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Abstract: Systems biology is a multi-disciplinary approach to the study of the interactions of
various cellular mechanisms and cellular components. Owing to the development of new technol-
ogies that simultaneously measure the expression of genetic information, systems biological studies
involving gene interactions are increasingly prominent. In this regard, reconstructing gene regulat-
ory networks (GRNs) forms the basis for the dynamical analysis of gene interactions and related
effects on cellular control pathways. Various approaches of inferring GRNs from gene expression
profiles and biological information, including machine learning approaches, have been reviewed,
with a brief introduction of DNA microarray experiments as typical tools for measuring levels
of messenger ribonucleic acid (mRNA) expression. In particular, the inference methods are classi-
fied according to the required input information, and the main idea of each method is elucidated by
comparing its advantages and disadvantages with respect to the other methods. In addition, recent
developments in this field are introduced and discussions on the challenges and opportunities for
future research are provided.
1 Introduction

In order to have a better understanding on complex biologi-
cal phenomena and disease mechanisms, we need to unravel
the interaction structure of molecular components involved
in the cellular processes rather than just characterising the
properties of individual components. In this paper, we
focus on gene regulatory networks (GRNs) representing
the interaction structure of genes [1]. In general, a GRN is
represented by a directed graph composed of nodes (genes)
and links (regulatory relationships). The regulatory relation-
ship can be either an activation (i.e. inducing transcription of
other genes) or an inhibition (i.e. repressing transcriptional
activity). Two nodes without a link imply that no regulatory
relationship exists between them. Inference of such a GRN
for a specific part or the entire genome can help us to
unravel the gene interaction mechanism for a particular
stimulation and we can further utilise this information to
predict adverse effects of new drugs or to identify a new
drug target. Owing to the development of new high-
throughput measurement technologies such as DNA
microarray, ChIP (CHromatin ImmunoPrecipitation)–chip
experiments and protein–protein interaction measurements
(see Section 2), there is a renewed interest in unravelling
the hidden GRN. The inference of such a GRN from either
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gene expression profiles [more precisely, messenger ribonu-
cleic acid (mRNA) expression profiles] or DNA sequence
information is often called ‘reverse engineering’. Various
reverse engineering methods have been developed to infer
such a GRN; however, because of both experimental limit-
ations and methodological complexities, a large majority
of these methods have been not so successful as there are
(i) a dimensionality problem: too many genes with too
few available sampling time points, (ii) a computational
complexity problem: exponential complexity if a priori
information is unavailable for regulatory genes and (iii) an
experimental measurement problem: no guidelines for an
appropriate experimental design for distinguishing direct
and indirect influences among genes. Hence, we need to
understand the essential features of each method before we
apply any particular method and to choose a most suitable
one considering given conditions and available data. In this
respect, we review the previously developed reverse engin-
eering methods. There are some review papers on reverse
engineering [2–6], but we approach in a different way. We
explicitly classify each method depending on the required
input data and the inference outputs, elucidate the key
idea of each method and compare the advantages and
disadvantages.

The overall procedure of reverse engineering GRNs is
illustrated in Fig. 1. We need to understand the required
input information of each reverse engineering method as
some methods presume specific types of data produced
from experiments having a particular design. The input
information for inference methods can be either gene
expression data or biological information data such as
DNA sequences and annotations (see Section 4). As a
large number of gene expression levels can bemeasured sim-
ultaneously using DNA microarray, we can use gene
expression data for reverse engineering of a GRN.
However, there is a limitation in inferring a GRN using
only the expression data and hence, it has been proposed to
make further use of diverse biological information. The
inference methods requiring expression data include
Boolean methods (Section 3.1), Bayesian methods (Section
3.2) and regulation matrix methods (Section 3.3), and
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those requiring biological information as well as expression
data include the MODEM (MODule construction using gene
Expression and sequence Motif) and GRAM (Genetic
RegulAtory Modules) methods (Section 4).

We also note that each inference method provides us with
various forms of the inferred GRNs. For example, some
methods only provide correlations between genes,
whereas others may provide detailed regulatory relations
such as activation and inhibition. In some cases, the regulat-
ory relations are represented by probability and the inferred
networks are represented by module regulatory networks.
Hence, we need to understand what kind of inference
‘output’ can be obtained from each reverse engineering
method in order to choose the most appropriate one for a
given purpose. In this paper, we review various reverse
engineering methods in these respects and then provide a
useful guide for researchers who are interested in investi-
gating new reverse engineering methods.

2 DNA microarray experiments and
sequence motifs

In this section, we briefly review DNA microarray exper-
iments and DNA sequence motifs, both of which provide
useful input information for reverse engineering of GRNs.
Further details are to be found in [7–28].

2.1 DNA microarray experiments

We can measure genome-wide gene expression through a
DNA microarray experiment which is basically an extended
version of Northern blotting [7] measuring the abundance of
mRNAs separated by electrophoresis [8–10]. A DNA
microarray experiment is devised to simultaneously
measure ten to hundreds of thousands of mRNA expression
levels of a given sample [29], whereas Northern blotting is
to measure a single mRNA expression level of a selected
gene with more accuracy. The central principle of measur-
ing mRNA expression levels is the base pairing between
unknown sequences of mRNAs in sample cells and
known complementary DNA sequences of the target
genes [i.e. A (adenine) pairs with T (thymine), and G
(guanine) pairs with C (cytosine)]. There are two types of
microarrays: cDNA microarray and oligonucleotide micro-
array [11]. The overall procedures of DNA microarray
experiments are illustrated in Fig. 2 considering cDNA
microarray.

As illustrated in Fig. 2, DNA microarray experiments are
composed of multiple steps which imply several possible
noise sources. For instance, there might be problems

Fig. 1 Schematic diagram of typical procedures for reverse
engineering of GRNs
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caused by different binding affinities depending on DNA
sequences [12], physical contamination, saturation effect
of each pixel depending on the laser excitation intensity
[8, 13], different dye effects [14, 15] and so on. In particular,
we note that the microarray data table (Fig. 2i) can be
changed depending on the definition of the representative
value in data1 and data2 (Fig. 2h) within the same exper-
iment [18]. Hence, we need to carefully design DNA micro-
array experiments to minimise such potential errors and to
normalise the measured expression data by statistically
eliminating any systematic errors [8, 12–17, 28], which
are the main topics for microarray bioinformatics but
beyond the scope of this paper.

2.2 DNA sequence motifs

In addition to gene expression data, we can also make use of
various biological information for reverse engineering of
GRNs including the followings: transcription factor (TF)
binding sites (sequence motifs) [19], ChIP–chip data for
TF binding information based on ChIP [20], gene annota-
tions [e.g. the gene annotation of SWI4 is ‘DNA binding
component of SBF complex (Swi4p–Swi6p)’] [20] and
protein–protein interaction data. Such information can be
used in the following processes: identification of candidate
genes producing TFs, investigation of the TF binding sites
[21] and search for genes in relation with the TF binding
sites [22]. We cannot, however, determine all the binding
sites of TFs through experimentation [21, 23, 24] because
the number of TFs is exceedingly large (2000–3000 for
the human) and the genome size is also even larger (more
than 3 billion base pairs for human) [21]. As a result of
this large scale, some in silico approaches have been devel-
oped [19, 21, 25, 26]. Among them, a weight matrix method
(Fig. 3) has been generally used [19, 21]; sequences known
to bind with a TF are collected (Fig. 3a) and then the distri-
bution of bases at each position is computed (Fig. 3b). The
consensus sequence of 6 bp (Fig. 3c), in which the base at
each position is the most frequent one, can be found from
this distribution, where a TF can bind the consensus
sequence. However, as a TF can also bind with other
sequences as seen in the experimental results of Fig. 3a,
an alternate consensus sequence is also adopted (Fig. 3c).
The alternate consensus sequence is the sequence permit-
ting the possible plural bases at some position in the consen-
sus sequence [21]. As seen in Fig. 3c, ‘GYNGAG’ can be an
alternate consensus sequence where N represents an arbi-
trary base and Y denotes a pyrimidine (i.e. cytosine or
thymine). R is conventionally employed to indicate a
purine (i.e. adenine or guanine). A method of using a pos-
ition weight matrix was developed (Fig. 3d) in order to
evaluate how strongly a TF binds to the corresponding
sequence. The weight W(b, l) of base b at lth position can
be calculated from the distribution of bases at each position
(Fig. 3b) using the equation W (b, l) ¼ 10(2þ log2 f (b, l))
where f(b, l) denotes the frequency of base b at lth position.
This kind of in silico approach for finding a relationship
between TFs and genes based on only binding sites,
however, still has the following two fundamental limit-
ations: (i) there are too many candidate binding sites; (ii)
it is not clear whether a binding site will be the cis-
regulatory element (region of DNA or RNA which regulates
the expression of genes located on that same strand) of a
particular gene. These are because the protein coding
region is relatively very small compared with the whole
genome size in many evolved complex organisms (about
5% for human) or the binding site can be far away from
the transcription initiation site and even be placed in the
IET Syst. Biol., Vol. 1, No. 3, May 2007
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Fig. 2 Schematic diagram of the overall procedures of cDNA microarray experiments [8]

a mRNA extraction from test cells and reference cells (e.g. tumour cells and normal cells, respectively)
b Reverse transcription of the mRNA samples of test (reference) cells into the DNAs fluorescently labelled with red (green) fluorescent dye
c Microarray chip is fabricated with spots having complementary DNA sequences of the target genes
d Hybridisation of the two mRNA samples (b) on the microarray chip of (c)
e Hybridised cDNA chip obtained from (d)
f, g Image data obtained by converting the emitted photon amounts into signal intensities after applying light to stimulate red fluorescence and green
fluorescence, respectively
h Data1 and data2 are obtained by calculating the representative value (e.g. mean, median) of intensities of each spot in image data (f) and (g),
respectively
i Microarray data table is constructed using data1 and data2 (h)
protein coding region [21, 27]. In particular, the binding site
of a TF cannot be determined only from the consensus
sequences as the binding site depends on multiple factors
including chromatin structures [21].

Fig. 3 Schematic diagram illustrating the weight matrix method
[19, 21]

a Protein binding sequences can be obtained from protein–DNA
binding assays; grey-coloured ellipses indicate a common TF
b Distribution of bases at each position: the jth column in the table
means the jth position and the number in the ith row and jth column
in the table means how many times the base in the ith row appears
in the jth position
c Base of first position in the consensus sequence is ‘G’ as ‘G’ appears
the most frequently at first position
In an alternate consensus sequence, the base of second position is ‘Y’
as ‘C’ and ‘T’ appear dominantly at the second position
d Score (i.e. the possibility of binding between TF and DNA of the
sequence) can be evaluated from the position weight matrix
For instance, the binding site ‘GCCGAG’ of a TF has the highest score
(17 þ 8 þ 4 þ 17 þ 13 þ 19 ¼ 78)
IET Syst. Biol., Vol. 1, No. 3, May 2007
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3 Reverse engineering based on
expression profiles

To date, various approaches have been developed to infer a
GRN from measured gene expression profiles. GRNs in
many cases cannot be unravelled precisely, however,
because of measurement noise and the limited number of
data sets compared with the number of genes that are
involved. In other words, we always have to process insuffi-
cient and uncertain data information in reverse engineering
of GRNs. Hence, there cannot be one universal method
applicable to all practical cases at present. Therefore in
order to choose an appropriate method for inferring a
GRN, we must understand the fundamental idea of each
method and should choose the most appropriate one by con-
sidering available data sets and all underlying constraints. In
this section, we review the reverse engineering methods
based on expression profiles with respect to the main idea,
the resulting output, the merits and the limitations of each
method. In particular, the Boolean, Bayesian and the regu-
lation matrix methods are considered in this section.

3.1 Boolean methods

Boolean methods are used to infer GRNs by applying
Boolean logic to the discretised gene states (e.g. 0 or 1
states in Fig. 4) which indicate the discretised mRNA
expression levels. Here 0 and 1 mean an ‘off ’ (i.e. inactive
151
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or unexpressed) state and an ‘on’ (i.e. active or expressed)
state of genes, respectively. Let xi(t) be the discretised
state of a network node xi (1 � i � n) at t and a pair of
two lists (x1(t), . . . , xn(t)) and (x1(t þ 1), . . . , xn(t þ 1)) be
a state transition pair (the first list is an input state and the
second list is an output state) where the ith component of
an input (output) state is called the input (output) state of
xi. For instance, there exist n 2 1 state transition pairs
for data measured at n time points. Boolean methods are
to find a Boolean relation (a gene regulation rule) of each
node which explains the influence of input states on the
node and then these methods can be applied to data sets
measured at two time points at least. In order to obtain a
Boolean function or a state transition pair table of each
node as output data (see Fig. 4b), a state transition pair
table of the network (input data for the Boolean method)
is formulated by summarising these input states and
output states (see Fig. 4a).

Discretisation of mRNA expression levels makes
Boolean methods useful when there are noisy input data
[30]. We lose information during the discretisation of
states, however, which may result in unrealistic inference
outcomes. Moreover, we cannot always find an optimal
inference result because of the computational complexity
that grows exponentially according to the number of
network nodes. To deal with this problem, the maximum
number of arguments of each Boolean function is
assumed to be bounded by some constant, and various
algorithms, such as the REVEAL, BOOL-2 [31, 32], tem-
poral Boolean [33], Discrete Function Learning [34],
computational algebra [35, 36] and Probabilistic Boolean
Network (PBN) algorithms [37], have been developed.
The following is a review of the characteristic properties
of each aforementioned algorithm.

REVEAL makes use of mutual information [38] in infor-
mation theory as a measure of interrelationships [33, 34,
39–42]. For instance, consider a network with nodes
having two discretised states (e.g. 0 or 1) and formulate
the state transition pair table of the network as an input
data. And then find the k arguments whose mutual infor-
mation with the node xi is identical to the self-information
of the node xi by starting from k ¼ 1. If there is no such
case for xi then we repeat this procedure after increasing k

Fig. 4 Illustration of the input and output of Boolean methods

a State transition pair table of a network with three nodes and two
states (0 or 1)
b First table is the state transition pair table of the first node x1 with an
argument x2 as an output using REVEAL (REVerse Engineering
ALgorithm) [39]
The rest are the state transition pair tables of nodes x2 and x3, respectively
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by 1. Finally, we can construct a state transition pair table
of each node if we find such arguments for all nodes.
REVEAL has been extended to cases of multiple discretised
states [40, 41] and has formed a basis for applying infor-
mation theory to reverse engineering of GRNs. Mutual
information has been widely employed in reverse engineer-
ing of GRNs. For instance, mutual information is used in
Bayesian methods by incorporating REVEAL into their
package and a modified mutual information criterion is
also used to overcome the difficulties in network learning
[43]. In addition, data transmission theory, which asserts
mutual information of indirect interaction is smaller than
that of direct interaction, is used to identify the indirect
relationships among the interrelated genes [41]. REVEAL
has the disadvantage in that it requires an exhaustive
search for all pair-wise mutual information by increasing
the indegree (the number of arguments). One way of
dealing with such a difficulty is to confine the search
space into the set S < {xj} where S consists of k nodes
having the highest mutual information with xi when we
increase the indegree of xi from k to k þ 1 [34].
Moreover, Zheng and Kwoh [34] have extended REVEAL
by allowing some error ranges in consideration of noise
measurement. Alternatively, another extension of the
Boolean method by considering the values of arguments
not only at t but also at t � 1, . . . , t � (T � 1) for a given
node at t þ 1 has been proposed [33] where T is an index
representing the dependency of the algorithm on the time
window. Other approaches developed to find Boolean func-
tions using logical operations and algebraic theory instead
of mutual information have been developed [32, 35, 36].
For instance, the BOOL-2 algorithm, using logical oper-
ations, was proposed to deal with experimental noise
effects by considering only the Boolean functions of nodes
which logically explain the influence of input states on cor-
responding nodes with probability of more than a threshold
[31, 32]. However, this algorithm does not provide any prac-
tical guideline for selecting the threshold, which is critical to
the identification results of the BOOL-2 algorithm.
Laubenbacher and Stigler [35, 36] have proposed the

algorithms of searching for Boolean functions from a set
of polynomial functions with discretised coefficients by
applying computational algebraic theory. They have
shown that Boolean functions can be represented by poly-
nomial functions with the coefficients of 0 or 1 through
translation of Boolean logical operators into algebraic oper-
ators (e.g. x _ y :¼ xþ yþ xy). They have then assigned to
each node a polynomial function realising the relationship
between the input state and the output state of each state
transition pair by employing Lagrange interpolation or the
Chinese Remainder Theorem [44]. They have further uti-
lised the Buchberger algorithm [45] to eliminate any term
of the constructed polynomial function which has 0 input
state to obtain a final Boolean function. Hence, we can
find Boolean functions using this algebraic algorithm
without any exhaustive search; however, this algorithm is
sensitive to noise because of the procedure of fitting input
states to the output states.
There are probabilistic extensions of Boolean methods by

considering many Boolean functions fi1 , fi2 , . . . , fik of each
node xi and the probabilities with which each Boolean func-
tion fij is chosen to predict the state of xi [37, 46, 47]. The
PBN algorithm [46, 47] can account for the embedded
uncertainty of data and models by allowing some error
bounds in the Boolean functions. There are, however, too
many parameters to be estimated (e.g. 22

8 ’ 1077

parameters only for eight nodes). Ching et al. [37] have
proposed an extended PBN algorithm that reduces
IET Syst. Biol., Vol. 1, No. 3, May 2007
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the number of parameters to be estimated by making use of
a homogeneous first-order discrete-time Markov chain and
regression while keeping the advantages of the PBN algor-
ithms [46, 47]. This algorithm, however, does not guarantee
improved accuracy of the inference result.

3.2 Bayesian methods

Bayesian methods make use of the Bayes’ rule to reverse
engineer GRNs by inferring the causal relationship
between two network nodes based on conditional prob-
ability distributions (CPDs) [48–58] and then use statistical
theories with various types of biological data. Bayesian
methods can be classified into static Bayesian and
dynamic Bayesian methods depending on the use of tem-
poral expression profiles for considerations of dynamics.
Let us consider static Bayesian methods first. Using these

methods, we can infer a directed acyclic graph (DAG) and a
CPD from the given expression data (refer to the network
structure and probabilities at each node in Fig. 5). Note
that the DAG means a directed graph without any loop.
As these methods do not take account of temporal
dynamics, they can be widely used for reverse engineering
of other biomolecular networks based on static information
[50, 59].
The procedure of inferring a DAG and CPD from an input

data D is as follows. First, we assume either discrete vari-
ables (Fig. 5a) or continuous variables (Fig. 5b) for
network nodes and further assume one of the possible
DAGs. Next, let us consider a probabilistic model of each

Fig. 5 Illustration of the static Bayesian method

a Inferred network composed of discrete nodes having multinomial
distributions
Conditional probability P(x3 ¼ 0jx1 ¼ 1) means P(x3 ¼ 0 and
x1 ¼ 1)=P(x1 ¼ 1)
b Inferred network composed of continuous nodes having normal
distributions
Conditional probability P(x4jx2, x3) � N (2þ 0:5x2 � 1:3x3, 0:5)
means ‘the child variable x4 is normally distributed around the mean
2þ 0:5a� 1:3b with the variance 0.5 given its parents
x2 ¼ a, x3 ¼ b, which is computed using a linear regression model
P(x4jx2, x3) � N (aþ bx2 þ cx3, 0:5) for the child variable x4 given
its parents x2, x3
Here the variance 0.5 of the variable x4 is independent of its parents
x2, x3
IET Syst. Biol., Vol. 1, No. 3, May 2007
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child node (e.g. x4 in Fig. 5) for the given parent nodes
(e.g. x2 and x3 in Fig. 5) such as a multinomial distribution
model (Fig. 5a) or a linear Gaussian model (Fig. 5b).
Finally, we estimate the CPD of each node using the
DAG and D. We make a score that describes the fitness of
the DAG with respect to D using the estimated CPD [60].
The DAG and CPD with the highest scores become the
inference outputs, and the procedures of obtaining those
are called ‘model selection (or structure learning)’ and ‘par-
ameter learning’, respectively [61]. A particular distribution
over nodes must be assumed for parameter learning,
although there is no specific guideline for this assumption
[62]. Bayesian approaches and mutual information are
often used for this to reflect the fitness of a DAG with the
input data [63, 64]. For a continuous node variable, there
is an additional computational complexity for integration
in the scoring procedure, but a robust inference result can
occur as all possible parameter values are probabilistically
reflected in the scoring. In model selection, we need to
confine the search space as there are so many possible
DAGs (e.g. O(n18) ’ 1018 DAGs for only ten nodes). For
this purpose, heuristic approaches are usually employed
and any further details on such learning procedures can be
found in [65].

Friedman et al. have determined the statistical confidence
of features (network properties of interest) between two
nodes x and y [e.g. Markov relation features (x and y are
parents of another node) or order relation features (x pre-
cedes y)] from input data D using a bootstrap method
[66]: The input data Di (1 � i � m) with the same number
of samples as D are constructed by random selection and
replacement from D, and an optimal DAG Gi (1 � i � m)
is obtained by applying the learning procedure to the
input data Di. The confidence of each feature is computed
by counting the frequency of Gi (1 � i � m) containing
the feature. On the other hand, Pe’er et al. [67] have pro-
posed an extended algorithm for the discrete network
studied by Friedman et al. [48] such that detailed regulation
types (activation or inhibition) can be inferred from the
input data of perturbation experiments (e.g. gene deletion
or over-expression, kinetic mutations and external treat-
ments such as environmental stresses).

The static Bayesian methods have a critical limitation
that any regulatory network containing a feedback loop
(i.e. a directed cycle) cannot be inferred using these
methods. As the feedback loop has a most important
network feature that can cause homeostasis, other
methods are needed to overcome this limitation and take
account of the temporal dynamics. Dynamic Bayesian
methods were developed from such motivations.
Basically, these are simple extensions of the static
Bayesian methods using time-series input data (see
Fig. 6). Dynamic Bayesian methods also focus on the prob-
abilistic causal relationship between two network nodes and
assume that these relationships do not change over time like
the static Bayesian methods. Dynamic Bayesian methods
can, however, result in a better inference result as the
dynamics of networks are reflected [56].

There are software toolkits for both the static Bayesian
method and the dynamic Bayesian method: Mocapy
Toolkit (http://sourceforge.net/projects/mocapy), Bayes
Net Toolbox (BNT) [55] and Deal (http://www.math.aau.
dk/~dethlef/novo/deal) [52]. Note that BNT employs the
REVEAL algorithm for structure learning. Ong et al. [51]
have constructed a Bayesian network structure using BNT
and unravelled a transcriptional regulatory pathway
through parameter learning. Kim et al. [58] have proposed
to infer a GRN using a nonparametric regression model
153
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Fig. 6 Illustration of the dynamic Bayesian method

a Cyclic regulatory network with three nodes
b Microarray time-series data produced from (a)
c First-order Markov relations with Xi ¼ (x1(ti), x2(ti), x3(ti)) and t1 , t2 , t3 , t4
d The network structure and the CPD of each node are assumed to be time-invariant
e Transition network representing the causal relationship between Xi and Xiþ1, which is to be learned [64]
and employing the dynamic Bayesian algorithm. Yu et al.
[57] have proposed an influence scoring to infer detailed
regulatory types (activation or inhibition) and the relative
magnitude of node interactions. They have further shown
that the combination of the Bayesian Dirichlet equivalence
(BDe) scoring metric based on Bayesian posteriori prob-
ability [68] and a greedy search algorithm results in best
inference outputs among the combinations of the various
scoring metrics (e.g. BDe, Bayesian information criterion)
and search algorithms (e.g. greedy algorithm with random
restarts, simulated annealing, genetic algorithm). Li and
Chan [53] have reported that they have successfully inferred
some subnetworks such as tricarboxylic acid and urea
cycles by combining several Bayesian methods. Recently,
Zou and Conzen [54] have investigated a new dynamic
Bayesian algorithm in consideration of time-lag effects.

3.3 Regulation matrix methods

In general, a GRN can be represented by an ordinary differ-
ential equation d x(t)=dt ¼ f (x(t)) or a discrete-time
equation x(t þ 1) ¼ f (x(t)), where x(t) ¼ (x1(t), . . . , xn(t))
is a vector of nodes xi (1 � i � n) representing gene
expression levels at time t and f ¼ (f1, . . . , fn) is a vector-
valued function from the real n-dimensional space Rn into
Rn. The function f can be a linear [69–73], piecewise
linear [2, 74], pseudo-linear (i.e. composite function of a
sigmoid function and a linear function) [75, 76] or continu-
ous (differentiable) nonlinear function such as a power-law
function represented by S-systems [77]. Detailed descrip-
tions of various models can be found in [2, 78]. Note that
the discrete-time equation corresponds to the Boolean
model if f takes its value from {0,1}n. There was also
another development employing partial differential
equations to describe the spatial location [2]. As most bio-
molecular networks, in general, have nonlinear dynamics,
we should consider nonlinear models, but this causes
much more difficulties in estimating parameters from the
limited number of data samples. This is the reason why
no effective inference method has been suggested yet in
such direction and many reverse engineering methods
infer the regulatory relationship by solving a linear (more
exactly, linearised) system instead of directly inferring the
nonlinear function f. Hence, in this section, we focus on
those methods based on linear systems, categorised as regu-
lation matrix methods. In regulation matrix methods, we
154
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want to find a solution A ¼ (aij) of the linear
system ~yi ¼ bi þ

Pn
j¼1 aij ~xj (1 � i � n) derived from

dx(t)=dt ¼ f (x(t)) or x(t þ 1) ¼ f (x(t)). Here bi, ~xi and ~yi
are directly computed from experimental data (~xi and ~yi
can have various forms; see Sections 3.3.1 and 3.3.2), and
aij denotes @fi=@xj or (@fi=@xj)=(� @fi=@xi) which are the
regulatory relationships of xi on xj (i.e. @(dxi=d t)=@xj or
@xi=@xj ). Thus, if aij . 0, xj activates xi by enhancing
(the net rate of) the production of xi; if aij , 0, xj inhibits
xi by reducing (the net rate of) the production of xi and
aij ¼ 0 implies that xj has no regulatory relation on xi. In
this respect, the matrix A is called a regulation matrix
(see Sections 3.3.1 and 3.3.2).
Although the Boolean method assumes discretised

expression levels, regulation matrix methods directly
make use of continuous expression levels without loss of
any information caused by discretisation. Moreover, con-
trary to the Bayesian methods, which are based on probabil-
istic concepts, regulation matrix methods do not rely on
such probabilistic notions, but instead make use of linear
algebra such as linear regression, principal components
analysis, singular value decomposition (SVD), Gaussian
elimination and so on. This means that regulation matrix
methods can infer GRNs in a more quantitative manner
than the Boolean methods if proper data measurements
are conducted. Using regulation matrix methods, we can
also estimate the strength of interactions. On the other
hand, if given data contain many noises, regulation matrix
methods might result in poor inference results compared
with the Boolean and Bayesian methods. Regulation
matrix methods can be further classified according to the
required data types: steady-state or time-series expression
data (see Fig. 7 for an overall sketch).

3.3.1 Regulation matrix methods based on
steady-state data: Regulation matrix methods basically
utilise the linear system ~yi ¼ bi þ

Pn
j¼1 aij ~xj (1 � i � n)

around a steady state. In general, steady-state measurements
of gene expression levels are required before/after gene
perturbations such as variations of temperature, pH and
using plasmids. In some cases, parameters that indirectly
influence a set of particular genes are perturbed instead of
direct gene perturbations. We need to design a sophisticated
perturbation experiment so that the characteristics of a GRN
are well reflected in the steady-state data because it is
impossible to infer the interaction relationships from a
IET Syst. Biol., Vol. 1, No. 3, May 2007
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Fig. 7 Illustration of the regulation matrix methods based on either steady-state expression data or time-series data
single sampling at the steady state. We also note that the
perturbation amounts can be critical because too large vari-
ations cannot be used for linearised models.
Several methods have been suggested to solve this linear

equations using steady-state data and to obtain the regu-
lation matrix A under different circumstances [72, 79–86]
(see Fig. 8).
Yeung et al. [87] have proposed a method of utilising the

estimate of d(xi � xsi )=dt obtained from linear interpolation
without assuming d(xi � xsi )=dt ¼ 0. They have computed
the regulation matrix by employing SVD [71, 88] to decom-
pose the data matrix and regression to identify the sparsest
network (Fig. 8c) [89]. Gardner et al. [72] have made use of
the sparseness of a regulation matrix and assumed that the
maximal number of nonzero elements at each row of A is
k (the upper bound of the indegree of a gene). On the
basis of this assumption, they reduced the number of vari-
ables to estimate from n2 into kn. In other words, they con-
verted the problem into an over-determined one and
computed A using the multiple linear regression (Fig. 8d).
An example of a small network composed of nine genes
related to the SOS pathway was used for illustration of
this method based on perturbation experiments with quanti-
tative polymerase chain reaction. Tegnér et al. [82] have
developed an algorithm for determining the least number
of genes to be perturbed and applied the algorithm to the
previously described method. Di Bernardo et al. [81] have
also employed the ‘Forw-TopD-reest-K’ search algorithm
[90] for reverse engineering of large-scale networks. The
basic idea is to choose D optimal solutions for k ¼ 1 and
extend these solution networks by adding other connections
(one by one) for each incremental change of k and choose
the solution with the smallest error for k ¼ K.
The aforementioned methods have a common difficulty of

estimating the perturbation amount from the measured data
after perturbation. To handle this difficulty, Kholodenko
et al. [79] proposed another type of perturbation method –
perturbing the parameters that indirectly affect the activity
of some modules or sets of genes in a network. They have
assumed a GRN that can be decomposed into modules
xi (1 � i � n) and a corresponding parameter pk (k = i),
and proposed a method of inferring aij (i = j) which satis-
fies Dx s

i,k=x
s
i (pk) ¼

P
1� j�N , j=i aijD x s

j,k=x
s
j ( pk) (1 � k � n,

k = i) based on steady-state data x si (pk) (before pertur-
bation) and x si (pk þ Dpk) (after perturbation) where
Dx s

i,k ¼ x si (pk þ Dpk)� x si (pk) (Fig. 8e). This method has
advantages in that the amount of perturbation does not
need to be measured and a subnetwork structure affecting
only selected modules of interest can be inferred.
This method, however, requires a priori information on
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parameters that indirectly affect each module and does not
take any experimental noise into consideration. Compared
to the previous methods of constraining the upper bound of
indegree k [72, 81, 82], this method cannot be applied to a
large-scale network as we need to perturb as many par-
ameters as the number of network nodes. A similar method
was developed for metabolic control analysis [83, 91] and
Andrec et al. [84] have extended the foregoing method of
Kholodenko et al. [79] by considering experimental noise
under a normal distribution. They have not applied,
however, this method to authentic experimental data.

3.3.2 Regulation matrix methods based on time-
series data: The steady-state data obtained after pertur-
bation does not usually reflect the dynamical characteristics
of the gene regulatory system, but we can capture these
characteristics through time-series data. To make use of
such time-series data for reverse engineering of GRNs, we
compute the regulation matrix over these time-series data.

Assuming a GRN model of x(t þ 1) ¼ Ax(t), we will
review the methods of computing A [71, 92–94]. van
Someren et al. [92] have proposed a method scaling down
the plausible solution network space by preprocessing the
expression data and clustering them, where preprocessing
means thresholding (i.e. choosing only the genes with sig-
nificant variations) and normalisation of the data. After pre-
processing the data, they have reduced the size of a network
to be inferred by clustering the genes with Euclidean dis-
tance, and hence converted the under-determined problem
of finding the solution A of x(t þ 1) ¼ Ax(t) into an over-
determined problem. In this way, they have inferred the
network of the prototypes (i.e. representatives) of the clus-
ters (Fig. 8f). This method overcame the dimensionality
problem which means a difficulty (under-determined
problem) in reverse engineering GRNs because of the
large scale of the networks with a little data, but it can
only reveal the regulatory network among those prototype
clusters and not between individual genes.

Next, let us assume a GRN model of ẋ(t) ¼ Ax(t) and con-
sider those methods of computing A from time-series data
[69–71, 73, 75, 76, 95–98]. Chen et al. [69] assumed a
GRN model of ṙ(t) ¼ Cp(t)� Vr(t), ṗ(t) ¼ Lr(t)� Up(t)
and represented the inferred GRN as ẋ(t) ¼ Ax(t),
x ¼ (r, p) where r and p denote the concentration vectors
of mRNA and protein, respectively. They employed an
approximated difference equation and made use of the sparse-
ness of GRNs to compute the regulation matrix A. They also
suggested a method to compute C using the Fourier transform
for stable systems. This method infers a GRN in consideration
of both transcription and translation using the concentration
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Fig. 8 Illustrative examples of the regulation matrix methods

a Graph of the artificial network
b Mathematical model to generate input data with H ¼ 2, V1 ¼ V2 ¼ V3 ¼ V4 ¼ 1: bi (1 � i � 4) are detailed in the description of each method
jth Entry xsj of the column vector x5 is the measured expression level of the node xj before perturbations
c Yeung et al.’s [87] method: the jth entry of the ith column vector of X is the measured expression level of the node xj at t ¼ 2 after the perturbation
of (b1, b2, b3, b4) which corresponds to the ith column vector of B (1 � i � 3, 1 � j � 4)
In this method, ~yi and ~xj represent d(xi(t)� xsi )=dt and xj(t)� xsj , respectively
Derivatives are calculated using the mean ratios of changes
d Gardner et al.’s [72] method: the jth entry of the ith column vector of X is the measured steady-state expression level of the node xj at t ¼ 100 after
the perturbation of (b1, b2, b3, b4) which corresponds to the ith column vector of B (1 � i, j � 4)
In this method, ~yi and ~xj represent d(xi(t)� xsi )=dt and xj(t)� xsj , respectively
e Kholodenko et al.’s [79] method: the jth entry of the ith column vector of X is the measured steady-state expression level of the node xj at t ¼ 100
after the parameter perturbation Vi ¼ 1:2 (1 � i,j � 4)
In the method, Dx si,k denotes the difference of xsi (pk þ Dpk)� xsi (pk)
All the other notations are detailed in the main text
In (d) and (e), we used four times bigger perturbations to infer the network and thereby we could correctly infer the network using the methods
f van Someren et al.’s [92] method: the jth entry of the ith column vector Xi of X is the expression level of the node xj at t ¼ 0:1 (i� 1) after the
perturbation (b1, b2, b3, b4) ¼ (0:5, 0:5, 0:5, 0:5) (1 � i � 5, 1 � j � 4)
In (c)–(f), we used 0.1 as the threshold for significant relations
profiles of both proteins and mRNAs as input data. This
method was proposed at the early stage of a GRN studies
and was based on differential equation models. But this
method lacks detailed information on experimental design
such as sampling time intervals. There is an extension of
this method which considers time delays in ẋ(t) ¼ Ax(t)
[95]. Another extension has been made by considering a non-
linear model ẋ(t) ¼ f (x(t)) with a specific form of f(x) and
introducing a genetic algorithm for parameter estimation [76].

The aforementioned methods have assumed time-
invariant regulatory relationships among genes as they
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have used the linear system near steady states (i.e. the regu-
lation matrix A has been assumed as a constant). Sontag
et al. [99] have relaxed this assumption and proposed
a method of inferring the regulation matrix A(t) at
each time t. They have assumed a GRN model of
_xi(t) ¼ fi(x(t), p) (1 � i � n) where p is a set of parameters,
and developed a method of inferring A(t) ¼ (aij(t))
by making use of the time-series data xj(t, pik ),
xj(t, pik þ Dpik ) (1 � j � n) measured before and after,
respectively, the perturbation of a specific parameter
pik (1 � k � n) that indirectly affects a node xi. In this case,
IET Syst. Biol., Vol. 1, No. 3, May 2007

9 at 05:53 from IEEE Xplore.  Restrictions apply. 



aij(t) denotes the solution of the linear system (Ripik
(t þ Dt)�

Ripik
(t))=Dt ¼

P
1�j�N aij(t)Rjpik

(t) (1 � k � n) with
Rjpik

(t) ¼ xj(t, pik þ Dpik )� xj(t, pik ). This method does not
require a small perturbation as it is not based on a linearised
model near steady states. Moreover, it does not require
measuring the perturbation amount Dpik and can be applied
to reverse engineering of a subnetwork around a specific
module of interest as the method of Kholodenko et al. [79].
Furthermore, this method provides the information on tem-
poral variation of regulatory relationships. This method,
however, also requires as many parameter perturbations as
the number of network nodes and therefore cannot be
applied to reverse engineering of a large-scale network.
Cho et al. [100] have expounded on the fundamental con-
cepts of the methods proposed by Kholodenko et al. [79]
and Sontag et al. [99], and presented a comprehensive
unified framework. The basic idea was that n independent
equations are required to uniquely solve the system with n
unknowns, and these n linearly independent equations can
be obtained by a properly chosen set of n parameter pertur-
bations. Cho et al. [101], however, have also proposed a
very simple but effective reverse engineering method based
on the temporal ascending or descending slope information
fromgiven time-seriesmeasurements instead of computation
through the measured absolute values.

4 Reverse engineering based on both gene
expression profiles and biological information

In the previous section, we reviewed the reverse engineer-
ing methods that use only expression profiles and exposed
the fundamental limitations to such methods related to
dimensionality, computational complexities and data uncer-
tainties. Hence, for better inference results, it is necessary to
adopt additional information processes. In this regard, this
section will review the reverse engineering methods based
not only on expression profiles, but also on available bio-
logical information such as a TF binding DNA sequence
(a sequence motif shortly mentioned), which is a 50

upstream sequence of genes recognised by a common TF,
gene function annotations (e.g. gene lacZ encodes protein b-
galactosidase) [63], ChIP–chip data [102] and protein–
protein interaction data (see Input data in Fig. 9). We can
also acquire various inference outputs by integrating these
different types of biological information.
There have been extensive studies on reverse engineering

of GRNs by finding sequence motifs. Tavazoie et al. [103]
have applied k-means clustering algorithm (a popular
technique for clustering given data into k partitions) to
cell-cycle time-series data and investigated the clusters of
similarly expressed genes under a particular growth con-
dition. They identified the function and the sequence
motif of the genes within the same cluster using the MIPS
IET Syst. Biol., Vol. 1, No. 3, May 2007
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(Munich Information Center for Protein Sequence) category
and the AlignACE (Aligns Nucleic Acid Conserved
Elements) program [104], respectively, and then found the
transcriptional sub-network regulated by the known TF
recognising this sequence motif. It is difficult to correctly
identify the whole set of regulators of genes only from
identification of the sequence motif of these genes as we
cannot determine the chromatin modification based only
on sequence information. Moreover, this method cannot
explain the combinatorial regulation of TFs. To solve this
problem, we need the information based on which we can
choose sequence motifs involved in combinatorial regu-
lation. To obtain the information, Beer and Tavazoie
[105] have employed time-series data and diverse biological
information as input data: upstream DNA sequences of
800 bp of genes in the 50 direction, the space between two
sequence motifs, the distance between a sequence motif
and ATG (the starting point of genes), the orientation of
genes (the right direction or the left direction of genes in
the gene map) and the order of the genes in the chromo-
somes. As a result, they were able to explain the combina-
torial regulation through clustering and inference of the
relations between sequence motifs and gene expression
patterns.

There also have been attempts to infer a GRN by identify-
ing regulators and the relationships of these regulators that
control the mRNA expression levels. Segal et al. [106] have
determined the set of the triples (a module, a set of regula-
tors and a regulation tree) using a Bayesian score [65] where
a module is a set of functionally coherent genes, regulators
are the controllers of the module and a regulation tree is a
tree composed of regulators for its nodes. The input data
are mRNA expression data and candidate regulatory genes
(known and putative TFs and signal transduction mol-
ecules). To analyse the biological meaning of the obtained
triples, each triple was tested for enrichment of the sequence
motifs and gene annotations. They have applied the method
to the following input data: a set of 173 Saccharomyces cer-
evisiae gene expression microarrays data and candidate reg-
ulator genes based on the Saccharomyces Genome Database
and Yeast Proteome Database. Using this approach, we
can infer which modules are regulated under what
stress conditions and can further determine the genes that
regulate a specific process under a given condition of
experiments.

The aforementioned clustering-based methods can,
however, result in many false-positives because of indirect
influences included during clustering similarly expressed
genes and searching sequence motifs. To overcome such
difficulty, a genome-wide location analysis based on
ChIP–chip data [102] has been proposed to identify all
possible target genes that can bind a given TF [102, 107–
115]. Bar-Joseph et al. [107] have proposed the following
Fig. 9 Reverse engineering methods based on biological information
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GRAM algorithm using protein–DNA binding data and
mRNA expression data as input data: First, all possible
combinations of transcriptional regulators are constructed
using the binding data. Although there are potentially an
exponential number of combinations, the combinations of
interest are quite limited. This is because GRAM selects a
gene g and then chooses the combinations T1, . . . , Tk of
transcriptional regulators which bind to the selected gene
g. Next, for each Ti, GRAM finds a collection Ci of genes
to which all the transcriptional regulators in Ti commonly
binds. Then, GRAM finds a gene ci in Ci that have a
‘core’ expression profile and construct a set S of genes in
Ci which show highly correlated expressions with ci.
Through relaxation of the binding criterion, GRAM ident-
ifies additional genes which are similarly expressed with
ci and to which all the transcriptional regulators in Ti com-
monly bind. GRAM extends S by adding similarly
expressed genes. A module Mi can be obtained by such a
repeated extension through relaxation and the function of
Mi can be categorised by MIPS. GRAM chooses again a
gene which is not included in

S
1�i�k Mi and repeat the pre-

vious steps. In order to accurately identify the binding site
of a TF, however, the ChIP–chip data must be obtained
using the activated TF [109]. An extension of this method
involves multivariate regression techniques to estimate the
binding affinity of each TF at a promoter (the region recog-
nised by RNA polymerase for the gene transcription). This
extension infers target regulatory genes through the corre-
lation between this binding affinity and gene expression pro-
files [108] and also through the correlation between DNA
binding profiles and gene expression patterns [116].

Most of the previous studies on searching target genes
regulated by a TF are based on the clustering of expression
data [102, 103, 105–108, 110–115, 117–120]. These
methods cannot be applied to the expression data measured
at only one time point. Moreover, we note that many genes
having the sequence motif recognised by a TF are not direct
target genes of the TF. To handle these problems, Wang
et al. [109] have proposed another method (MODEM algor-
ithm) with the input data: a ChIP–chip data or TF pertur-
bation experimental data measured at only one time point,
a core motif (a sequence motif of about 6–8 bp length)
recognised by the TF and promoter sequences of genes.
An extended core motif of 12 bp was obtained from a
position-specific frequency matrix. On the basis of the
joint probability of the extended core motif and the

Fig. 10 Overview of reverse engineering of GRNs by GAs
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expression data, they computed the probability of a gene
being a target gene of the TF. This method is advantageous
using single time point data from a single experiment and
also not requiring clustering to look for target genes.
Moreover, we can search the overlapped part in several
sequence motifs using the extended motif and thereby
also reveal that several TFs work competitively in the
same sequence motif. This method, however, still cannot
distinguish direct and indirect target genes even though
they have used sequence motifs as the procedure of
finding sequence motifs depends on expression values
measured at one time point.
GRNs are complicated, and experimental data sets have

intrinsic errors and diverse biological information. Thus,
in order to handle the errors and use the diverse biological
information, it is necessary to integrate various types of bio-
logical data [59, 121–123]. In this regard, Lee et al. [59]
made use of various heterogeneous functional genomics
data: mRNA expression data (Stanford Microarray
Database), gene context data [Rosetta stone data (gene-
fusion data), phylogenetic profiles], experimental protein–
protein interaction data (database of interacting proteins,
mass spectrometry, yeast two-hybrid assay, synthetic
lethal assay data), literature minig data (Medline abstracts)
and five benchmark sets (Kyoto-based KEGG database,
Gene Ontology annotation, the cluster orthologous group
annotation, the yeast protein localisation data generated
from genome-wide GFP-tagging and microscopy, MIPS).
They have obtained a S. cerevisiae network consisting of
gene–gene linkages with scores (e.g. a linkage between
open reading frame (ORF) YLR206W and ORF
YLR290C with a log likelihood score 8.826), where bench-
mark sets were used to test the correct assignment of lin-
kages. Only some links represented direct protein–protein
interaction and the other linkages represented probabilistic
functional associations. The score of each linkage
was calculated with respect to four categories (co-
expression, co-citation, protein sequence comparison,
protein interaction) based on the Bayesian approach.
Using these scores, each linkage has been assigned a
score through a unified scoring scheme. Higher scores
mean more confident linkages. We can incorporate new bio-
logical information to increase the confidence of linkages
through this approach.

5 Machine learning approaches

In contrast to the previous methods based on logical analy-
sis or mathematical developments, this section reviews the
reverse engineering methods employing machine learning
techniques such as genetic algorithms, genetic program-
ming, neural networks and fuzzy logic. Machine learning
techniques have been used not only for inference algor-
ithms [75, 124–132], but also for the clustering of
gene expression data [133–136] and the modelling of
GRNs [137, 138]. Of particular importance, genetic algor-
ithms (GAs) and genetic programming (GP) have
been widely used to reconstruct GRNs and the clustering
of gene expression data, whereas neural networks
(NNs) have often been used for modelling GRNs.
Recently, NNs and fuzzy logic algorithms were fused to
form a cooperative framework for the inference of GRNs
[135, 136].
In GA-based inference methods, we assume that a GRN

is represented by a mathematical model whose parameters
are to be estimated from gene expression data using GAs.
The estimation of model parameters is achieved by evol-
ution of the chromosomes in a population pool. GAs have
IET Syst. Biol., Vol. 1, No. 3, May 2007
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been typically used for this evolutionary procedure as they
are widely known as robust and systematic optimisation
tools applicable to general scientific and engineering pro-
blems [139–141]. GAs evolve the chromosomes (in this
application, candidate GRNs) by means of evaluating
their fitness, selecting parents for a next generation and
doing crossover as well as mutation operations. Therefore
if any types of problems are represented by chromosomes
(typically, represented by bit strings), GAs can efficiently
find a (sub)optimal solution within predefined generations.
Owing to this feature, GAs have mainly been applied to
functional or combinatorial optimisation problems (e.g. bit
pattern matching problems) and parameter estimation pro-
blems. In parameter estimation problems, the parameters
are encoded to chromosomes, and GAs find the optimal esti-
mates by evolving the chromosomes in a population pool
within a predefined resolution depending on the encoding
scheme. Wahde and Hertz [75] and Repsilber et al. [124]
have used GAs to estimate the parameters of GRN models
from both artificial and experimental microarray data. Iba
and Mimura [132] also employed GAs to reconstruct
GRNs from time-series gene expression data, and in par-
ticular, introduced an exon (an active link that can have
any value) and an intron (an inactive link fixed to zero) in
encoding chromosomes of GAs. The number of exons was
limited to approximately 5 for each population pool (they
maintained several population pools depending on the con-
straints of the exons and introns) to achieve better estimates
in a rapid manner. Their methods also provided an interac-
tive platform to infer GRNs through human intervention
under graphic user interface environments. Similar
methods have been developed with different modelling fra-
meworks of GRNs [125–128].
Fig. 10 illustrates an overview of reverse engineering of

GRNs through parameter estimation of GAs. In Fig. 10,
experimental gene expression data obtained from DNA
microarray experiments are presented as input data. The
chromosomes of GAs in a population pool encode the par-
ameters of a GRN model. The network model can be one of
the Boolean networks [31], linear networks [71, 92–94],
Bayesian networks [48], differential equations [69] and
recurrent NNs [75, 142, 143]. Any other types of network
models can also be applied if their parameters can be
encoded into chromosomes. But the recent works [75]
have mainly focused on the recurrent NN models. Like
the other applications of GAs, there are no other constraints
on the network models.
The initial values of encoded parameters are set to

random numbers or predefined values from a priori knowl-
edge. Note that each chromosome in the population pool
represents one candidate GRN that can be obtained by
decoding the chromosome. This candidate GRN produces
a simulated gene expression data set and the GA uses
these data to score the fitness of the corresponding chromo-
some by comparing the simulated data with the experimen-
tal gene expression data. All chromosomes in the population
pool are evaluated in the same way and the chromosomes
with higher fitness scores have more chances to be selected
as parents for the next generation by a selection algorithm.
The selected chromosomes are reproduced by crossover and
mutation operations. GAs drive chromosome evolution over
time and converge to an inferred GRN that corresponds to
the inference output. The evolution process stops by a pre-
defined criterion on the fitness value such that it results in a
(sub)optimal inference result.
One of the key factors for successful reverse engineering

is the selection of an appropriate GRN model. Wahde and
Hertz [75] and Jung and Cho [128] have used recurrent
IET Syst. Biol., Vol. 1, No. 3, May 2007

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on December 9, 2009
NN models; Iba and Mimura [132] and Kimura et al.
[127] have used S-system models; Repsilber et al. [124]
have used transition table models; Xiong et al. [125] have
used linear structural equation models; Swain et al. [126]
have used mutuality models. Which model is most appropri-
ate to represent the dynamics of GRNs remains unknown.

We cannot guarantee the quality of an inference result
obtained by the GA-based reverse engineering method
even if the fitness value is very high and therefore the simu-
lated gene expression data of an inferred GRN are very
close to the experimental gene expression data. This short-
coming is because there can be many GRN models that can
still generate similar gene expression data to the experimen-
tal gene expression data. Such difficulty originates from the
fact that the number of samples in DNA microarray exper-
iments is usually much smaller than the number of par-
ameters desired for estimation – this issue is referred to
as a ‘small sampling problem’. This problem can be alle-
viated by reducing the number of parameters through clus-
tering of gene expression data or increasing the number of
samples through interpolation [73]. The ‘small sampling
problem’ is a major hurdle especially for reverse engineer-
ing of large-scale GRNs. In addition, the GA-based reverse
engineering method cannot account for the noise effect
introduced in microarray experiments.

There is an extension of the GA, termed GP, in which
candidate solutions are represented by a tree structure
[144]. This tree structure makes GP more adequate for esti-
mating the structure or topology of a network than the par-
ameter of a network [145]. Like the GAs, candidate
solutions in GP (corresponding to the chromosomes in
GAs) evolve through selection, crossover and mutation
operations. GPs have been widely used not only for
reverse engineering of GRNs, but also for unravelling meta-
bolic networks. Ando et al. [129] have employed GPs for
the estimation of network structures and used a least mean
square method to determine the parameters. GPs produce
similar inference results as GAs and also have similar
limitations.

As mentioned previously, a major problem in reverse
engineering of GRNs is the ‘small sampling problem’
which can be alleviated by reducing the number of par-
ameters through clustering of gene expression data. The
clustering of gene expression data is therefore an import-
ant preprocessing step for reverse engineering. Toronen
et al. [133] have applied self-organising maps (SOMs)
to the clustering of gene expression data and Huang
et al. [134] have further extracted the relationship
between clusters by using an artificial neural network.
Kasabov [135] employed neuro-fuzzy style NNs,
knowledge-based neural networks (KBNNs), for the
classification of clusters and reverse engineering of
GRNs. In KBNNs, ‘if-then’ rules for input–output
relationships are extracted and this provides us with
insights into the causal relationships of GRNs. Chan
et al. [136] have used GAs for the selection of initial
cluster centres for expectation maximisation (EM) clus-
tering as the EM (a hill-climbing-like local optimiser)
results in a very sensitive performance with respect to
the initial cluster centres. As mentioned above, the
NNs (especially SOMs) are useful tools for clustering
and these are also often used for reverse engineering of
GRNs.

NNs have been widely applied to the modelling of GRNs,
clustering of gene expression data and reverse engineering
of GRNs. Reinitz and Sharp [142] have introduced a
recurrent NN model of GRNs in the form of
ti _xi(t) ¼ g(bi þ

Pn
j¼1 aijxj(t))� xi(t) where g is an activation
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function, bi is a bias level of xi, and ti is time constant of xi. In
general, a sigmoid function g(z) ¼ (1þ e�z)�1 is employed
for the activation function to account for the saturation
effects. Vohradsky [137] has proposed another recurrent NN
model as ti _xi(t) ¼ fi(ui þ

Pn
j¼1 aijxj(t))� xi(t) where fi is a

nonlinear transfer function and ui is the external input to the
gene xi. These twomodels are similar with each other and rep-
resent nonlinear models for GRNs. Alternatively, a simplified
linear model _xi(t) ¼ pi þ

Pn
j¼1 aijxj(t) has recently

been adopted and applied by Gardner and Faith [146] where
pi denotes an external perturbation.

In summary, we note that the machine learning tech-
niques have been broadly applied to reverse engineering
of GRNs. GAs and GPs have been most popularly employed
for parameter estimation in reverse engineering, whereas
NNs have been used for the clustering of gene expression
data and the modelling of GRNs (sometimes for reverse
engineering). Recently, neuro-fuzzy style NNs have been
brought into reverse engineering studies. Sokhansanj et al.
[138] introduced a linear fuzzy gene network model that
represents a set of fuzzy ‘if-then’ rules for GRNs. These
fusion approaches help to alleviate the fundamental limit-
ations of the previously reviewed reverse engineering
methods. The most recent concept of an artificial genome
(AG) [147] – emulating gene expression mechanisms
upon artificial chromosomes – may provide a strong lead
for resolving current problems in reverse engineering.
Thus, machine learning techniques can be expected to
improve continuously and be incorporated into the appli-
cations of reverse engineering methodology in systems
biology.

6 Summary

In this paper, we have provided our review on the methods
for reverse engineering of GRNs. The reverse engineering
methods based only on expression profiles were considered
in Section 3 and those utilising expression profiles plus bio-
logical information were revisited in Section 4. In Section 5,
we considered machine learning approaches and explored in
considerable detail, an estimation of parameters in the math-
ematical model of a GRN. As most of the proposed methods
have different advantages and disadvantages, we recognise
a need to improve our understanding of the fundamental
idea for each method and to consider available input data
and constraints in choosing an appropriate reverse engineer-
ing method.

The reverse engineering methods based on discretised
states of expression profiles, such as the Boolean methods,
are useful to capture simplified interaction structures. But
these methods undergo a loss of information caused by dis-
cretisation. Despite such difficulties, these methods can be
useful for certain cases when accuracy in describing the
system of interest is not great. For instance, de Magalhaes
and Toussaint [30] applied the Boolean method to infer a
GRN related to human aging, which is complex and
poorly understood, with the aim of investigating anti-aging
intervention.

Bayesian methods are also useful in representing causal
relationships. We can avoid over-fitting using Bayes’ rule
even if expression data contain noise and uncertainties
[50]. Moreover, we can use heterogeneous information
as input data for Bayesian methods [63]. For example,
we can infer a GRN by computing the log likelihood
scores of such variable input data as gene expression,
gene fusion, phylogenetic profiles, gene annotation and
protein interaction [59]. As more high-throughput
160
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heterogeneous data become available, these integrative
methods, based on the Bayesian approach, will receive
increasing attention.
The regulation matrix methods can avoid information loss

caused by discretisation and can infer a GRN in a relatively
rapid way by employing algebraic computations. These
methods require large amounts of experimental data for a
large network. To deal with this problem, GRN is usually
assumed to be composed of sparse connections resulting in
a sparse structure of the regulation matrix. There is,
however, another drawback of these methods in that infer-
ence results can be strongly affected by noise in the data.
One means to overcome this limitation is to use a threshold
for each gene expression level to filter out noise effects and
to choose those genes of significant variations prior to actu-
ally applying the regulation matrix methods for reverse
engineering. Nonetheless, these methods have not been suc-
cessful in reverse engineering of a large-scale network
because of insufficient data. Insufficient data are often sup-
plemented by in numero data, but this does not improve the
performance of inference. As the data insufficiency com-
monly occurs in many other reverse engineering methods
based on expression profiles, the methods of integrating
additional biological information, such as sequence motifs,
are increasingly being studied.
Available biological information includes DNA

sequences, ChIP–chip data and functional annotation
data. As such heterogeneous information can be incorpor-
ated into reverse engineering methods the inferred
network can be interpreted from various biological view-
points. The extraction of most useful information from the
integrated heterogeneous data, however, still requires
further investigation. Both spatial and temporal variations
need to be considered in reverse engineering, which at
present is not the case.
When compared to the logical inference based on rigor-

ous mathematical frameworks, the reverse engineering
methods employing machine learning approaches are less
restrictive as these can always result in some suboptimal
inference output for given input data based on a presumed
network model and without further assumptions or con-
straints. The machine learning methods (e.g. GA),
however, usually require extensive computation time due
to the required evolution of parameter values, and cannot
guarantee the quality of inference results. These methods
do not provide us with a reproducible inference output
and we cannot take account of the noise characteristics of
input data in these methods. This latter problem can be
resolved, however, by introducing the NNs and fuzzy infer-
ence schemes that have been developed recently for a more
robust inference with noisy input data.
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