 
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... Thank you!

                                   eugenio.cinquemani@inria.fr
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