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INRIA Grenoble - Rhône-Alpes and IBIS

 IBIS: systems biology group of INRIA and Joseph Fourier University/CNRS

 Analysis of bacterial regulatory networks by means of models and experiments

 Involves computer scientists, molecular biologists, physicists, …
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Overview

1. Genetic regulatory networks in bacteria

2. Motivations for modeling and simulation

3. Approaches towards modeling and simulation

 Ordinary differential equations

 Stochastic master equations

4. Conclusions
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Bacteria
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Impact of bacteria on humans
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Bacterial cells
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Bacteria as living systems
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Proteins are building blocks of cell



9

Synthesis and degradation of proteins

DNA
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modified protein

transcription

translation

post-translational

modification
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degradation protease

RNA polymerase

ribosome
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Transcription
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Synthesis and degradation of proteins
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Variation in protein levels

 Protein levels in cell are adjusted to specific environmental 

conditions

Peng, Shimizu (2003), 

App. Microbiol. Biotechnol., 61:163-178

Ali Azam et al. (1999), J. Bacteriol., 181(20):6361-6370

2D gels

Western blots

DNA 

microarrays
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Regulation of synthesis and degradation

RBS

mRNA

ribosome

modified protein

kinase

protease

RNA polymerase
transcription 

factor

DNA

small RNA

response regulator

Mostly transcriptional regulation in bacteria, but sometimes 

regulation on all four levels

Transcriptional regulation
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Transcriptional regulation
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Transcriptional regulation



Genetic regulatory networks

 Regulation of synthesis and degradation of proteins is achieved 

by other proteins/protein complexes

Transcription regulators, proteases, but also ribozomes, RNA polymerases

 Direct and indirect regulatory interactions give rise to genetic 

regulatory network

16

Brazhnik et al. (2002), Trends Biotechnol., 20(11):467-72
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Complexity of genetic regulatory networks
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Analysis of genetic regulatory networks

 Abundant knowledge on components and interactions of 

genetic regulatory networks in many bacteria

 Scientific knowledge bases and databases

 Bibliographic databases

 Currently little understanding of how global dynamics emerges 

from local interactions between components

 Response of cell to external perturbation

 Differentiation of cell during development

 Shift from structure to dynamics of networks

« functional genomics », « integrative biology », « systems biology », …

Kitano (2002), Science, 295(5560):564
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Experimental tools
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Mathematical methods and computer tools

Modeling and simulation indispensable for dynamic analysis 

of genetic regulatory networks: 

 understanding role of individual components and interactions

 suggesting missing components and interactions 

Mathematical methods supported by computer tools

required for modeling and simulation:

 precise and unambiguous description of network

 systematic derivation of behavior predictions

 First models of genetic regulatory networks date back to early 

days of molecular biology

Regulation of lac operon
Goodwin (1963), Temporal Organization in Cells
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Hierarchy of modeling formalisms

 Variety of modeling formalisms exist, describing system on 

different levels of detail

Boolean networks

Ordinary differential equations

Stochastic master equations

precision abstraction

de Jong (2002), J. Comput. Biol., 9(1): 69-105

Hasty et al. (2001), Nat. Rev. Genet., 2(4):268-279

Smolen et al. (2000), Bull. Math. Biol., 62(2):247-292

Szallassi et al. (2006), System Modeling in Cellular Biology, MIT Press
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 Cross-inhibition network consists of two genes, each coding 

for transcription regulator inhibiting expression of other gene

 Cross-inhibition network is example of positive feedback, 

important for phenotypic differentiation (multi-stability) 

Cross-inhibition network

Thomas and d’Ari (1990), Biological Feedback

gene

protein

promoter genepromoter

protein
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Ordinary differential equation models

 Cellular concentration of proteins, mRNAs, and other molecules 

at time-point t represented by continuous variable xi(t) R 0

 Regulatory interactions, controlling synthesis and degradation, 

modeled by ordinary differential equations

where x [x1,…, xn]´and f (x) is rate law

 Kinetic theory of biochemical reactions provides basis for 

specification of rate law

x f (x),  
.dx

dt

Cornish-Bowden (1995), Fundamentals of Enzyme Kinetics

Heinrich and Schuster (1996), The Regulation of Cellular Systems
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Analysis and numerical simulation

 No analytical solution for most nonlinear differential equations

 Dynamic systems theory provides techniques for analysis of 

nonlinear differential equations, but usually not scalable

 Phase portrait

 Bifurcation analysis

 Approximation of solution obtained by numerical simulation, 

given parameter values and initial conditions x(0) x0

Kaplan and Glass (1995), 

Understanding Nonlinear Dynamics

Lambert (1991), Numerical Methods 

for Ordinary Differential Equationst

x

0

f (x) dt

t

t + t

x (t + t ) x (t) x (t) f (x) t
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Solution trajectories in phase plane

 Representation of solutions in phase plane yields solution 

trajectories

xa

0

t

xb

0
t1 t2 t3

xb

xa

0

t1

t2

t3
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ODE model of cross-inhibition network

xa = concentration protein A 

xb = concentration protein B 

xa = a f (xb) a xa

xb = b f (xa) b xb

a, b > 0, production rate constants 

a, b > 0, degradation rate constants 

.

.

f (x) = ,  > 0 threshold

n

n
+ x n

x

f (x )

0

1
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ODE model of cross-inhibition network

 Implicit modeling assumptions:

 Ignore intermediate gene products (mRNA)

 Ignore gene expression machinery (RNA polymerase, ribosome)

 Simplification of complex interactions of regulators with DNA to single 

response function

xa = concentration protein A 

xb = concentration protein B 

xa = a f (xb) a xa

xb = b f (xa) b xb

a, b > 0, production rate constants 

a, b > 0, degradation rate constants 

.

.
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Bistability of cross-inhibition network

 Analysis of steady states in phase plane 

 System is bistable: two stable and one unstable steady state.

 For almost all initial conditions, system will converge to one of 

two stable steady states (differentiation)

 System returns to steady state after small perturbation

xb

xa

0

xb = 0
.

xa = 0
.

xa = 0 : xa = f (xb)
a

a

xb = 0 :  xb = f (xa)
b

b

.

.
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Switching in cross-inhibition network
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Switching in cross-inhibition network
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Switching in cross-inhibition network
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Switching in cross-inhibition network
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Bifurcation in cross-inhibition network
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Construction of cross inhibition network

 Construction of cross inhibition network in vivo

 Differential equation model of network

u =                      – u
1 + v β

α1 v =                      – v
1 + u 

α2..

Gardner et al. (2000), Nature, 403(6786): 339-342
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Experimental test of model

 Experimental test of mathematical model (bistability and 

hysteresis) Gardner et al. (2000), Nature, 403(6786): 339-342
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Bacteriophage infection of E. coli

 Response of E. coli to phage 

infection involves decision between 

alternative developmental pathways:   

lysis and lysogeny

Ptashne, A Genetic Switch, Cell Press,1992
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Bistability in phage 
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Control of phage fate decision

 Cross-inhibition feedback plays key role in establishment of 

lysis or lysogeny, as well as in induction of lysis after DNA 

damage

Santillán, Mackey (2004), Biophys. J., 86(1): 75-84
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Simple model of phage fate decision

 Differential equation model of cross-inhibition feedback network 

involved in phage fate decision

mRNA and protein, delays, thermodynamic description of gene regulation

Santillán, Mackey (2004), Biophys. J., 86(1): 75-84
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Analysis of phage model

 Bistability (lysis and lysogeny) only occurs for certain parameter 

values

 Switch from lysogeny to lysis involves bifurcation from one 

monostable regime to another, due to change in degradation 

constant

Santillán, Mackey (2004), Biophys. J., 86(1): 75-84
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Extended model of phage infection

 Differential equation model of the extended network underlying 

decision between lysis and lysogeny

McAdams, Shapiro (1995), Science, 269(5524): 650-656
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Simulation of phage infection

 Numerical simulation of promoter activity and protein 

concentrations in (a) lysogenic and (b) lytic pathways

 Cell follows one of two pathways for different initial conditions
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Measurements of phage infection
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Necessary criteria for bistability

Many other examples of bistability exist in bacteria, such as the 

lac operon

 Necessary criterion for bistability, or multistability, is the 

occurrence of positive feedback loops in the regulatory 

network

 Criterion is not sufficient, as the actual occurrence of bistability 

depends on parameter values

 Oscillations also occur in bacteria, for instance cell cycle or 

circadian rhythms in photosynthetic bacteria

 Necessary criterion for oscillations is the occurrence of 

negative feedback loops in the regulatory network

Dubnau, Losick (2006), Mol. Microbiol., 61 (3):564–72

Thomas and d’Ari (1990), Biological Feedback



45

Other ODE models

 Circadian clock in mammals

 Cell cycle in yeast

 Carbon starvation in bacteria

 Signal transduction cascades and developmental decisions

 Pattern formation in fruit fly embryon

Leloup and Goldbeter (2003), Proc. Natl. Acad. Sci. USA, 100(12):7051-7056

Chen et al. (2004), Mol. Biol. Cell, 15(8):3841-3862

Bettenbrock (2005), J. Biol. Chem., 281(5):2578-2584

Jaeger et al. (2004), Nature, 430(6997):368-371

Ferrell and Machleder (1998), Science, 280(5365):852-853
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Evaluation of differential equations

 Pro: general formalism for which powerful analysis and 

simulation techniques exist

 Pro: well-developed theoretical framework for application to 

genetic regulatory networks

 Contra: numerical techniques are often not appropriate due to 

lack of quantitative data on model parameters 

 Contra: assumptions of continuous and deterministic change of 

concentrations may not be valid on molecular level
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Lack of quantitative information: strategies

 Three main strategies to deal with lack of quantitative data:

 Parameter sensitivity and robustness

 Parameter estimation from time-series data

 Model reduction

De Jong and Ropers (2006), Brief. Bioinform., 7(4):354-363
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Lack of quantitative data: robustness

 Important dynamic properties are expected to be robust over 

large ranges of parameter values

Important dynamic properties should be insensitive to moderate 

variations in parameter values

xb

xa

0

xb = 0
.

xa = 0
.

bistability

xb

xa

0

xb = 0
.

xa = 0
.

bistability

Stelling et al. (2004), Cell, 118(6):675-685
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Robustness in E. coli chemotaxis

 Chemotaxis in bacteria is ability to sense gradient of chemical 

ligands in environment

Adjustment of tumbling frequency of molecular motor 

McAdams et al. (2004), Nat. Rev. Genet., 5:169-178
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Robustness in E. coli chemotaxis

Barkai and Leibler (1997), Nature, 387(6636):913-917

 Differential equation model of signal transduction network 

underlying bacterial chemotaxis
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Robustness in E. coli chemotaxis

 Adaptation property is insensitivity of steady-state tumbling 

frequency to ligand concentration 

 Robustness of adaptation property over wide range of 

parameter values (model and experiments)

Barkai and Leibler (1997), Nature, 387:913-917 Alon et al. (1999), Nature, 397:168-171
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Lack of quantitative information: strategies

 Three main strategies to deal with lack of quantitative data:

 Parameter sensitivity and robustness

 Parameter estimation from time-series data

 Model reduction

De Jong and Ropers (2006), Brief. Bioinform., 7(4):354-363
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Lack of quantitative data: estimation

 Estimate parameter values from experimental time-series data

Systems identification in control and engineering

 Given model structure, search parameter values for which 

model predictions best fit experimental data

 Minimization of objective function, for instance sum of squared 

errors: 

Possibility to add constraint or penalty terms to restrict parameter space

Ljung (1999), System Identification: Theory for the User

t

xb

0

∑ t (x(t,θ) – y(t))2

yb
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Estimation of parameter values

 Nonlinear differential equation model of uptake of carbon 

sources (glucose, lactose, glycerol, …) by E. coli

Several dozens of equations and more than a hundred parameters, 

many of them unknown or unreliable

Bettenbrock et al. (2005), J. Biol. Chem., 281(5): 2578-2584
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Estimation of parameter values

 Estimation of parameter values from time-series measurements 

of metabolite concentrations on wild-type and mutant strains

Bettenbrock et al. (2005), J. Biol. Chem., 

281(5): 2578-2584
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Limitations of system identification

 No algorithms that guarantee globally optimal solution for 

parameter estimation in nonlinear models

Evolutionary algorithms, simulated annealing, genetic algorithms, …

Model identifiability demands experimental data of sufficient 

quantity and quality

Common problems: noise, sampling density, unobserved variables, …

 However, models of cellular regulatory networks may be non-

identifiable by principle, and …

… even partially identifiable models may yield interesting 

results

Van Riel (2006), Brief. Bioinform., 7(4):364-374
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Sloppy parameter sensitivities

 Sensitivity of model predictions to variation of individual 

parameters may be limited, though certain combinations of 

parameters may be tightly constrained

 Diagrams showing ellipsoids of constant model behavior (error)

 Skewedness of ellipsoid measured by eigenvalues λ of Hessian matrix 

accounting for sensitivity of model behavior to changes in parameters  

Gutenkunst et al. (2007), PLoS Comput. Biol., 3(10): e189
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Sloppy parameter sensitivities

 Sensitivity of model predictions to variation of individual 

parameters may be limited, though certain combinations of 

parameters may be tightly constrained

Gutenkunst et al. (2007), PLoS Comput. Biol., 3(10): e189

 Most models have skewed ellipsoids, as 

indicated by relative eigenvalues far from 1

 Moreover, ratios of eigenvalues spread 

over several orders of magnitude: sloppy

parameter sensitivities
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Sloppy parameter sensitivities

 Consequence: uncertainty in 

individual parameters estimated 

from data may be large, but 

model predictions nevertheless 

tightly constrained

 Also: direct measurements of 

parameters may need to be 

extremely precise to obtain good 

predictions

Gutenkunst et al. (2007), PLoS Comput. Biol., 3(10): e189
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Lack of quantitative data: reduction

xa = a f (xb) a xa

.

xb = b f (xa) b xb

.

x

f (x )

0

1

xa

xb0

xb = 0
.

xa = 0
.

bistability

a

b

 Use model reduction to obtain simpler models that can be 

analyzed with less information on parameter values

Piecewise-linear instead of nonlinear models

 Other example of model reduction: quasi-steady state 

assumption

de Jong et al. (2004), Bull. Math. Biol., 66(2):301-340

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29

Heinrich and Schuster (1996), The Regulation of Cellular Systems
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Gene expression is discrete process

 Gene expression is result of large number of discrete events: 

chemical reactions involved in protein synthesis (and 

degradation)

0 1 2 3 4 n-1 n0 1 2 3 4 n-1 n

DNA

0 1 2 3 4 n-1 n

RNA polymerase

DNA + RNAP DNA0 • RNAP

0 1 2 3 4 n-1 n

DNA

DNAi • RNAP DNAi+1 • RNAP
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Gene expression is stochastic process

 Gene expression is stochastic process: random time 

intervals between occurrence of reactions 

 Time interval has probability distribution

P( )

0 1 2 3 4 n-1 n0 1 2 3 4 n-1 n

DNA

RNA polymerase
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Gene expression is stochastic process

 Gene expression is stochastic process: reactions in cell 

occur in presence of external fluctuations 

Energy sources
Temperature

Salinity

…

…Population density

DNA

RNA polymerase
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Differential equations are abstractions

 Differential equation models make continuous and 

deterministic abstraction of discrete and stochastic process

 xi(t) R 0 is continuous variable

 xi fi(x) means deterministic change of xi at t

 Abstraction may not be warranted when modeling gene 

regulation on molecular level

Stochasticity gives rise to (internal and external) noise

 Noise effects strengthened by low number of molecules of each 

species

.
.

Rao et al. (2002), Nature,  420(6912): 231-237

Kaern et al. (2005), Nat. Rev. Genet.,  6(6):451-464
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Stochastic models

 Stochastic models of gene regulation are more realistic

 Number of molecules of each species i at time-point t
represented by discrete variable Xi(t) N

 Reactions between molecular species lead to change in state of 

system from X (t)  to X (t+ t ) over time-interval t, where X 
[X1,…, Xn]´

 Probability distribution p[Xi(t)=Vi] describes probability that at 

time-point t there are Vi molecules of species i

Rao et al. (2002), Nature,  420(6912): 231-237

p[Xi(t)= Vi]

Vi0
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Stochastic master equation

 Equation describes evolution of state X of regulatory system

 m is the number of reactions that can occur in the system

 j t is the probability that reaction j will occur in [t, t + t] given that 

X(t)=V

 k t is the probability that reaction k will bring the system from 

X(t)=V’ to X(t + t)=V in [t, t + t]

p[X (t + t) =V ] =  p[X (t ) = V ] (1 - j t ) + 
j = 1

m

p[X (t ) = V’ ] k t 
k = 1

m

V’ N n, V’ = V

Van Kampen (1997), Stochastic Processes

in Physics and Chemistry
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Stochastic view on dynamics

 Reactions between molecular species lead to state change

 j t is the probability that reaction j will occur in interval of length t

given that X=V

 k t is the probability that reaction k will bring the system from X=V’ to 

X=V in interval of length t

X = V

X =V’
k t

k

X =V’’

j t

j

1–( j + …) t
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Stochastic master equation

 For t 0 we obtain stochastic master equation

p[X(t)=V] / t = p[X(t)=V j] j  p[X(t)=V] j
j = 1

m

Van Kampen (1997), Stochastic Processes

in Physics and Chemistry

p[X(t)= V]

V
0
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Stochastic master equation

 For t 0 we obtain stochastic master equation

p[X(t)=V] / t = p[X(t)=V j] j  p[X(t)=V] j
j = 1

m

Van Kampen (1997), Stochastic Processes

in Physics and Chemistry

p[X(t+δ)= V]

V
0
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Stochastic master equation

 For t 0 we obtain stochastic master equation

p[X(t)=V] / t = p[X(t)=V j] j  p[X(t)=V] j
j = 1

m

Van Kampen (1997), Stochastic Processes

in Physics and Chemistry

p[X(t+2δ)= V]

V
0
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Stochastic master equation

 For t 0 we obtain stochastic master equation

 Probabilities j, j  are defined in terms of kinetic constants of 

reactions

 Analytical solution of master equations is not possible in 

general

p[X(t)=V] / t = p[X(t)=V j] j  p[X(t)=V] j
j = 1

m

Van Kampen (1997), Stochastic Processes

in Physics and Chemistry

p[X(t+2δ)= V]

V
0
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Stochastic simulation

 Stochastic simulation predicts sequences of reactions that 

change state of system, starting from initial state X(0) = V0

Stochastic simulation samples joint probability density function 

p[ , j|X(t) = V]

= time interval until occurrence of next reaction

j = index of next reaction

Probability density function defined in terms of j, k (reaction constants) 

 Repeating stochastic simulations yields approximation of     

p(X (t )=V), and thus solution of stochastic master equation

Gillespie (2002), J. Phys. Chem.,  81(25): 2340-2361
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Stochastic simulation

 Stochastic simulation generates sequences of reactions and 

time intervals between reactions, starting from initial state X(0)

 Stochastic simulation may lead to different dynamical behaviors 

starting from identical initial conditions

X(0) = V0

1, 1

2, 2

3, 3

4, 4

5, 5

6, 6

3’, 3’

1’, 1’
2’, 2’

4’, 4’

5’, 5’6’, 6’
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Auto-inhibition network

 Auto-inhibition network consists of a single gene, coding for 

transcription regulator inhibiting expression of its own gene

 Auto-inhibition is example of negative feedback, and 

frequently occurs in bacterial regulatory networks

 Development of stochastic model requires list of species, 

reactions, and kinetic constants

gene a

protein A

promoter a

Thieffry et al. (1998), BioEssays,  20(5):433-440
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Reactions and species

Pa

+
RNAP·PaRNAP

RNAP·Pa

+
RNAP

RBSa

+
Pa

RBSa

+

Ribosome Ribosome·RBSa

Ribosome·RBSa

A

+
A A2

A2·PaA2

Pa

+

A
RBSa

Ribosome A

+
RBSa

+
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Stochastic simulation of auto-inhibition

 Occurrence of fluctuations and bursts in gene expression
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Auto-inhibition and noise reduction

 Auto-inhibition reduces fluctuations in gene expression level

Becskei and Serrano (2000), Nature,  405(6785):590-591
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Bacteriophage infection of E. coli

 Response of E. coli to phage 

infection involves decision 

between alternative 

developmental pathways:   

lytic cycle and lysogeny

Ptashne (1997), A Genetic Switch: 

Phage λ and Higher Organisms
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Stochastic analysis of phage λ infection

 Stochastic model of λ 

lysis-lysogeny 

decision network

Arkin et al. (1998), Genetics, 149(4): 1633-1648
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Stochastic analysis of phage λ infection

 Time evolution of Cro and CI 

dimer concentrations

 Due to stochastic fluctuations, 

under identical conditions cells 

follow one or other pathway (with 

some probability)

Arkin et al. (1998), Genetics, 149(4): 1633-1648
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Comparison with deterministic approach

 Deterministic models can be seen 

as predicting average behavior of 

cell population

 Analysis of average behavior may 

obscure that one part of population 

chooses one pathway rather than 

another

 However, under some conditions 

deterministic models yield good 

approximation

Arkin et al. (1998), Genetics, 149(4): 1633-1648

Gillespie. (2000), J. Chem. Phys., 113(1): 297-306
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Other stochastic models

 Effect of noise on carbon assimilation in E. coli

 Regulation of expression of virulence factor in pathogenic E. 

coli

Puchalka and Kierzek (2004), Biophys. J., 86(3):1357-1372

Jarboe et al. (2004), Biotechnol. Bioengin., 88(2):189-203



83

Evaluation of stochastic equations

 Pro: more realistic models of gene regulation

 Contra: required information on regulatory mechanisms on 

molecular level usually not available

Reaction schemas and kinetic constants, necessary for generating 

values of parameters and , are not or incompletely known

 Contra: stochastic simulation is computationally expensive

Large networks cannot currently be handled, but a host of extensions 

and approximations have been developed
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Conclusions

Mathematical methods and computer tools for modeling and 

simulation necessary to understand genetic regulatory 

processes

 Variety of approaches available, representing genetic 

regulatory systems on different levels of abstraction

 Choice of approach depends on biological problem and on 

available information:

 knowledge on reaction mechanisms

 quantitative data on model parameters and gene expression levels

 Lots of applications on bacteria and higher organisms
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Challenges

 Integration of models and experimental data

New techniques for obtaining real-time measurements in living cells, on 

level of populations and single cells

 Upscaling to large networks of dozens or even hundreds of 

genes, proteins, metabolites, …

 Formal verification tools

 Model reduction

 Perturbation and redesign of regulatory networks

Synthetic biology

 From model systems to organisms of medical and biotechnical 

interest


