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Biological signaling systems produce an output, such as the level of
a phosphorylated protein, in response to defined input signals. The
output level as a function of the input level is called the system’s
input–output relation. One may ask whether this input–output
relation is sensitive to changes in the concentrations of the sys-
tem’s components, such as proteins and ATP. Because component
concentrations often vary from cell to cell, it might be expected
that the input–output relation will likewise vary. If this is the case,
different cells exposed to the same input signal will display
different outputs. Such variability can be deleterious in systems
where survival depends on accurate match of output to input. Here
we suggest a mechanism that can provide input–output robust-
ness, that is, an input–output relation that does not depend on
variations in the concentrations of any of the system’s compo-
nents. The mechanism is based on certain bacterial signaling
systems. It explains how specific molecular details can work to-
gether to provide robustness. Moreover, it suggests an approach
that can help identify a wide family of nonequilibrium mechanisms
that potentially have robust input–output relations.

signal transduction � systems biology

Consider a system that produces an output, such as the level
of a phosphorylated protein, based on an input signal. The

level of output as a function of input signal strength is called the
system’s input–output relation. One may ask whether this input–
output relation is sensitive to variations in the concentrations of
the components that make up the system. Because the concen-
trations of many proteins vary from cell to cell by tens of percents
as a result of inherent stochastic processes (1–3), and the
concentrations of metabolite components such as ATP may vary
by as much as a factor of 10 in different conditions (4), it might
be expected that the input–output relation will also vary. If this
is the case, different cells exposed to the same input signal will
display different outputs. Although such variability may be
desirable in some cases, it might be deleterious in systems where
survival critically depends on accurate match of output to input.

One may thus ask whether signaling systems can provide an
input–output relation independent of the levels of all compo-
nents in the system, including proteins and ATP. Such a mech-
anism can be said to have a robust input–output relation.
Complete robustness of this type is difficult to achieve; most
known models have an output that depends on the level of at
least one of the system’s components. For example, a model of
the bacterial osmotic-stress signaling system EnvZ/OmpR, al-
though robust to variations in the levels of some components, is
not robust to ATP levels (5). Known biochemical models of
robust adaptation, including the well studied example of bacte-
rial chemotaxis, also do not seem to have this property (6–15).
In these models, the output level is sensitive to variations in the
protein concentrations (7, 8). Thus, the goal of the present paper
is to suggest a way in which signaling systems can provide an
input–output relation that is robust to the levels of all of the
components of the system§.

To clarify the notion of input–output robustness, consider a
simple counterexample based on allosteric control mechanisms.

The system is composed of a protein denoted A (Fig. 1a) that
undergoes equilibrium transitions between an active state A1 and
an inactive state A0. The output of the system is the concentra-
tion A1 of the active state.

The partitioning of protein molecules between the A0 and A1
forms is governed by the reaction

A0 -|0
k�s�

k�
A1,

where s is the input signal (for example, the concentration of an
effector molecule), k(s) is the forward rate constant, and k� is the
backward rate constant. Thus, by modulating k(s), the input s
determines the output A1.

As in many signaling systems, the transient times for tran-
sitions between A0 and A1 are much faster than the changes in
the input signal. Thus, one can consider the output of the
system at steady state, which is determined by the equilibrium
condition k(s)A0 � k�A1, and the conservation equation A0 �
A1 � AT, where AT is the total concentration of protein A.
Using the former equation in the latter yields the input–output
relation of the system, A1 � AT/(1 � k�/k(s)). This input–
output relation is not robust, because the output A1 depends
on the total concentration AT. Thus, cells with high AT will
show an input–output curve that is different from that of cells
with low AT (Fig. 1b).

How can input–output robustness emerge in biochemical
signaling systems? Here, we suggest a robust input–output
mechanism that is based on properties found in a class of
bacterial signaling systems. We also suggest a simple approach
for analyzing the robustness properties of more complex circuits.
Finally, we discuss experimentally testable predictions that the
present mechanism makes.

Results
A Mechanism for Robust Input–Output Relation. A mechanism for a
robust input–output relation can be suggested based on bio-
chemical features that are found in a class of bacterial two-
component signaling systems. Table 1 lists six such systems, each
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of which is composed of two proteins, an input-sensitive sensor
denoted X and a response regulator denoted Y. The sensor X
senses the input signal and acts to phosphorylate the diffusible
response-regulator Y. The phosphorylated form of Y, denoted
YP, activates the expression of relevant genes (16). Thus, the
input signals of these systems affect gene expression by setting
the output, which is the concentration YP.

One well studied example is the EnvZ/OmpR two-component
signaling system of E. coli. Its primary input is the osmolarity of
the medium in which the bacterium grows, and its output is the
concentration of phosphorylated response-regulator OmpR,
which controls the expression level of genes. In this system, a
correlate of the output is the ratio between the transcription
levels of two genes controlled by YP. This correlate, which is a
continuous function of the input signal, has been experimentally
shown by Batchelor et al. (17) to have a high degree of robust-
ness; at a given input level, the correlate changes by �5% when
protein levels are varied by 2-fold and by �20% for 10-fold
changes (5). This approximate robustness breaks down only at
high over- or underexpression of the proteins.

The signaling systems of Table 1 all share certain specific
biochemical features (Fig. 2a). The first feature concerns the
sensor kinase activity. In these systems, the sensor is not a simple
kinase that binds Y and ATP to phosphorylate Y. Rather, the
sensor works in two steps. First, it phosphorylates itself by
binding and hydrolyzing ATP (16). The rate constant of this
autophosphorylation, va(s), is controlled by the input signal s.
The phosphorylated sensor, denoted XP, then performs a phos-
photransfer step; it transfers the phosphoryl group to Y, thereby
forming YP (16).

This two-step process is found in virtually all bacterial two-
component systems. The following features, however, appear to
be particular only to a class of systems, such as those in Table 1.
In these systems, the sensor X is a bifunctional enzyme; it
catalyzes not only the phosphorylation of Y but also the de-
phophosphorylsphorylation of YP (16). Finally, ATP, which is
used as the phosphoryl donor for the autophosphorylation
reaction, is also required as a cofactor for the dephosphorylation
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Fig. 1. A signaling scheme that is not robust to variations in protein levels.
(a) Protein A is found in an inactive state A0 and an active state A1, whose
concentration is the system’s output. The input signal s affects one of the rate
constants k(s) (similar conclusions apply if s affects the backward rate or both
rates). (b) Output as a function of the ratio k(s)/k� depends on the total
concentration AT � A0 � A1 of protein A. Thus, the input–output relation is not
robust.
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reaction (18–20). This ATP dependence occurs despite the fact
that ATP is not used as an energy source in the dephosphory-
lation step.

The features above were used to construct a signaling mech-
anism whose reactions are shown in Fig. 2b. To find the
input–output relation of the mechanism and study its robustness,
it is necessary to solve for the fixed points of the seven nonlinear
differential equations that describe the mass-action kinetics of
the model. This is done in the supporting information (SI).
However, another way to obtain the input–output relation
presents itself when the system is viewed as a black box that
breaks down ATP and releases phosphoryl groups. Consider the
fluxes of phosphoryl into and out of the system. The influx of
phosphoryl groups from the cell’s ATP pool is equal to the rate
of the autophosphorylation reaction:

Ji � va�s�
X�ATP�. [1]

The outflux of phosphoryl groups is equal to the rate of the
dephosphorylation reaction:

Jo � vp
X�ATP�YP�. [2]

To proceed, one can compute the concentration of the complex
X�ATP�YP. This complex is formed in the model by the binding
of X�ATP to YP and is lost when the constituents dissociate or
when the dephosphorylation reaction takes place:

d
dt


X�ATP�YP� � k3
X�ATP�YP � �k3� � vp�
X�ATP�YP�.

[3]

Thus, at steady state, the concentration of the complex is
proportional to the product of its component concentrations:


X�ATP�YP� �
k3

k3� � vp

X�ATP�YP. [4]

Using this in Eq. 2 yields

Jo � vp

k3

k�3 � vp

X�ATP�YP. [5]

At steady state, Ji � Jo; using Eqs. 1 and 5, one finds that:

va�s�
X�ATP� � vp

k3

k�3 � vp

X�ATP�YP. [6]

When [X�ATP] is nonzero, one can divide it out from both sides
of Eq. 6. This results in a robust input–output relation, in which
YP depends only on kinetic rate constants:

YP �
k�3 � vp

k3

va�s�
vp

. [7]

Hence, the output YP does not depend on the level of any of the
proteins in the system, or on the level of ATP. The output is
responsive to the input signal via the rate constant va(s). This
mechanism thus shows a robust input–output relation (Fig. 2c).

Variations in the concentrations of the sensor or ATP do not
affect the input–output relation. The only loss of robustness
occurs if the total level of protein Y, denoted YT, falls below the
expected YP level for a given input signal (Fig. 2c). In this case,
there is not enough Y protein to reach the YP value given by Eq.
7. If this happens, a complete analysis of the model (see SI)
shows that all of the Y molecules are phosphorylated, and YP �
YT. Hence, the system cannot respond at all to the input signal.
It therefore follows that both robustness and responsiveness to
the signal require that YT exceeds a certain threshold, given by
the maximal desired output level YP in expected physiological
conditions¶.

Note that all three biochemical features of the mechanism
are required for input–output robustness. First, ATP depen-
dence of dephosphorylation is essential. Indeed, in a model
without this feature, one finds that Yp�ATP (ref. 5; see SI).
Hence, the output is sensitive to f luctuations in the level of
ATP (4). Similarly, if the sensor was not bifunctional, and
dephosphorylation was carried out by a separate phosphatase
protein Z, the balance of phosphoryl inf lux and outf lux would
require that [X�ATP] � [Z�YP] � ZYP. This would result in a
steady-state level YP � [X�ATP]/Z that depends on the intra-
cellular levels of both the sensor X and phosphatase Z.
Robustness would be lost.

Finally, the two-step nature of the kinase is also essential for
robustness. If the sensor was a simple kinase that directly
transfers a phosphoryl group from ATP to the substrate without
first phosphorylating itself, the ATP breakdown rate would

¶When YT is less than the threshold, no ATP is consumed at steady state (see SI). Therefore,
in the present mechanism, ATP consumption and robustness appear to be linked.
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Fig. 2. Mechanism for robust signaling based on a class of bacterial signaling
systems. (a) Sensor X bound to ATP phosphorylates itself to form XP. The
phosphorylated sensor XP then transfers the phosphoryl group to the re-
sponse-regulator Y, thereby forming YP, which is the output of the system. The
sensor bound to ATP also dephosphorylates YP. (b) Mechanism reactions and
some of their rate constants, where the first reaction is autophosphorylation,
the second is phosphotransfer, and the third is dephosphorylation. (c) Steady-
state level of the output YP as a function of the input-signal-modulated
function f�s� � �va�s� /vp��k�3 � vp/k3. In the region f�s� � YT, the curve
is invariant to changes in the total concentrations XT and YT of the sensor and
the response regulator, as well as to changes in the concentration of ATP.
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depend on the concentration of the complex X�ATP�Y, which at
steady state is proportional to [X�ATP]Y. This would balance
with the dephosphorylation flux, so that [X�ATP]Y � [X�ATP]YP.
As a result, the output YP would be proportional to the level Y
of free response regulator and would thus depend on the total
level of response-regulator YT, thereby abolishing robustness. In
summary, robustness over a wide range of parameters in the
present mechanism seems to require the combined effects of all
three biochemical features.

We also studied the effect of adding reactions to the model.
For example, spontaneous dephosphorylation of YP is known to
occur on a much slower timescale than the response time of the
system (Table 1), and accordingly we find it has a negligible
effect on robustness (SI). As a second example, we find that
adding ADP as a cofactor for the dephosphorylation activity of
the sensor [in addition to ATP and with similar efficiency (21)]
has a negligible effect on robustness (SI). This is primarily
because the ADP concentration is much lower than the ATP
concentration in the cell (22). We also studied other reactions,
including spontaneous dephosphorylation of XP, reverse auto-
phosphorylation, phosphotransfer, and dephosphorylation
steps, as well as an alternative way to form the ternary complex
in the system. In the supporting information (SI), we show that
when the rates of these additional reactions are small compared
with the rates of the present model reactions, they have only a
small effect on robustness.

Remarks on the Black Box Approach. To analyze the properties of
the mechanism presented above, the system was considered as a
black box that breaks down ATP. More generally, the black box
approach can be used to suggest a class of systems that have the
potential to show robust input–output relations. It can also point
to system characteristics that may rule out such robustness.

Consider a system with one reaction that breaks down ATP at
rate Ji and another reaction that releases phosphoryl ions at rate
Jo (Fig. 3a). Under what conditions might component Y in the

system be robust? This can happen if, at steady state, Ji and Jo
depend in the same way on the concentrations of all components
except Y but depend in different ways on the concentration of
Y itself. Thus, the steady-state influx and outflux can be
expressed as follows: Ji � f(X1. . . , XN, Y, ATP)g(Y) and Jo �
f(X1. . . XN,Y, ATP)h(Y), where g(Y) and h(Y) are different
functions of Y that intersect at only one point. These functions
also depend on kinetic rate constants, some of which are
signal-sensitive. If the system reaches a stable steady state, then
Ji � Jo, and one has fg � fh. Assuming the fluxes are nonzero,
the function f can be eliminated from both sides of the equation,
which results in g � h. This can be solved to yield Y as a function
of rate constants only, which makes the relation between the
input signal and the output Y robust with respect to all compo-
nent concentrations.

Note that such robust systems can include any number of
reactions within the black box, such as multiple phospho-transfer
cascades, as long as a stable steady state is reached, and the influx
and outflux of phosphoryl groups are as described above. Thus,
many variants of the model of Fig. 2b, which add reactions inside
the black box, can in principle be formed, and all such variants
can display the robustness property.

It can also be seen that robustness of the present type cannot
generally occur if there is more than one reaction that introduces
phosphoryl groups into the system. If two different influxes Ji
and J�i exist (Fig. 3b), they generally cannot be canceled out with
Jo (in the sense of Eq. 6 above), leading to a loss of robustness.
Similar considerations apply to cases where there is more than
one way for phosphoryl groups to exit the system.

Robustness of the present type thus depends on a single route
for uptake and release of phosphoryl groups. However, in the SI,
we find that in the case of the present model one can come close
to robustness if the influx and outflux due to secondary reactions
J�i and J�o are small in magnitude relative to Ji and Jo. If the relative
magnitude of the secondary to primary fluxes is of order � and
steady-state stability is maintained, robustness is generally lost
by only a factor of order �.

Discussion
This study presents a mechanism that can make the input–output
relation of a biochemical system robust with respect to variations
in the concentrations of all of its components. The mechanism
is based on biochemical reactions found in a class of bacterial
signaling systems. The present approach also provides guidelines
for constructing other robust mechanisms by imposing condi-
tions on the fluxes of covalent modifier molecules, such as
phosphoryl groups, into and out of the system.

The present mechanism makes experimental predictions for
systems such as those of Table 1. The first is that there exists a
threshold in the total response-regulator concentration YT such
that if YT is less than the threshold, then no ATP is consumed at
steady state, and the output YP is sensitive to changes in YT. If
YT exceeds the threshold, then ATP is consumed at steady state,
and the system has a robust input–output relation. Robustness
to protein levels can be tested by using controlled expression of
the proteins (5, 8, 35). The prediction that the output is
insensitive to the ATP level can be tested by perturbations that
alter the cell’s ATP concentration (4, 22).

The biochemical implementation of the present mechanism, at
least in the example treated here, relies on bifunctional enzymes
to carry out phosphorylation and dephosphorylation. Moreover,
these bifunctional enzymes use ATP as a phosphoryl donor for
one reaction and as a coenzyme for the opposite reaction. This
feature is found also in eukaryotic systems such as P-type
ATPases (23). It would be of interest to extend this study also to
other biological control systems that show similar features.

Not all bacterial signaling systems, however, show the hall-
marks of the present mechanism. Important examples include

X1,X2,…,XN

Y
ATP Pi

Output

Ji Jo

Ji

J i

Jo

Jo

o

Ji

´

J´

a

b

Fig. 3. Black box approach and conditions that prohibit robust input–output
relations. (a) Considering a system as a black box that breaks down ATP at rate
Ji and releases phosphoryl groups at rate Jo suggests that the concentration
of component Y is robust to the concentrations of all other components X1,
X2, . . ., XN, if at steady state Ji and Jo depend in the same way on all
components except Y but depend differently on Y. (b) Robustness cannot hold
if there are two or more influxes that supply phosphoryl groups to the system.
Similarly, robustness cannot hold if there are two or more outfluxes that drain
phosphoryl groups from the system. Robustness can sometimes hold approx-
imately, however, if the secondary fluxes J�I and J�o are small compared with the
main fluxes.
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bacterial chemotaxis and sporulation. Indeed, it is expected
that some signaling systems will not have robust input–output
relations. Such systems would display cell–cell variation in
their output at a given input signal. This variation, also called
‘‘individuality,’’ has been described, for example, in bacterial
chemotaxis (7, 24, 25). Similarly, signaling systems that make
sharp decisions, such as the phosphotransfer cascade in the
sporulation system of Bacillus subtilis (26), are not expected to
show robust input–output relations and indeed exhibit behav-
ior that varies between individual cells. A robust mechanism
should perhaps be expected only in signaling systems in which
there is a sufficiently heavy fitness penalty if the input–output
relation is not precise.

In summary, the present study suggests mechanisms that
respond to a signal in a way that is independent of variations in

the concentrations of the system components. This mechanism
for robust signaling depends on specific nonequilibrium reac-
tions. It may thus provide an explanation for biochemical details
that may otherwise appear arbitrary. Experiments can readily
determine whether robust signaling occurs in additional systems,
by varying protein and metabolite levels and measuring the
effect on the input–output relation.
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