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SI Text 

 

This supporting information text provides the differential equations that describe the 

mechanism for robust signaling (Fig. 2b). We present the analytic solution for their 

fixed points, and study their stability both analytically and numerically. We also 

analyze the effects of seven additional reactions on input-output robustness. In 

addition, we compare the present mechanism to the engineering principle of integral 

feedback (1), and discuss similarities and differences with the example of robust 

adaptation observed in bacterial chemotaxis (2). We analyze the response time of the 

system, and present numerical results on the system dynamics for a large set of 

parameters. Finally, we show that in a previous model of the EnvZ/OmpR system (3) 

the output is proportional to the ATP concentration. 

 

The differential equations induced by the mechanism for robust signaling: 

 

The reactions and rate constants are as follows: 
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where the symbol T denotes ATP and D denotes ADP. X and XP denote un-

phosphorylated and phosphorylated sensor, respectively. Y and YP denote un-

phosphorylated and phosphorylated response regulator, respectively. The symbol A 

denotes the complex X·T, B denotes the complex XP·Y and C denotes the complex 

X·T·YP. In the reaction pairs of Eqs. 1'a, 1'b and 1'c, the forward rate constants are 

k1, k2 and k3, respectively, and the backward rate constants are k'1, k'2 and k'3, 

respectively. va(s) is the rate constant in the sensor autophosphorylation reaction 1'a. 

It depends on the level s of the input signal. vk and vp are the rate constants in the 

phosphotransfer and dephoshorylation reactions 1'b and 1'c. 
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The total concentrations XT and YT of the sensor and the response regulator proteins, 

respectively, are assumed to be constant on the time-scale of approach to steady state. 

This is reasonable since the response time of the system is typically on the order of 

seconds to minutes, much faster than changes in total protein levels due to protein 

production or dilution/degradation (4): 

 

[1] ,TP XCBAXX =++++  

 

[2] .YTP CBYY =+++  

 

Similarly, the ATP concentration T is also assumed to be constant. Note that XT, YT 

and T typically vary from cell to cell.  

 

We use mass-action kinetics to describe the time course of the concentrations of the 

components in the system. This results in seven first-order, non-linear differential 

equations: 
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[9] CvkAYk
dt
dC

pP )'( 33 +−=  

 

Eqs. 3–9 obey the conservation laws 1 and 2, which can be used to eliminate two of 

the seven variables. Thus, the dynamic behavior of the system can be determined by 

specifying XT and YT together with the initial values of five out of the seven 

concentrations, utilizing Eqs. 1 and 2 to obtain the initial values of the remaining 

concentrations and integrating Eqs. 3–9. 

  

Steady state solutions: 

 

Solving Eqs. 3–9 at steady state shows that the equations have two fixed points, which 

are denoted F and F*: 
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The fixed point F exists for every 0≥TY . However, F* exists only for *
PT YY ≥ , (SI 

Fig. 4). The point *
PT YY =  is a transcritical bifurcation (5) of the systema. 

 

The steady state output associated with F*, that is, 
p
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all component concentrations (SI Fig. 4), because none of the concentrations affect 

the value of this expression. The output is modulated by the input signal s through its 

effect on rate constants. Note that at the fixed point F*, the ATP consumption rate is 

positive (Eq. 11). In contrast, at the fixed point F, the ATP consumption rate is zero. 

The steady state output in this case, TP YY = , is not robust to changes in YT and cannot 

be modulated by the input signal s.  

 

Stability of steady state solutions: 

 

We show below that the system tends towards the steady state solution F for any 

choice of positive rate constants and positive initial concentrations, provided that 

*
PT YY < . However, F becomes unstable in the region *

PT YY >  (SI Fig. 4), and the 

robust fixed point F* is locally stable. This can be seen by considering the function 

 

                                                 
a A note regarding the fixed point F: in this fixed point, all of X and Y are phosphorylated. If no other 

reactions are present, once this state is entered the system remains there indefinitely, even when F* is 

the only stable fixed point. Thus, this state can be called an "absorbing state". In principle, stochastic 

fluctuations can cause entry into this state (6). However, in realistic systems, there are several 

mechanisms that allow "escape" form this state. For example, expression of new X and Y proteins, 

which occurs on a slow timescale compared to the phosphorylation reactions, as well as spontaneous 

dephosphorylation of the proteins, ensures that the system does not remain in this state forever.  

 



 

5 

[12] CvkB)AYXvkL p
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'
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Note that 0≥L  for every value of the independent concentrations X, Y, A, B and C 

because the concentrations are non-negative and the coefficients are positive. That all 

concentrations remain non-negative is guaranteed by a basic result in chemical 

reaction network theory (7).The function L is equal to zero if and only if the system is 

at the fixed point F, since L is a non-negative, linear function of all five independent 

concentrations. Using 3, 5, 6, 7, 9 and 12: 

 

[13] ).( *
PPp3 YYAvk

dt
dL

−=  

 

We see by inspecting 13 that in the region *
PT YY < , 0<L�  if 0>A , and 0=L�  if  

0A = . Thus, L continues to decrease until A reaches zero and stays there. This can 

happen only if the system is at F, since F is the only fixed point in the region 
*

PT YY < . Hence, F is the sole attractor of the system in the region *
PT YY < .  

 

F ceases to be stable in the region *
PT YY > . This can be seen by linearizing Eq. 13 

around F: 

 

[14] ).( *
PTp3 YYAvk

dt
Ld

−∆=
∆  

 

Inspecting Eq. 14 shows that in the region *
PT YY > ,  0≥∆L�  (since 0≥∆A ), and 

therefore the fixed point F is not stable. 

 

The dynamic behavior of the system in the region *
PT YY >  is determined by five 

independent differential equations and in general depends on the values of all the rate 

constants and initial conditions. However, a simplification is possible if in each of 

Eqs. 1'a–1'c the rates of the binding and dissociation reactions of each reaction pair 

are much faster than the rates of the respective covalent modification reactions (i.e. 

phosphorylation / dephoshorylation). Such separation of timescales occurs commonly 
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in enzymes (e.g. Michaelis-Menten model (8)). This timescale separation condition 

can be expressed mathematically by the following inequalities: 
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Hence, whenever timescale separation exists and conditions 15 are satisfied, the 

system approaches quasi equilibrium much faster than it approaches steady state, and 

the following independent quasi equilibrium relations result: 
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Using 1, 2 and 16–18 in 3–9 results in two differential equations that govern the 

behavior of the system: 
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where PP YXP += , and A, B and C are expressed as functions of  P and YP. 
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Using the simplified equations 19 and 20, as well as the quasi equilibriumb conditions 

16–18, it is possible to show that F* is a locally stable fixed point. This is done by 

perturbing Eqs. 19 and 20 and linearizing the resulting equations: 
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and  

 

                                                 
b This is always possible because all the concentrations corresponding to F* are greater than zero. Thus, 
there is always a region of concentration space where conditions 15 are satisfied.  
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The characteristic equation of 21 and 22 is 

 

[26] 02 =++ bcaλλ , 

 

which yields the eigenvalues 

 

[27] 
2

4,
2

4 22 bcaabcaa −−−−+−
=±λ . 

 

Inspecting 23–25 shows that a, b and c are always positive, and therefore the 

eigenvalues 27 always have negative real parts. Thus, the fixed point F* is stable 

when timescale separation conditions 15 hold, and F* is the only attractor of the 

system in the region *
PT YY > . We note that the separation of timescales is merely an 

assumption made for simplicity in the analysis of stability. Below, we show that this 

assumption is not needed for stability, as demonstrated by numerical analysis of the 

equations with general rate constants. 

 

Numerical analysis of the system: 

  

We studied the general behavior of the system using numerical analysis (Matlab 7.04, 

The MathWorks), even without timescale separation. The main result is the same as in 

the case where timescale separation applies: the system always approaches F if 
*

PT YY < , whereas the system always approaches F* if *
PT YY > .  

 

We explored the possible steady states of the system by systematically changing YT 

and then numerically solving the temporal dynamics of the system, while keeping all 
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rate constants fixed. We found that in agreement with the analytic result, as long as 
*

PT YY > , the output of the system settles into the robust steady state YP
* (SI Fig. 4). 

For *
PT YY ≤  the system settles into a steady state where all the response regulator 

proteins are phosphorylated: TP YY =*  (SI Fig. 4).  

 

Next, we analyzed the behavior of the system for a wide range of rate constant values. 

To do this, we used a Monte Carlo approach in which each rate constant and initial 

condition was (log) randomly and independently chosen in the range [1, 100]. We 

simulated the system's behavior 1000 times and found that in all cases the system 

settled into a stable steady state as predicted by the theoretical analysis (<10-3 relative 

difference) with no cases of oscillatory limit cycles or chaotic behavior.  

 

Finally, we followed the response of the model to a step-like signal, which causes a 

modulation of the autophosphorylation rate (SI Fig. 5). We found that a change in va 

results in a robust change in the system’s output: Systems equal in all aspects except 

protein or ATP concentrations reach the same steady state output following a 

modulation of va. However, the timescale of approach to steady state does depend on 

the protein and ATP concentrations. It is interesting to note that for physiological 

parameters the response time is minimal at a defined value of XT (SI Fig. 6). Response 

time on the order of minutes can be reached with tens to hundreds of copies of the 

sensor, in accord with measured concentrations of sensors such as EnvZ (12).  

 

The effect of additional reactions on input-output robustness: 

 

The analysis presented above demonstrates that mechanism 1' has input-output 

robustness. We now study how this property may be affected by additional possible 

reactions involving the components in 1'. The main result is that when the flux 

through an additional reaction is of order ε  compared to the corresponding reaction in 

the original model, robustness is affected only to order ε . Thus, robustness can be 

made as close to perfect as desired by appropriate choice of rate constants for the 

additional reactions. 
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We considered the effect of seven such possible reactions, all of which might 

plausibly exist in signaling systems of the present type: (a) autodephosphorylation of 

the sensor, iP PXX X +→α ; (b) autodephosphorylation of the response regulator: 

iP PYY Y +→α ; (c) reverse autophosphorylation: ADX '
P →+ av ; (d) reverse 

phosphotransfer: BYX '
P →+ kv ; (e) reverse dephoshorylation: CPYA '

i →++ pv ; 

(f) Use of ADP as a co-factor for response regulator dephoshorylation in addition to 

ATP: i
7

7'
P

6
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 ←
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k

k

k

k
, where F denotes the complex 

X·D and G denotes the complex X·D·YP ; and (g) an additional pathway for the 

formation of the ternary complex C: EYX
4

4'
P

→
 ←+

k

k
, CTE

5

5'

→
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k

k
. To study the 

effect of each of the additional reactions on input-output robustness, we added each of 

a–g separately to the reactions of mechanism 1', derived the induced differential 

equations and analyzed the solutions.  

 

In the case of the reverse phosphotransfer reaction (d), one can show analytically (SI 

Appendix 1) that at steady state, *
PP YY = . Thus, the presence of the reverse 

phosphotransfer reaction (d) has no influence on input – output robustness, and the 

conditions for input-output robustness are the same as in the unperturbed mechanism 

1'. 

 

In the case of ADP-catalyzed response regulator dephosphorylation (f), one can derive 

(SI Appendix 2) an analytic expression for YP: 
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Eq. 28 shows that robustness is maintained with respect to all component 

concentrations, except the ADP to ATP ratio D/T. However, this sensitivity to D/T is 

very small, fundamentally because the D/T ratio is very small in cells (D/T~0.05 (9)). 

Thus, even if ADP is as effective as ATP as a cofactor, its low concentration relative 

to ATP makes this reaction have a very small effect on robustness. To explicitly 

calculate the departure from robustness, one can compute the sensitivity χ of the 

system, defined as the percentage change in YP given 1% change in D/T, by taking the 

logarithmic derivative of YP with respect to D/T: )./log(/log TDYχ P ∂∂=  

Evaluating the logarithmic derivative using 28 yields 

 

[30] .
1

T
Dκ

T
Dκ

+
−=χ  

 

Under physiological conditions (parameters as in SI Fig. 5) supplemented by k6 = k7 = 

100 [sec µM]-1 (diffusion limit), k6' = 3·104 sec-1 (10), k7' = 2·102 sec-1 (same as k3', 

which reflects a similar affinity for YP to both A and F) and vd = 1 sec-1 (same as vp, 

which reflects similar efficiency for ADP and ATP as dephoshorylation coenzymes), 

one obtains κ = 0.2.  Since in wild-type E. coli D/T ~0.05 (9), it follows from 30 that 

the sensitivity in the present case is approximately χ ~ -0.01. Thus, a 1% change in 

D/T produces approximately -0.01% change in the output YP. This predicts that under 

physiological conditions the system is highly insensitive to the ADP-catalyzed 

dephoshorylation reaction, thereby preserving input-output robustness to an excellent 

approximation. 

 

The effects of the sensor autodephosphorylation reaction (a), the response regulator 

autodephosphorylation reaction (b), the reverse autophosphorylation reaction (c) and 

the reverse dephoshorylation reaction (e) were studied using numerical analysis 

(Matlab 7.04, The MathWorks). For each of these additional reactions, we 

analytically derived conditions on the parameters that tend to make the phosphoryl 

flux through these reactions small compared to the flux through the corresponding 

reactions of mechanism 1' (SI Appendix 3). The relative magnitude of these fluxes 



 

12 

was characterized by a dimensionless parameter ε . The goal was to see how input-

output robustness varies as a function of ε . A deviation that approaches zero as ε  

tends to zero signifies stability of the robust input-output mechanism 1' under model 

structural uncertainty. 

 

For each of the reactions (a–c and e), we randomly chose each independent rate 

constant from the interval whose limits are 0.5 the wild-type level to 5 times the wild-

type level (wild-type values are as in SI Fig. 5 and as in the preceding paragraph). 

This was repeated 100 times. For each such choice of rate constants we considered 

five values of ε  in the range [10-3 10-1]. For each of the 100 choices of independent 

rate constants and five choices of ε , we randomly chose 500 values of XT, YT, T, D 

(when applicable) and Pi (when applicable). The interval whose limits are 0.5 the 

wild-type level to 5 times the wild-type level was used for all total concentrations 

except YT, where the interval ]202[ **
PP YY  was used, so that TP YY <* .  For each choice 

of independent rate constants, ε  and initial concentrations we calculated the 

remaining dependent rate constants using the relevant "smallness" condition (SI 

Appendix 3), randomly generated the initial concentrations corresponding to the total 

concentrations chosen, integrated the differential equations over 109 msec (to ensure 

sufficient time for relaxation to steady state) and obtained the terminal value of the 

output YP. Finally, for each choice of independent rate constants and ε we calculated 

the coefficient of variation of the output due to variation in component concentrations 

(defined as the standard deviation of YP divided by the mean of YP of the 500 terminal 

values of YP). The coefficient of variation is a measure of the effect of each additional 

reaction on input-output robustness. The smaller it is, the closer the system is to 

having perfect input-output robustness. 

 

The results of the simulations appear in Table 2. We find that for each of the 100 

random choices of independent rate constants, the coefficient of variation vC  is, to an 

excellent approximation, linear in .: ε=ε mCv  Hence, insofar as parameters are 

chosen such that each of the additional reactions is "small" compared to the 

corresponding reactions of the mechanism 1', their effect on input-output robustness 

is of the same order of smallness. 
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To study the effect of the additional pathway (g) for forming the ternary complex C, 

we performed numerical simulations similar to those described in the previous 

paragraph. We hypothesized that if ATP saturates X whereas YP does not saturate X, 

that is if 
T

kvk a 11 /)'( +
=ε is small compared to *

22 /)'(

P

k

Y
kvk +

, the primary pathway 

for the formation of the ternary complex would be that of mechanism 1' rather than 

that of additional reactions (g). Indeed, for all 100 random choices of independent rate 

constants and for all 32.0<ε  in the range [0.01  1], the coefficient of variation of the 

output YP was less than 10-4.  In typical wild-type parameters, one finds .06.0=ε  We 

thus conclude that under typical parameters (and a neighborhood thereof) the effect of 

the putative additional pathway on input-output robustness is very small. 

 

In conclusion, conditions can be found, for all seven additional reactions considered, 

such that the deviation from input-output robustness of mechanism 1' is very small. 

The wild-type parameters seem to assure a small effect on input-output robustness in 

the case of ADP-catalyzed response regulator dephoshorylation (by the small values 

of D/T and κ), additional pathway for the formation of the ternary complex C (by the 

high affinity of ATP to free sensor) and response regulator autodephosphorylation (by 

the long half-life of the phosphoryl modification of the response regulator species, 

Table 1). None of the additional reactions modified the dynamic behavior observed 

for mechanism 1' in the range of parameters tested. The evidence presented supports 

the notion that, in an appropriate range of parameter values, mechanism 1' is stable 

against model structural uncertainty described by reactions a to g above, and that 

wild-type parameter values, where known, appear to be in this "robust" range. 

 

The linear model and integral feedback: 

 

In this section, we relate the present model (in a linearized version) to the control 

theory principle of integral feedback. Integral feedback helps explain the stability of 

the output value, but additional features of the mechanism ensure that this output 

value is robust to all component concentrations. Consider the linearized model 

described above, Eqs. 21 and 22. Define a new variable cPQ /∆−=∆ , and substitute 

into equations 21 and 22. The result is  
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[31]  QbcYa
dt
Yd

P
P ∆−∆−=

∆ , 

 

[32] .PY
dt

Qd
∆=

∆  

 

Eq. 32 states that ∆Q is the time integral of the deviation ∆YP of the output from its 

steady state value. Eq. 31 shows that ∆Q is negatively fed back to determine the rate 

of change of the deviation ∆YP. This shows that Eqs. 31 and 32 contain integral 

feedback control (1). 

 

Yi et al have shown that integral control is required for perfect adaptation, as 

observed in bacterial chemotaxis (1). In that system, the steady state value of the 

output depends on the concentrations of some of the system components (the proteins 

CheR and CheB), and is independent of the external signal (attractant concentration). 

Integral feedback ensures that this steady state output is asymptotically tracked at all 

input levels, since the steady state output does not depend on the attractant (input) 

level. In contrast, the steady state output of the present model is independent of all 

total component concentrations in the system, yet is responsive to the level of the 

input signal (osmolarity) through signal-sensitive rate constants. As in chemotaxis, 

integral feedback ensures that the steady state output of the present model is 

asymptotically tracked. This is the source of the stability observed in the present 

model. However, integral feedback is not sufficient to guarantee the independence of 

the steady state output from all total component concentrations, as the chemotaxis 

example shows. Thus, input-output robustness is a feature of the present model that 

does not follow from integral feedback alone. 

 

Remarks on a previous model of the EnvZ/OmpR system: 

 

A model of the EnvZ/OmpR system has been proposed by Batchelor and Goulian (3), 

along with their experimental study of robustness in this system. Here we note that in 

this model the output is proportional to ATP levels,  YP ~ ATP. In addition, robustness 

with respect to protein levels in this model requires that YP << YT. 
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Equation 1 of the model of ref. 3 gives the output YP as a function of YT, ATP and 

various rate constants: 

 

[33] …+−++−++= TpTptTptP YCYCCYCCY 4)(
2
1)(

2
1 2  

 

The ATP dependence enters through Cp, which is linear in ATP: Cp ~ ATP (3). Ct is a 

function of rate constants only.  

 

In the limit ,Tpt YCC <<+  it is possible to Taylor-expand the right-hand side of Eq. 

33 in the parameter 
T

pt

Y
CC +

. Neglecting all terms that are first-order or higher in this 

parameter one arrives at Eq. 2 of ref. 3: 

 

[34] ...+= pP CY  

 

This shows that in the limit ,Tpt YCC <<+  which according to Eq. 34 corresponds to 

YP << YT, the dependence of YP on YT is lost. However, since Cp ~ ATP one has 

 

[35] YP ~ ATP. 

 

Thus the linear dependence of  YP on ATP is maintained for all values of YT for which 

Eq. 34 is valid. This ATP-dependence cannot be alleviated even if the sensor is 

saturated with ATP. The intuitive reason is that the sensor-ATP complex causes 

phosphorylation, but sensor alone causes dephoshorylation, and hence ATP is not 

cancelled out between these two opposing reactions.  

 

More generally, the main text proposes a "principle" for generation of robust input-

output relations, in which the influx of phosphoryl depends on all components 

(excluding YP) in the same functional way as the outflux. The model of ref. 3 does not 

obey this condition since influx depends on ATP but outflux does not.  
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In summary, in the model of ref. 3 the output YP generally depends on both YT and 

ATP. In the limit where only a small fraction of response regulator is phosphorylated, 

YP << YT, the output becomes robust with respect to YT and remains sensitive to 

variations in ATP levels. 

 

Appendix 1: Steady state output in the presence of reverse phosphotransfer: 

 

The chemical reactions in the system are: 

 

[35] 

.PYACYA(c)

,YXBYX(b)

D,XATX(a)

i
3

3'
P

P
'

2

2'
P

P
)(1

1'

++→+

++

+ →+

→
 ←

→
 ←

→
 ←

→
←

p

a

v
k

k

kv

kv

k

k

sv
k

k

 

 

This deviation from the mechanism 1' does not modify Eqs. 1-7 in the main text. 

Hence, by Eq. 7 of the main text, .*
PP YY =  

 

Appendix 2: Steady state output in the presence of ADP-catalyzed 

dephoshorylation of the response regulator: 

 

The chemical reactions in the system are: 

 

[36] 

i
7

7'
P

6

6'

i
3

3'
P

P
2

2'
P

P
)(1

1'

PYFGFY(e)

F,DX(d)

,PYACYA(c)

,YXBYX(b)

D,XATX(a)

++→+

+

++→+

+→+

+ →+

→
 ←

→
 ←

→
 ←

→
 ←

→
←

d

p

k

a

v
k

k

k

k

v
k

k

v
k

k

sv
k

k
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Inspection of 36 shows that phosphoryl groups may become covalently bound to 

protein components of the system only through the autophosphorylation reaction 36 

(a). However, phosphoryl groups may be removed from the system by either of the 

two dephoshorylation routes 36 (c) or 36 (e). Thus, the phosphoryl influx and outflux 

are 

 

[37] ,AvJ ai =  

[38] .GvCvJ dpo +=  

 

Inspection of reactions 36 shows that Eqs. 3 and 9 are valid also in the present case. 

Using 9, 37, 38 and the steady state conditions oi JJ =  and 0=C�  yields 

 

[39] 







−=

A
G

v
v

YY
a

d
PP 1* . 

 

Using 3 and 9 in steady state yields Eq. 16. The differential equations for F and G are: 

 

[40] ,)'(' 7766 Pd FYkGvkFkXDkF −++−=�  

 

[41] .)'( 77 GvkFYkG dP +−=�  

 

Eq. 41 at steady–state yields: 

 

[42] .
'7

7
P

d
FY

vk
k

G
+

=  

Using 40 and 41 at steady state yields: 

 

[43] .
'6
6 XD

k
k

F =  

 

Using 16,42 and 43 in 39, and rearranging terms yields the required result, Eq. 28. 
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Appendix 3: Conditions for making fluxes of added reactions small compared to 

primary model reactions: 

 

Here we derive conditions on the parameters of the additional reactions that tend to 

make their fluxes small in comparison with the fluxes of the relevant reactions of the 

main model. We first consider the case of sensor autodephosphorylation: 

iP PXX X +→α . The phosphoryl outflux through this reaction is .' PXo XJ α=  We 

wish to find conditions that ensure that this rate is small compared to the overall 

phosphoryl outflux Jo. When this is the case, Jo is well-approximated by the 

phosphoryl outflux of mechanism 1': .BvCvJ kpo =≈  Using the steady state version 

of Eq. 6, which is also valid in the present case, yields .)]'/([ 22 YXvkkB Pk+=  

Requiring that oo JJ <<'  implies that .)]'/([ 22 YXvkkvX PkkPX +<<α  Eliminating 

XP from both sides yields : 

 

[44] .
'2

2 Y
vk

kv
k

kX +
<<α   

 

Assuming that TT XY >>  (as in the wild-type case, SI Fig. 5), .*
PT YYY −≈  Since in 

the simulations we choose YT from the range ],202[ **
PP YY  it follows that .*

PYY >  

Hence, requiring that  

 

[45] *

2

2

' P
k

kX Y
vk

kv
+

= εα , 

 

where 1<<ε , ensures that 44 is fulfilled, and therefore implies oo JJ <<' . Thus, Eq. 

45 is the smallness condition in the present case. 

 

We next consider the case of response regulator autodephosphorylation: 

iP PYY Y +→α . The phosphoryl outflux through this reaction is .' PYo YJ α=  We 

wish to find conditions that ensure that this rate is small compared to the overall 

phosphoryl outflux Jo. When this is the case, Jo is well-approximated by the 
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phosphoryl outflux of mechanism 1': AvCvJ apo =≈ . One also expects that *AA ≈  

and .*
PP YY ≈  This implies that *'

PYo YJ α≈  and .*AvJ ao ≈  By Eq. 11, 

)( **
PT XXA −=

αγ
β , where α,β and γ are as in P. 4 of this supporting information 

document. Thus, ).( *
PTao XXvJ −≈

αγ
β  Requiring that oo JJ <<'  implies that 

,*

*

P

PT
aY Y

XXv −
αγ
β

<<α  and therefore the condition  

 [46] ,*
P

T
aY Y

Xv
αγ
β

ε=α  

 

where 1<<ε , insures that oo JJ <<'  is fulfilled (when TPT XXX ~*− ). Hence, Eq. 

46 is the smallness condition in the present case. 

 

The smallness condition in the case of the reverse autophosphorylation reaction 

ADX '
P →+ av  follows easily from the case of sensor autodephosphorylation 

presented above. Since Pao DXvJ '' =  in the former case and PXo XJ α='  in the 

latter, since D is constant and since the rationale of the derivation of the smallness 

conditions in both cases is virtually identical, it is only required to substitute Dv a'  for 

Xα  in 45 to obtain: 

 

[47] *

2

2

'
' P

k

k
a Y

vk
k

D
v

v
+

= ε . 

 

Finally, the smallness condition in the case of reverse dephoshorylation, 

CPYA '
i →++ pv , is obtained as follows. The phosphoryl influx through this 

reaction is .'' ipi AYPvJ =  Assuming that this is small compared to the total 

phosphoryl influx Ji, one can approximate the rate of phosphoryl gain by the 

autophosphorylation reaction of 1' using CvAvJ pai =≈ . Moreover, *AA ≈  and 

**

3

3*

' P
p

YA
vk

k
CC

+
=≈ , which follows from Eq. 9 applied at steady state. Thus, the 
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requirement ii JJ <<'  implies that **

3

3*

'
' P

p
pip YA

vk
k

vYPAv
+

<< . Eliminating A* from 

both sides yields: 

 

[48]  .
'

'
*

3

3

i

P

p
pp YP

Y
vk

kvv
+

<<   

 

Since in the simulations we choose YT from the range ],202[ **
PP YY  it follows that 

.19/1/* >YYP  Thus, by requiring that  

 

[49] ,
'19

'
3

3

pi

p
p vk

k
P

v
v

+
= ε  

 

we ensure that 48 is satisfied, and ii JJ <<'  is fulfilled. 
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Table 2. Effects of additional reactions on input-output robustness 

ε= mCv  Additional reaction Smallness condition

m(wild-

type) 

<m> σm Range 

of m 

(a) auto-

dephosphorylation of  

the sensor:  

iP PXX X +→α  

*

2

2

' P
k

kX Y
vk

kv
+

ε=α  
0.18 0.16 0.014 [0.12  

0.20] 

(b) auto-

dephosphorylation of 

 the response regulator:  

iP PYY Y +→α  

*
P

T
Y Y

X
αγ
β

ε=α  
0.33 0.14 0.38 [0.29  

1.41] 

(c) reverse 

autophosphorylation:  

ADX '
P →+ av  

*

2

2

'
' P

k

k
a Y

vk
k

D
v

v
+

ε=  
0.45 0.42 0.036 [0.34  

0.51] 

(e) reverse 

dephoshorylation: 

 CPYA '
i →++ pv  

,
'19

'
3

3

pi

p
p vk

k
P

v
v

+
ε=

0.92 0.90 0.030 [0.83  

0.96] 

 

 

The smallness conditions, which ensure that the additional reactions are of order ε 

relative to the relevant reactions of mechanism 1', are derived in SI Appendix 3. 

Robustness is quantified by means of the coefficient of variation Cv of the output for 

random choices of the component concentrations. This turns out to be linear with 

epsilon: ε= mCv  in the range ]1010[ 13 −−∈ε  for reactions a, b, c and e.   m(wild-

type) denotes the slope m of ε= mCv  for the wild-type values of the rate constants 

and initial concentrations (SI Fig. 5 supplemented by D = 53 µM (9, 11), Pi = 1000 

µM ). <m>  and σm are the mean and standard deviation, respectively, of the slope m, 

evaluated over 100 random choices of independent rate constant values. The range of 

m gives the minimum and maximum value of m over all 100 random choices of rate 

constants. Reactions d,f, and g are treated in the SI text. 
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Fig. 4. Steady state output YP as a function of the total response regulator 

concentration YT. Two steady state outputs exist in the region *
PT YY > : TP YY =  

(unstable, dashed line) and *
PP YY =  (stable, solid line). Only one steady state 

solution exists in the region *
PT YY < : TP YY =  (stable, solid line). The stable steady 

state solution was obtained by numerically integrating Eqs. 3-9 with parameters k1 = 

k2 = k3 = 1 µM-1 sec-1, k'1 = k'2 = k'3 = va = vk = vp = 1 sec-1, T = 1 µM, XT = YT = 10 

µM. In this example YP
* = 2 µM. Blue lines: phase trajectories corresponding to initial 

conditions where YP values are below the stable steady state value. All blue lines 

converge to the stable steady state. Red lines: phase trajectories corresponding to 

initial conditions where the initial values of YP are above the stable steady state value. 

All red lines also converge to the stable steady state.  

 

Fig. 5. Dynamics of the output YP in response to a step-like increase in input signal. 

Blue line: wild-type system modeled after the EnvZ/OmpR system of E. coli. 

Parameters are YT = 3.5 mM (12), XT = 0.1 mM (12), T = 1000 mM (13), diffusion 

limited k1 = k2 = k3 = 100 mM-1sec-1, k'1 = 6˙103 sec-1 (10),  k'2 = 200 sec-1 (14). k'3 = 

200 sec-1, vk = vp = 1 sec-1, va = 0.2 sec-1 and 1.0 sec-1 before and after step-like 

increase, respectively. Red line: same as the wild-type system, except that XT is 

tenfold higher. Light blue line: same as the wild-type system, except that ATP is 

tenfold lower. Green line: same as wild-type system, except that YT is tenfold higher. 

Note that steady state levels are independent of protein and ATP concentrations. 

Response time is dependent on these parameters. Similar dynamics are observed as 

long as *
PT YY > .  

 

Fig. 6. Response time as a function of total sensor concentration XT. Parameters other 

than XT are as in the wild-type system of SI Fig. 5. The response time decreases like 

TX1   for small XT.  

 




