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General problem

» Let us consider an arbitrary complex metabolic network
» Each reaction rate responds to changes in concentrations of
substrates, products and some effectors:
o These kinetic laws are individual molecular properties
of each enzyme in the system
» Central questions of MCT-:

« How does the system respond to changes
In individual molecular properties (enzyme activities)?

o How does the system’s response depend on the network structure?

o How constrained are systemic sensitivities?
Do they show dependencies?
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Steady-states and system definition

Metabolism concerns almost exclusively sustainable processing
of chemical inputs into outputs such as biomass, energy, waste,
etc.. it must reach a stable steady-state.

Therefore:

» The system must be open in order to reach
a thermodynamically feasible non-trivial steady-state

(.e., with non-zero fluxes)

» Most reactions should be sensitive to both substrate and

product concentrations, allowing for the
balancing of metabolite production and consumption rates
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Intuitively?
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Formally

It is possible to derive a very general treatment of metabolic
control theory for metabolic systems of arbitrary complexity.
C. Reder (1988) J. Theoret. Biol. 135:175-201

General definitions:
X = X(t,p) Molarity vector
X = X(p) Steady-state molarity vector: dx/dt=0
vV =V(X,p) Rate vector
J=J(p) Steady-state flux vector

= V[X(p).p]
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The stoichiometry matrix

» Reactions in the network are expressed in the stoichiometry
matrix N, whose columns contain the stoichiometric
coefficients for each reaction

» This matrix reflects the system’s structure

> The stoichiometry matrix N is of maximal rank if and only if
there is no conservation relationship constraining the different
concentrations, which we will assume here for simplicity

> Otherwise it should be reduced to a matrix N° with maximal
rank in order to deal with independent variables:

N=L.NO

D. Kahn, Metabolic Control Theory



Modelling 2-component transduction
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Shinar et al, 2007, PNAS 104:19931-19935
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System evolution

The evolution of the system’s concentration vector X
IS a simple function of the reaction rate vector V :

dx/dt = N - v(X,p)

where P is a parameter vector, and the Jacobian is :
I =N - ov/ox

8Vi/8Xj are non-normalized ‘elasticities’.
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Shifting between steady-states

Starting from a steady-state X,, what happens if we perturb the
rates V with a small change in parameters op ?
dx

o 3.(X(1) = X,)

where X, Is the new steady-state.
[ dx

—=N.v(X,p+0

~ (X,p+5p)

d—X(O) = N.Qﬁp =N.ov
dt op

/\

X(0) = X,

L
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Shifting between steady-states

which integrates into:
X(t) =X, —(1—exp3t) I".N.6V
3 being definitive negative for the steady-state to be stable:
OX = X, =X, =-F".N.Sv
oV oV oV

5] > —0X+—8p=(1-—3I".N).ov
OX op OX

These relationships express the changes in steady-state
concentrations X and fluxes J in response to a change in the
enzyme rates oV
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Steady-state flux constraints

» We are interested in analysing the steady-state of the system:
dx/dt=N - v(X,p) =0
where X is the vector of steady-state concentrations

» The steady-state introduces linear dependencies between
fluxes:

N-J(p)=0
Kirchhoff's law for metabolic intermediates

» Therefore the flux vector J can be expressed
In a basis of Ker(N) (often termed K)
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Expressing systemic control

Differentiating the steady-state equation with respect to p:

N - av/ox - dX/op + N - dvldp = 0

oX/lop=-3-1-N-ovlop

» This equation relates systemic changes in steady-state
concentrations X to changes in rates V

> The matrix r=-31.N
contains all concentration control coefficients
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Flux control

» Let us calculate the resulting steady-state flux:
J =v(X,p)
and differentiate it with respect to p:

0J/op = ovIox - oX/lop + oviop
=(oviox -T'+1) - ovlop

» This equation relates systemic changes
in steady-state fluxes J to changes in rates Vv

> The matrix dO=1+oviox -T
contains all flux control coefficients
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Generalisation

If the system shows conservation relationships
such as [ATP]+[ADP]+[AMP] = constant

N=L-NC
dx%/dt = NO - v(x,p)
I =NO.ov/ox - L
C=-L.S1.No
d=1+oviox-T
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Normalised control coefficients

It is customary to express control in terms of dimension-less
normalised control coefficients :

. E. dJ.
Fluxes : Cl= J; 6E:
~ E oX.
Molarities : Ci><J — le 5E:

where the E; parameters denote enzyme activities.
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Scaling of fluxes with enzyme activities

The steady-state equation:
N-v(X,E)=0

IS invariant to an arbitrary scaling of activities E:
v(X,aE) = av(X,E), Va e R”

Therefore the flux vector J is a 15t order homogeneous function
of enzyme activities E:

J(aE) = aJ(E), Va e R”
and concentrations X are 0-order homogeneous functions:
X(aE) = X(E), Vo e RT
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Summation relationships

The summation theorems follow directly
by derivation with respect to o

0J . |
For fluxes : ZEia—Ej_:Jjjzcijzl

Flux control is distributed across the system

X .
For molarities : Zci '=0
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Response coefficients

The response of the system to a change in any parameter p;
can be expressed from control coefficients and elasticity
coefficients:

RI =Y Cle!

k
. OV
where &° = B N
Vi OB,
are normalised elasticity coefficients expressing the sensitivities
of rates to parameter changes.

The RJ are called response coefficients
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Connectivity relationships

]__‘:_L.S—l.NO
= I'-oviox-L=-L

d=I1+oviox-T°
= O -oviox-L=0
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Connectivity relationships

With normalised elasticities: ok Xio OV,
‘=

0
ZCkagik:_é‘ij Vk 6)('
k

> Clef =0
K

These relationships can be interpreted in terms of the internal
system’s response to perturbations of X;’

They are necessary for the system’s stability:

The system counteracts fluctuations of X’
The rest of the system is insensitive to these fluctuations at 15t order
approximation
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Summary

» The system’s response depends on both enzyme properties
and network structure

» Fluxes are constrained to a low-dimension subspace because
of metabolite pool balancing at steady-state

» Control of flux is generally distributed across the system
(no ‘bottleneck’)

o This is important for biotechnology and pharmacology!

» The system’s behaviour can be thought of under a general
action-reaction principle:
It usually buffers changes imposed externally

o It counteracts internal fluctuations
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Further reading

» Part 1 to 3.2 of Sauro (2004) Network dynamics
iIn Computational Systems Biology, Methods in Molecular
Biology vol. 541, pp. 269-290, Humana Press

» Understanding the Control of Metabolism, by David Fell
Portland Press, London, 1997
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