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Listening to the noise: random fluctuations reveal gene
network parameters
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The cellular environment is abuzz with noise originating from the inherent random motion
of reacting molecules in the living cell. In this noisy environment, clonal cell populations show
cell-to-cell variability that can manifest significant phenotypic differences. Noise-induced stochastic
fluctuations in cellular constituents can be measured and their statistics quantified. We show that
these random fluctuations carry within them valuable information about the underlying genetic
network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation
that, when processed through a gene network, carries its distinctive fingerprint that encodes a
wealth of information about that network. We show that in some cases the analysis of these random
fluctuations enables the full identification of network parameters, including those that may
otherwise be difficult to measure. This establishes a potentially powerful approach for the
identification of gene networks and offers a new window into the workings of these networks.
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Introduction

Computational modeling in biology seeks to reduce complex
systems to their essential components and functions, thereby
arriving at a deeper understanding of biological phenomena.
However, measuring or estimating key model parameters can
be difficult when measurement noise corrupts experimental
data. Thus, when cellular variability or ‘noise’ (Elowitz et al,
2002) leads to measurement fluctuations, it may appear
deleterious. However, this is not the case. Just as white noise
inputs help to identify dynamical system parameters (Ljung,
1999), so too can characterization of noise dynamics elucidate
natural mechanisms. For example, steady state noise char-
acteristics can distinguish between different logical structures,
such as AND or OR gates (Warmflash and Dinner, 2008). At the
same time, temporal measurements of transient dynamics can
aid in the construction of reaction pathways (Arkin et al,
1997). In combination, noise and temporal analyses yield
powerful tools for parameter identification. For example, the
averages of correlations in cell expression at many time points
reveal feed-forward loops in the galactose metabolism genes of
Escherichia coli (Dunlop et al, 2008). Similarly, manipulating

certain gene network transcription rates while observing the
response of statistical cumulants can help to identify reaction
rates for some gene regulatory networks (Raffard et al, 2008).
In this study, we examine the possibility of identifying system
parameters and mechanisms directly from single-cell distri-
butions, such as those obtainable with flow cytometry,
without time-varying control and at only a handful of different
time points. We prove that the analysis of variability
provides more information than the mean behavior alone.
Furthermore, we illustrate potential of our approach using
numerical and experimental analyses of common gene
regulatory networks.

Results and discussion

Gene expression model

We adopt the gene expression model used in the study carried
out by Thattai and van Oudenaarden (2001), which is
characterized by random integer numbers of mRNA and
protein molecules: R and P, respectively. Transcription,
translation, and degradation events change the system state
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by altering these numbers. mRNA changes are modeled as
random events that occur according to exponentially distrib-
uted waiting times that depend on the transcription and
degradation rates kr and gr. Thus, given the state of r mRNA
molecules, the probability that a single mRNA molecule is
degraded within the time increment dt is given by r � (gr �dt).
Similarly, translation and degradation of proteins are dictated
by rates kp and gp. The resulting stochastic model is
represented by a continuous time, discrete state Markov
process. The probability of finding the system in a given state
(R(t)¼r, P(t)¼p) is fully characterized by the system’s master
equation from which the evolution of moments E[R(t), E[P(t),
E[R2(t)],y can be described (see Supplementary Section 1).

Our first finding is that all parameters of this model are
identifiable from cell population distributions of mRNA/protein
measured at least at two time points. In contrast, two time point
measurements of mRNA/protein population averages are never
sufficient for identifiability. To show this, the use of first and
second-order moments, or equivalently means, variances, and
covariances of proteins and mRNAs is sufficient, instead of the
use of full distributions. At a given time point, t, each such
measurement yields a vector: v(t)¼(E[R(t)], E[P(t)], E[R(t)2],
E[P(t)2], E[R(t)P(t)]). Given v(t0) and v(t1) at two distinct time
points t0ot1, there generically exists a set of parameters kr, kp, gr,
gp that uniquely gives these measurements—all other parameter
sets yield different measurements (see Figures 1E and 2A).
We illustrate this here only for transcription (Supplementary
Section 3 provides an implicit expression for the parameters
of the full model). Suppose that {m0, m1} and fs2

0; s
2
1g

represent the measured mRNA mean and variance at two time
points t0ot1oN. Then the parameters, {kr, gr} are fully
identifiable, and

gr ¼ �
1

2t
log

s2
1 � m1

s2
0 � m0

� �
; kr ¼ gr

m1 � exp ð�grtÞm0

1� exp ð�grtÞ
;

where t:¼t1�t0.

Thus, the statistics, fm0; s
2
0; m1; s

2
1g; contain sufficient

information to identify the model parameters. However,
measurement of just the population averages, for example,
E[R], is insufficient for identifiability, and there exists an
infinite set of parameters {kr, gr}, that is consistent with the
same two mean measurements m0 and m1.

Although parameters are identifiable from transient mo-
ment measurements, we find that it is impossible to identify all
parameters from stationary moments. Measuring means,
variances, and other statistics after all the transients have
died represents a lost opportunity to peek into the cell’s inner
workings and to recover the network parameters. For example,
two different parameter sets may produce very different
protein distributions after a short interval time (Figure 1E),
but indistinguishable distributions after a longer interval
(Figure 1D). Supplementary Section 2 provides a proof that
stationary moments of any arbitrary order are insufficient to
uniquely identify the model parameters kr, kp, gr, gp. Such
stationary distributions will only enable the determination of
relative parameter values, but any positive scaling of these
values would produce the exact same measurements for
vN. We note that stationary correlations, for example,
E[R(t)R(tþ t)] for small time intervals, t, could also provide
the necessary dynamic information (Cinquemani et al, 2009),
but taking such measurements is more difficult and requires
the tracking of individual cells between measurement times.

After having determined that full identification is achievable
using two measurements of all first and second order
moments, we now explore the effect of partial moment
measurements. We consider two new scenarios: (a) only
{E[R], E[P]} measurements are available; and (b) only {E[P],
E[P2]} measurements are available. For each scenario,
Figure 2A shows the number of measurements needed for
parameter identifiability and demonstrates the advantage of
using full second order statistics. Furthermore, the perfor-
mance with partial information depends on which partial
information is being used. When protein and mRNA mean
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Figure 1 (A) Simple gene expression model representing gene transcription and translation. (B, C) Simulations of mRNA (green) and protein (blue) populations. The
solid red lines denote the mean values and the dashed lines are one s.d. value above and below that mean. (D, E) mRNA (green) and protein (blue) distributions at (D)
t¼5000 s and (E) t¼1000 s for two different parameter (solid or dotted lines) sets but with the same initial conditions.
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measurements alone are used, full parameter identifiability is
possible using three measurements. However, with only
protein mean and variance measurements, at least, five time
measurements are needed. When only protein mean measure-
ments are available, full identifiability is impossible, regard-
less of the number of measurements (see Supplementary
Section 4).

Time measurements of moment dynamics impose nonlinear
algebraic constraints on model parameters. The above results
can be understood by exploring the number of such constraints
that is needed to uniquely solve for the unknown parameters.
The gene expression model has four unknown parameters
(p¼4) and five unknown initial conditions (moments at t¼0).
Thus, one would expect that, at least, nine independent
measurements are needed to identify these unknowns. The
five elements of v at t0 and t1 provide ten pieces of information

and are generally sufficient (see Figure 2A). Conversely, in a
model for just the mean values {E[R(t)], E[P(t)]}, there are
four parameters (p¼4) and two initial conditions, and one
expects that, at least, six independent pieces of information
would be needed for the identification. Indeed, at least
three time measurements are required and two measurements
are never enough (see Figure 2A). However, for a model
that describes only protein mean and variance measurements,
at least five time measurements are needed for full para-
meter identifiability. In this case, the dynamics of {E[P], E[P2]}
are coupled to those of {E[R], E[R2], E[RP]}, and addi-
tional measurements are needed to identify the initial
values for these. Finally, we note that in these cases, the
number of measurements needed for parameter identification
are far fewer than the 2pþ 1 measurements that were shown
(Sontag, 2002) to be sufficient for the identification of the p
unknown parameters of a general nonlinear dynamical
system.

The results above establish the principle that transient
measurements of full second order moments carry information
that allows one to identify all model parameters, at least,
assuming noise-free measurements. If the measurements are
corrupted by noise, it is often possible to compensate with a
larger number of measurements. To illustrate this, we have
conducted 100 simulated identification studies in which the
unknown parameters were taken from a broad lognormal
distribution (Figure 2B). For these, we supposed that vj:¼v(tj)
could be measured at m equally separated time points
{t0, y.,tm�1}, and that each measurement had unknown
errors of ±10% To explore the effect of incomplete measure-
ments, we performed the identification method for the three
data scenarios considered earlier: (1) all moments; (2) only the
means; and (3) only the protein means and variances. For each
scenario, we investigated the impact on parameter identifica-
tion of using an increasing number of noisy measurements
obtained from a different number of independent experiments
(with different randomly chosen unknown initial conditions).

As more data were gathered, the effects of measurement
error were overcome and the probability of successful
identification increased for every strategy (see Figure 2C).
Using many measurements, the parameters and the unknown
initial conditions of mRNAs and proteins could be resolved
even from inaccurate protein data alone—provided that it
included information on the protein variance. All of the above
numerical experiments were conducted assuming that the
initial conditions were unknown; for known or specified initial
conditions, we found that the identification was even more
successful (see Supplementary Figure 5). We have thus shown
that for the simple gene expression model, cellular noise
enhances the opportunity for system parameter identification,
whereas measurement noise impedes it. The deleterious
effects of measurement noise can be overcome by increasing
the number of measurements.

Experimental identification of lac induction

Among the most studied gene regulatory elements is the lac
operon of Escherichia coli. This mechanism has been used to
construct toggle switches (Gardner et al, 2000; Kobayashi et al,
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Figure 2 Comparison of strategies for the identification of the gene expression
model. (A) Minimum number of measurements needed for full parameter
identification. (B) The log-normally distributed parameters of 100 simulated
models, which combined with different unknown initial distributions at time t¼0
define 100 different moment trajectories. (C) Percent identification success rates
(within 5% for all parameters) for different identification strategies, assuming that
measurements had unknown errors of ±10% and were taken every 100 s.
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2004), genetic oscillators (Elowitz and Leibler, 2000; Atkinson
et al, 2003) and logical circuits (Weiss, 2001). Despite its
ubiquitous use, precise in vivo single-cell quantification of the
system remains insufficient. Indeed, most such quantification
attempts have come from in vitro experiments or population
level studies. For example, the lac repressor dissociation
constant has been estimated to be Kd¼10�11–10�9 M (Oehler
et al, 1990). In an E. coli cell with a volume of 10�15 l, such
dissociation constants mean the occupancy of the lac promoter
is 94–99.94% when there are ten such molecules. At best, such
measurements have only a probabilistic meaning at the level of
single cells; at worst, they have no relevance at all as other

mechanisms, such as nonspecific binding (Kao-Huang et al,
1977), take on much greater significance.

We used flow cytometry experiments and computational
analyses to identify a parameter set to describe the in vivo
single-cell dynamics of green fluorescent protein (GFP)
controlled by the lac operon under isopropyl-b-D-thiogalacto-
side (IPTG) induction (see Figure 3A and Materials and
methods section). We explored the response of the system at
several IPTG levels and at multiple time points. Although
many mechanistic models may capture the available data,
we focused on the simplest consistent model, which consists
of diffusion of IPTG into the cell, [IPTG]IN¼[IPTG]OUT �
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(1�exp(�rt)), and four basic reactions, R1, R2, R3, and R4

corresponding to production and degradation of LacI and GFP.

R1 : f �!w1
LacI; R2 : LacI �!w2 f;

R3 : f �!w3
GFP; R4 : GFP �!w4 f

The production of LacI is constant, w1¼kL, corresponding to
constitutive expression. However, production of GFP is a
nonlinear function of the LacI level:

w3ð½LacI�Þ ¼ kG

1þ a½LacI�Z ;

where kG is the unrepressed GFP production rate, a describes
LacI occupancy strength, and the Hill coefficient, Z, accounts
for cooperative binding of LacI. The GFP degradation rate,
w4¼dG � [GFP], is fixed, but LacI can be degraded or inactivated
by IPTG such that the total LacI removal depends on the IPTG
concentration and is assumed to have the form w2¼dL � [LacI],
where dL ¼ dð0ÞL þ dð1ÞL ½IPTG�IN. The model also explicitly
characterizes uncertainties in the flow cytometry measure-
ments (see Materials and methods). In total, there are ten
unknown positive real parameters for the regulatory system,
L ¼ fkL; kG; d

ð0Þ
L ; dð1ÞL ; dG; a; Z; r; mGFP; s

2
GFPg 2 R10

þ :
The measured fluorescence histograms at different times

and different IPTG levels (Figure 3) cannot adequately be
captured using low order moments. Furthermore, as wG is a
nonlinear function of LacI, there is no known analytical
expression for the statistical moments of GFP. Instead, we used
a new method, called finite state projection (FSP), to identify
the unknown parameters on the basis of their probability
densities (see Materials and methods section). In the
identification routine, a parameter search was conducted to
find parameter sets such that the total predicted fluorescence
distribution was as close as possible to the measured
distribution in a least squares sense for all time points and
IPTG levels.

Figure 3B shows that the identified model results match the
experimentally measured distributions exceptionally well.
However, with the full set of ten unknowns in L, this
identification is not unique, and we found multiple parameter
sets that provided equally good fits. However, by utilizing
additional information about the system, we could reduce the
uncertainty of identification. In particular, assuming that
GFP is lost solely to dilution, we could specify the rate
dG¼3.8�10�4 N�1 s�1, corresponding to a half-life of 30 min.
The remaining nine parameters could then be identified as:

kL ¼ 1:7�10�3 s�1 kG ¼ 1:0�10�1 s�1 Z ¼ 2:1

dð0ÞL ¼ 3:1�10�4 N�1 s�1 dð1ÞL ¼ 5:0�10�2 ðmM �NÞ�1 s�1 a ¼ 1:3�104 N�Z

r ¼ 2:8�10�5 s�1 mGFP ¼ 220 AU sGFP ¼ 390 AU

( )
;

where N refers to molecule number.
As the assumed model represents a simplified description of

multiple events (folding dynamics, elongation, etc.), these
parameters are best viewed as model-specific empirical
measurements. Even so, it is possible to make some
comparisons between the identified parameters and previous
analyses. First, the production and degradation rates of LacI
yield a mean number of kL=g

ð0Þ
L � 5 molecules per cell at

steady state in the absence of IPTG, on the same magnitude of
wild-type levels of about ten per cell. Second, the level of LacI
required for half occupancy of the lac operon is [LacI]1/2¼

(1/a)1/Z¼0.012, which compares well to values 0.006–0.6
molecules (10�11–10�9 M, Oehler et al, 1990). Third, a Hill
coefficient of 2.1 is reasonable considering that LacI binds to
the operon as a tetramer. Finally, the degradation rate LacI, dð0ÞL

is close to the dilution rate of 3.8�10�4 N�1 s�1, reflecting the
high stability of that protein. In addition to comparing the
parameters to values in the literature, we have used the
parameter set identified from {5, 10, 20}mM IPTG induction to
predict the fluorescence under {40, 100} mM IPTG. Figure 3C
shows that these predictions match the subsequent experi-
mental measurements very well despite the vastly different
shapes observed at the high induction levels.

Using single-cell experimental techniques, it has become
possible to efficiently measure fluctuations in cell constitu-
ents. When properly extracted and processed with rapidly
improving computational tools, these measurements contain
sufficiently rich information as to enable the unique identifica-
tion of parameters. We have shown that transient dynamics
are important to this effort, and in principle, identification can
be accomplished when accurate distributions are measured at
only two distinct time points. More time points are needed if
the distributions are poorly measured, but the idea remains the
same. We have show the potential of our approach by
experimentally identifying a predictive model of lac regulation
from flow cytometry data. Hence, the proposed integration
of single-cell measurements and stochastic analyses estab-
lishes a promising approach that offers new windows into the
workings of cellular networks.

Materials and methods

Medium and reagents

Cells were grown in Luria–Bertani (LB) medium supplemented with 1%
tryptone, 0.5% yeast extract, and 0.4% NaCl and containing IPTG at the
concentrations noted. To select for plasmid maintenance, antibiotics
were used at the following concentrations: 100mg/ml ampicillin (amp);
40mg/ml kanamycin (kan); and 12.5mg/ml tetracycline (tet).

Bacterial strains and plasmids

The E. coli strain used was DL5905—E. coli K-12 (isolate MC4100)
containing [F0 proAB lacIqZM15 Tn10 (Tetr)] from strain XL-1 Blue
(Stratagene) and plasmid pDAL812. To construct plasmid pDAL812,
GFP(LVA) (Anderdson et al, 1998) was PCR amplified from plasmid
pRK9 (a gift from John Cronan) using the forward primer (50-CAACA
AAGATCTATTAAAGAGGAGAAATTAAGCATGAGTAAAGGAGAAGAAC
TTTTCA-30) that includes a BglII site and removes an SphI site from the
original pRK9 sequence, and the reverse primer (50-CAACAAGCATGCA
TTAAGCTACTAAAGCGTAGTTTTCGTCGTTTGC-30) that adds an SphI
site. This fragment was digested using BglII and SphI and cloned into
BglII and SphI sites of pLAC33 (Warren et al, 2000), removing a portion
of the TetR cassette.

Fluorescence induction experiments

Twenty-four separate cell cultures were allowed to grow in LB broth
containing the appropriate antibiotics to an approximate OD600 of 0.2,
and were then induced with {0, 5, 10, 20, 40, 100}mM concentrations
of IPTG at 5, 4, 3, and 0 h before flow cytometry measurements. Flow
cytometry was carried out using a BD Biosciences FACSAria instru-
ment with a 100-mm sorting nozzle at low pressure. GFP(LVA) was
excited using a 488-nm blue laser and detected using 530/30-nm filter.
For each sample, 1000 000 events were collected. To ensure repeat-
ability, experiments were conducted twice, each on a separate day.
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GFP induction model

The stochastic model for the IPTG–GFP induction is composed of four
nonlinear production/degradation reactions given in the main text.
The rates of these reactions depend on the integer populations of the
proteins LacI and GFP, as well as the set of nonnegative parameters,
fkL; kG; d

ð0;1Þ; dG; a; r; Zg 2 R8: For the stochastic system modeled
here, the joint (LacI, GFP) probability distributions of both proteins
evolve according to the infinite dimensional chemical master equation
(CME; van Kampen, 2007). This can in turn be expressed as an infinite
set of linear ordinary differential equations—

.
P(t, K)¼A(t, K) �P(t, K).

Unlike in the simple transcription/translation model, the toggle
reactions are nonlinear, and the CME has no known exact solution.
We use a finite state projection approach (Munsky and Khammash,
2006) that makes it possible to approximate the solution to any degree
of accuracy. For any error tolerance e40, we systematically find
a finite-dimensional projected system—

.
PFSP (t, K)¼AJ(t, K) �PFSP

(t, K)—the solution for which is within the desired tolerance. More
precisely,

PJðt;KÞ
PJ 0 ðt;KÞ

� �
� PFSPðt;KÞ

0

� �����
1

pe; and PFSPð0;KÞ ¼ PJð0;KÞ;
����

where the index vector J denotes the set of states included in the
projection, PJ is the corresponding probability of those states, and AJ is
the corresponding principle sub-matrix of A (Munsky and Khammash,
2006). The one-norm measure is used to ensure that absolute sum of
the probability density error is guaranteed to lie within the tolerance.
The solution of each projected master equation is found using the stiff
ode solver ode23s in MathWorks Matlab.

Modeling flow cytometry data

In addition to modeling the regulatory dynamics of the system, one
must also account for the inherent uncertainty within measured levels
of fluorescence activity. The process used to account for this
uncertainty has three components. First, in an effort to remove
outliers in cell volume and density, and thereby reduce the effects of
unmodeled dynamics, each cell population was gated separately using
forward and side scatter data. Specifically, the forward and side scatter
measurements were used to form a two-dimensional joint histogram
with 50�50 logarithmically distributed bins (see Supplementary
Figure 6). The maximum point in this histogram was recorded and
then the gating region was chosen to include every bin that had, at
least, one third as many counts as the maximal bin. Second, flow
cytometry measurements in the absence of IPTG have been used to
calibrate the background fluorescence of cell populations at various
instances in time, and it has been assumed that the background
fluorescence distribution, fBG(x), is independent of the levels of IPTG,
LacI, and GFP. Third, each GFP molecule is assumed to emit a normally
distributed random amount of fluorescence with unknown mean, mGFP,
and variance,s2

GFP; both of which are to be identified. Thus, if pn¼pn(t,
K, [IPTG]) denotes the probability of having exactly n¼{0, 1, 2, y}
molecules of GFP, then the probability density of having exactly x
arbitrary units of fluorescence because of GFP is computed as:

fGFPðxÞ ¼
X1
n¼0

pn�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2np � s2
GFP

q exp � x� n � mGFPð Þ2

2n � s2
GFP

 !

Finally, the total observable fluorescence is the sum of the GFP
florescence plus the background noise, and the distribution of total
fluorescence is found using the convolution:

fTotðxÞ ¼
Zx
�1

fGFPðx� sÞ � fBGðsÞ � ds �
Zx
0

fGFPðx� sÞ � fBGðsÞ � ds:

Identification procedure

With the FSP solution and the computation of the expected
fluorescence, the identification procedure is carried out by finding
the parameter vector K* that minimizes the one norm difference

between the experimentally measured distribution f
ðiÞ
Measðt; ½IPTG�Þ and

the numerical solution of that distribution:

K� :¼ argminK

X
i

qi � f
ðiÞ
Meas � f

ðiÞ
Tot

��� ���
1

( )
;

where the summation is taken over all of the different experimental
conditions of different induction times and IPTG levels, and the weight
qi specifies the relative importance to each of these measurements.
These weights have been chosen such that each IPTG level has the
same total importance and so that greater importance is placed on
measurements that differ the most from the background fluorescence.
The values for these weights are given in Figure 3. The parameter
identification is accomplished by starting with an initial parameter
guess, K0, and then this set is updated iteratively using gradient-based
and simulated annealing searches until the computed distribution
matches the experimental distribution as closely as possible. The
optimization procedure is repeated for multiple, randomly generated
initial parameter guesses. An optimal parameter set is regarded as
unique if the given solution yields the smallest achieved value for the
objective function, and if that parameter has been achieved during
many such identification runs each beginning with different parameter
guesses.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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