
Qualitative Modeling and Simulation

of the Carbon Starvation Response in E. coli

Exercises

Delphine Ropers and Pedro Monteiro and Hidde de Jong
Institut National de Recherche en Informatique et en Automatique (INRIA)

Centre de recherche Grenoble - Rhône-Alpes
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The common intestinal bacterium Escherichia coli is without any doubt the best-studied
organism in biology. Apart from the fact that pathogenic strains of this bacterium cause,
among other things, urinary infections in humans, it is important as a model organism for
other bacteria and higher organisms. This has led the editors of a reference work on E. coli
to remark that “all cell biologists have two cells of interest: the one they are studying and
Escherichia coli” ([35], p. 4).

Upon depletion of an essential nutrient, like a carbon source, an exponentially-growing
E. coli population may enter a non-growth state, making a transition from exponential to
stationary phase (figure 1). During this growth-phase transition, individual bacteria develop
a resistance to multiple stresses that allow them to survive the adverse environmental con-
ditions. In this set of exercises, we will build mathematical models of the key part of the
genetic regulatory network controlling the carbon starvation response of E. coli cells. The
models will be used to simulate the transition from exponential to stationary phase by means
of the program Genetic Network Analyzer (GNA).

After a brief introduction to the biology of the carbon starvation response in section 1,
based on the description in [37], we propose a simple model of the network in section 2. The
analysis of this model will give us an idea of how predictions on the qualitative behaviour of
the system can be inferred from a formal representation of the interactions between molecular
components of the cell. Section 4 will show how GNA can be used to simulate the carbon
starvation response, using the simple model developed in the previous section. In section 5,
GNA will be used to analyze a more complex model of the stress response network. In the
final section, we will show how model-checking techniques can support this analysis.

1 Carbon starvation response in E. coli

On the molecular level, the transition from exponential to stationary phase in E. coli involves a
variety of events [24, 26]. In particular, the cellular metabolism, previously aimed at maximal
growth, is reoriented towards a metabolism of maintenance, and a large number of genes are
induced, whose function it is to provide maximal protection against a variety of stresses.
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Figure 1: (a) Growth states of a bacterial population: exponential and stationary phase.
(b) Nutrient-stress response of bacteria during the transition from exponential to stationary
phase.

The morphological and physiological changes of E. coli cells that accompany the growth-
phase transition are controlled at the genetic level by a complex regulatory network inte-
grating various environmental signals [21, 25, 43]. Among the numerous genes, proteins, and
metabolites making up this network, a class of pleiotropic transcription factors, called global

regulators, plays a key role [19]. Global regulators mediate the activation or repression of a
large set of genes in response to changes in environmental conditions, such as nutrient depri-
vation. Hence, they are able to regulate genes involved in a variety of cellular processes, such
as different metabolic pathways. Many transcription factors have been identified in E. coli,
but only a few of them are major global regulators [27, 31, 39].

How does the transition from exponential to stationary phase in response to a carbon star-
vation signal emerge from the network of global regulators and their interactions? Currently
no clear answer to this question exists. However, it is known that the global regulators CRP
and Fis play a key role in the control of the growth-phase transition. As a first approximation,
we will therefore focus on a simple network composed of CRP and Fis, the genes encoding
these proteins, and their mutual regulatory interactions.

The protein CRP is the major transcription regulator in E. coli, controlling the expression
of hundreds of genes involved in the adaptative response of the cell to nutrient deprivation
as well as in changes of cellular morphology and motility [22, 28]. The expression of the
gene crp is repressed by the protein Fis. Additionally, Fis controls the expression of genes
involved in the cellular metabolism [18]. For instance, it activates the rrn operons, which
encode stable RNAs required for protein synthesis. The expression level the rrn operons is
considered as representative of the cell’s growth state. The expression of fis is controlled at
the transcriptional level, where it is produced from a promoter repressed by CRP and Fis
itself.

Simplifying a lot, we can say that the transition from exponential to stationary phase in
response to a carbon starvation signal involves a switch from a state in which Fis is present at
a high concentration and CRP at a low concentration to a state in which CRP is present at a
high concentration and Fis at a low concentration. The low concentration of Fis in stationary
phase causes the transcription of the stable RNA genes to be downregulated, entailing the
growth arrest of the cell.

In order to understand how the switch from exponential to stationary phase emerges from
the regulatory interactions between the genes crp and fis, and the proteins they encode, we
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will build a simple mathematical model capturing essential aspects of the regulation of these
genes.

2 Simple model of carbon starvation response network

As a preparatory step, the knowledge on the genes, proteins, and interactions is organized in
a graphical representation of the regulatory network, as shown in figure 3. The representa-
tion uses symbols for protein synthesis and its activation and inhibition, following graphical
conventions proposed in [30] (figure 2).

PB

A

Synthesis of protein A from gene a.

Activation
Degradation of A.

Inhibition

involving interactions between A and B.
Abstract representation of process P,A

A

a

Figure 2: Notation for the graphical representation of genetic regulatory networks [30].
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Figure 3: Graphical representation of the genetic regulatory network controlling the carbon
starvation response in E. coli (see figure 2 for the notation). The network consists of the
genes crp and fis, the proteins they encode, and their mutual regulatory interactions.

Next, the graphical representation of the network is transformed into a mathematical
model. Particularly, we introduce non-negative concentration variables xCRP and xF is for
the proteins CRP and Fis, respectively. The rate of change of the concentrations can be
described by means of the following pair of differential equations, expressing the difference of
the rate of synthesis and the rate of degradation of the proteins:

ẋCRP = κCRP s−(xF is, θF is) − γCRP xCRP , (1)

ẋF is = κF is s−(xCRP , θCRP ) − γF is xF is, (2)

where the step functions s+, s− are defined as follows:

s+(x, θ) =

{

1, x > θ

0, x < θ
and s−(x, θ) = 1 − s+(x, θ). (3)

The differential equation for CRP expresses that the protein is synthesized at a positive
rate κCRP , if the concentration of Fis is below a threshold concentration θF is (θF is > 0). In
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that case, the step function s−(xF is, θF is) evaluates to 1. However, if the concentration of Fis
increases to above its threshold, the step function becomes 0 and the protein CRP is no longer
synthesized. The step-function expression thus captures the inhibition of crp expression by
Fis. CRP is degraded at a rate proportional to its own concentration, where γCRP denotes a
degradation constant (γCRP > 0).

The regulation of fis expression involves CRP. If the CRP concentration is above the
threshold θCRP , then the step-function expression s−(xCRP , θCRP ) equals 0 and fis expres-
sion is repressed. When the concentration of CRP is below its threshold, the step-function
expression equals 1 and Fis is synthesized at a positive rate κF is. As for CRP, the protein is
degraded at a rate proportional to its own concentration (γF is > 0).

The simple model (1)-(2) has two state variables, xCRP and xF is, and can therefore be
analyzed in the phase plane. As shown in figure 4, the phase plane is divided into four regions,
called regulatory domains, by the threshold planes xCRP = θCRP and xF is = θF is. The con-
stants maxCRP and maxF is denote maximum concentrations for CRP and Fis, respectively.

maxFisθFis

xCRP

maxCRP

D3 D4

θCRP

D2

0

D1

xFis

Figure 4: Phase plane and regulatory domains for the model (1)-(2) of the genetic regulatory
network in figure 3.

Exercise 1 (Analysis of simple model in phase plane)
a. Show that in each regulatory domain the simple model reduces to two linear, uncoupled
differential equations.
b. A differential equation of the form ẋ = κ − γ x has a solution x(t) = (κ/γ) − (κ/γ −
x0) exp−γt on the time-interval [0,∞), where x(0) = x0 represent the initial conditions. Write
down the solution of the reduced model in each regulatory domain. What is the asymptotic
behavior as t → ∞?
c. Given that θCRP < κCRP /γCRP < maxCRP and θF is < κF is/γF is < maxF is, sketch a few
example solution trajectories in the regulatory domains.
d. Relate the qualitative dynamics of the system to the growth phases of the bacteria.

The exercise shows that global solutions of the model (1)-(2) can be obtained by piecing
together local solutions in the regulatory domains. As you may have noticed in part c, it
is not always possible to continue local solutions across threshold boundaries. This is for
example the case for solution trajectories reaching the intersection of the threshold planes
xF is = θF is and xCRP = θCRP . In order to solve this problem, caused by the discontinuities
in the right-hand side of the differential equations, we need to refine the analysis to the
dynamics in switching domains, that is, regions located on the threshold boundaries. This
requires sophisticated mathematical techniques that fall outside the scope of the exercises
(but see [14, 20]).
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The above mathematical analysis shows that we are able to make relevant predictions
about the behavior of the system using qualitative information only. Instead of specifying
numerical values for the threshold and rate parameters in (1)-(2), inequality constraints have
been formulated. On one hand, the so-called threshold inequalities determine the partitioning
of the phase plane into regulatory domains:

0 < θCRP < maxCRP , (4)

0 < θF is < maxF is. (5)

On the other hand, the focal inequalities fix the relative position of a regulatory domain and
the focal point to which the trajectories in the domain converge:

θCRP < κCRP /γCRP < maxCRP , (6)

θF is < κF is/γF is < maxF is. (7)

The threshold and focal inequalities strongly constrain the local behavior of the system, while
the global behavior can be inferred by piecing together the local solutions in the regulatory
domains. Together, the differential equations and parameter inequalities form the qualitative
model of the system.

3 Extended model of carbon starvation response network

The analysis of the simple cross-inhibition model of exercise 1 has shown the existence of
two stable steady states, corresponding to the two growth phases of E. coli. What the model
does not explain, however, is the switch from one steady state to the other, following carbon
starvation. For this, we need to extend the model. In fact, it is known that in order to
efficiently bind DNA, CRP has to be activated by the small metabolite cAMP, which is
produced from ATP in response to a nutritional stress signal indicating the absence of carbon
compounds such as glucose [28] (figure 5). In addition, CRP is expressed at a basal level
in exponential phase, which is high enough to allow repression of fis expression when cAMP
accumulates. How can the model be extended to include this information? This is the subject
of the next exercise.

Exercise 2 (Analysis of extended model in phase plane)
a. Reformulate the simple model (1)-(2) so as to take into account the stress signal. Hint:
define an input variable uS representing the carbon starvation signal. If s+(uS , θS) = 1, then
the signal is present. Otherwise, it is absent.
b. Analyze the resulting model in the phase plane, following the steps of exercise 1. Distin-
guish between the cases in which the carbon starvation signal is present and in which it is
absent.

4 Simulation of carbon starvation response using simple and

extended models

The mathematical analysis explained above lies at the basis of a method for the qualitative
simulation of genetic regulatory networks (see [2, 14] for a more general and technical descrip-
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Figure 5: Graphical representation of the genetic regulatory network controlling the carbon
starvation response in E. coli (see figure 2 for the notation). In addition to crp and fis,
the proteins they encode, and their mutual regulatory interactions, the network includes the
carbon starvation signal.

tion). The method has been implemented in Java in the computer program Genetic Network
Analyzer (GNA) [13].

GNA allows the user to define and visually represent a genetic regulatory network, and
build a qualitative model from this information by specifying for each gene the differential
equations and inequality constraints. The model is analyzed by determining the steady states
of the network and performing a so-called qualitative simulation. The simulation results in
a state transition graph, consisting of domains and transitions between domains, starting
from an initial domain defined by the user. GNA supports the visual analysis of the state
transition graph by allowing the user, among other things, to zoom in or out from the graph,
to reduce or expand the graph, to highlight qualitative states in the graph satisfying certain
user-specified criteria, and to follow the qualitative evolution of the model variables along
a path in the graph. Figure 6 shows a screenshot of GNA. A user manual of GNA can be
obtained from the GNA web site.1

Exercise 3 (Simulation with simple and extended models.)
a. Start GNA with the command gna. Construct the simple model used in exercise 1 (store
the model in the project simpleModel.gnaml). Similarly, enter initial conditions covering all
possible values of CRP and Fis (call the initial conditions simpleModel and add them to the
project).
b. Start a qualitative simulation with the model simpleModel and the initial conditions
simpleModel.
c. Using GNA, verify the qualitative dynamics carried out in exercise 1.
d. Repeat the above steps for the extended model used in exercise 2. Call the project
extendedModel and create two initial conditions, corresponding to stationary and exponential-
phase conditions (extendedModel1 and extendedModel2).

1GNA is distributed by the company Genostar and freely available for non-profit academic research purposes

at http://www-helix.inrialpes.fr/gna.
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Figure 6: Screenshot of the qualitative modeling and simulation tool GNA.

5 Simulation of carbon starvation response using complex model

The models used in the previous sections are based on strongly-simplified versions of the
carbon starvation response network. A picture that comes closer to the actual complexity of
the network is shown in figure 7. It reveals that the regulation of the genes encoding CRP and
Fis is much more complex than assumed above. For instance, the picture includes the carbon
starvation signal activating CRP and the rrn genes encoding the stable RNAs. In addition, it
takes into account the protein Cya, which is the enzyme catalyzing the production of cAMP
from ATP, and the proteins TopA and GyrAB, which together control the DNA supercoling
level, an important modulator of gene expression. The network is certainly not complete, but
nevertheless allows an adequate description of some of the phenomena characterizing E. coli
growth-phase transitions [36, 37].

Exercise 4 (Simulation with complex stress response model.)
a. Load the model of the carbon starvation response network in figure 7, stored in the project
ComplexModel.gnaml, and compare the equations for Fis and CRP with those used in exer-
cise 3.
b. Perform an attractor search and relate the steady states to exponential-phase and stationary-
phase conditions. From these steady states, define appropriate initial conditions for carbon
starvation and nutrient upshift. Call these initial conditions complexModel1 and complexModel2,
respectively, and start a qualitative simulation using the initial conditions complexModel1.
c. Using GNA, analyze the paths in the state transition graph representing the transition from
exponential to stationary phase. Compare the results of the simulation with those obtained
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Figure 7: Network of key genes, proteins, and regulatory interactions involved in the carbon
starvation response in Escherichia coli [36].

with the extended model in the previous exercise.

6 Automated verification of properties of carbon starvation

model

The graphs obtained from the qualitative simulation of the carbon starvation network by
means of ComplexModel.gnaml quickly become quite large, consisting of hundreds or thou-
sands of states. As a consequence, it becomes almost impossible to gain an intuitive un-
derstanding of the role of a particular feedback mechanisms in the adaptation of the cell
to nutritional stress conditions, such as the mutual inhibition of Fis and CRP, by checking
thousands of paths in the graph by hand. The identification of interesting predictions from
the model, concerning a specific mutant or physiological perturbation, is also compromised
by the large size of the graphs.

Methods from the field of formal verification provide a promising way to deal with the
analysis of large and complex models of genetic regulatory networks. Generally speaking,
formal verification proceeds by specifying dynamical properties of interest as statements in
temporal logic [9]. Efficient so-called model-checking algorithms exist to determine whether
the statements are true or false, and thus whether the properties are satisfied by the model.
The methods generally require the dynamics of the system to be described in the form of
state transition graphs, like those used in GNA.

GNA has been extended with a model-checking functionality that allows the user to for-
mulate properties in temporal logic and test these on a state transition graph, associated
with a particular model and initial conditions [3, 34]. The actual verification of the property
takes place through a web-service based connection of GNA with standard model checkers,
like NuSMV [8, 33]. However, the user can also export the state transition graph to a text
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file in a format that is accepted by these model checkers. The specification of the proper-
ties in temporal logic is supported by query patterns that capture the most-frequently asked
questions by modelers.

Exercise 5 (Verification of properties of simple model.)
a. Start GNA with the command gna. Load the extended model used in exercise 3, stored
in the project ExtendedModel.gnaml, and define initial conditions covering the entire state
space. Call these initial conditions extendedModel and store them in the project.
b. Create atomic propositions corresponding to (i) a stable steady state, (ii) a low concentra-
tion of Fis and a high concentration of CRP, and (iii) carbon starvation (high stress signal).
Call these atomic propositions steadyState, highCRP lowFis, and carbonStarvation, re-
spectively. Specify a property stating that it is possible to reach a stable steady state. Store
this property in the project and test it with the model checker NuSMV from the initial con-
ditions extendedModel (using implicit graphs).
c. Specify a property stating that if carbon starvation occurs, then the system necessarily
reaches a stable steady state in which Fis is present a low concentration and CRP at a high
concentration. Use the expert option of the property editor. Store this property in the project
and test it with the model checker NuSMV (using implicit graphs).

The interest of the model-checking functionality will become especially clear from the next
exercise, which deals with the entire model of the carbon starvation response network, based
on figure 5.

Exercise 6 (Verification of properties of complex model.)
a. Load the model stored in the project ComplexModel.gnaml. Test the properties of the
previous exercise on this model, after an appropriate reformulation of the atomic propositions
and initial conditions (label these complexModel1). Use the model checker NuSMV and im-
plicit graphs.
b. Create an atomic proposition named decFis, corresponding to a derivative of the concen-
tration variable xF is that is negative (i.e., ẋF is < 0). Idem for incCRP, meaning ẋCRP > 0.
Specify a property stating that an decreasing concentration of Fis is necessarily followed by an
increasing concentration of CRP. Test this property with the initial conditions complexModel1
and with initial conditions complexModel corresponding to all values of the concentration
variables. Use the model checker NuSMV and implicit graphs.

7 Further reading

Several excellent and up-to-date textbooks on mathematical modeling of genetic and biochem-
ical networks are available, such as [1, 5, 7, 16, 40, 42]. Reviews of methods for the modeling,
simulation, and verification of genetic regulatory networks are [6, 10, 11, 17, 23, 29, 32, 38, 41].
More information on the qualitative simulation method used in these exercises can be found
in [2, 12, 13, 14, 15] and at http://ibis.inrialpes.fr/, while the biology of the carbon
starvation response in E. coli and the model used in sections 5 and 6 are explained in [36, 37]
(see also [4, 21]).
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[20] J.-L. Gouzé and T. Sari. A class of piecewise linear differential equations arising in
biological models. Dynamical Systems, 17(4):299–316, 2002.

[21] R.M. Gutierrez-Rı́os, J..A. Freyre-Gonzalez, O. Resendis, J. Collado-Vides, M. Saier,
and G. Gosset. Identification of regulatory network topological units coordinating the
genome-wide transcriptional response to glucose in Escherichia coli. BMC Microbiology,
7:53, 2007.

[22] J.G. Harman. Allosteric regulation of the cAMP receptor protein. Biochimica et Bio-
physica Acta, 1547(1):1–17, 2001.

[23] J. Hasty, D. McMillen, F. Isaacs, and J.J. Collins. Computational studies of gene reg-
ulatory networks: In numero molecular biology. Nature Review Genetics, 2(4):268–279,
2001.

[24] R. Hengge-Aronis. Regulation of gene expression during entry into stationary phase. In
F.C. Neidhardt, R. Curtiss III, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S.
Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger, editors, Escherichia coli and
Salmonella: Cellular and Molecular Biology, pages 1497–1512. ASM Press, Washington,
DC, 2nd edition, 1996.

[25] R. Hengge-Aronis. The general stress response in Escherichia coli. In G. Storz and
R. Hengge-Aronis, editors, Bacterial Stress Responses, pages 161–177. ASM Press, Wash-
ington, DC, 2000.

[26] G.W. Huisman, D.A. Siegele, M.M. Zambrano, and R. Kolter. Morphological and physio-
logical changes during stationary phase. In F.C. Neidhardt, R. Curtiss III, J.L. Ingraham,
E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and H.E.
Umbarger, editors, Escherichia coli and Salmonella: Cellular and Molecular Biology,
pages 1672–1682. ASM Press, Washington, DC, 2nd edition, 1996.

11



[27] A. Ishihama. Prokaryotic genome regulation: multifactor promoters, multitarget regula-
tors and hierarchic networks. FEMS Microbiology Reviews, 34(5):628–646, 2010.

[28] M.H. Saier Jr, T.M. Ramseier, and J. Reizer. Regulation of carbon utilization. In F.C.
Neidhardt, R. Curtiss III, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S.
Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger, editors, Escherichia coli and
Salmonella: Cellular and Molecular Biology, pages 1325–1343. ASM Press, Washington,
DC, 2nd edition, 1996.

[29] G. Karlebach and R. Shamir. Modelling and analysis of gene regulatory networks. Nature
Reviews Molecular Cell Biology, 9(10):770–780, 2008.

[30] K.W. Kohn. Molecular interaction maps as information organizers and simulation guides.
Chaos, 11(1):84–97, 2001.

[31] A. Martinez-Antonio and J. Collado-Vides. Identifying global regulators in transcrip-
tional regulatory networks in bacteria. Current Opinion in Microbiology, 6(5):482–489,
2003.

[32] H.H. McAdams and A. Arkin. Simulation of prokaryotic genetic circuits. Annual Review
of Biophysics and Biomolecular Structure, 27:199–224, 1998.

[33] P.T. Monteiro, E. Dumas, B. Besson, R. Mateescu, M. Page, A.T. Freitas, and H. de Jong.
A service-oriented architecture for integrating the modeling and formal verification of
genetic regulatory networks. BMC Bioinformatics, 10:450, 2009.

[34] P.T. Monteiro, D. Ropers, R. Mateescu, A.T. Freitas, and H. de Jong. Temporal logic
patterns for querying dynamic models of cellular interaction networks. Bioinformatics,
24(16):i227–i233, 2008.

[35] F.C. Neidhardt, R. Curtiss III, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik,
W.S. Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger, editors. Escherichia coli
and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, DC, 2nd
edition, 1996.

[36] D. Ropers, V. Baldazzi, and H. de Jong. Model reduction using piecewise-linear approx-
imations preserves dynamic properties of the carbon starvation response in Escherichia
coli. ACM/IEEE Transactions on Computational Biology and Bioinformatics, 2009. In
press.

[37] D. Ropers, H. de Jong, M. Page, D. Schneider, and J. Geiselmann. Qualitative simulation
of the carbon starvation response in Escherichia coli. Biosystems, 84(2):124–152, 2006.

[38] T. Schlitt and A. Brazma. Current approaches to gene regulatory network modelling.
BMC Bioinformatics, 8(Suppl. 6):S9, 2007.

[39] S.S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional
regulation network of Escherichia coli. Nature Genetics, 31(1):64–68, 2002.

[40] Z. Szallasi, V. Periwal, and J. Stelling, editors. System Modeling in Cellular Biology:
From Concepts to Nuts and Bolts. MIT Press, Cambridge, MA, 2006.

12



[41] B. Di Ventura, C. Lemerle, K. Michalodimitrakis, and L. Serrano. From in vivo to in
silico biology and back. Nature, 443(7111):527–523, 2006.

[42] E.O. Voit. Computational Analysis of Biochemical Systems: A Practical Guide for Bio-
chemists and Molecular Biologists. Cambridge University Press, Cambridge, 2000.

[43] L.M. Wick and T. Egli. Molecular components of physiological stress responses in Es-
cherichia coli. Advances in Biochemical Engineering/Biotechnology, 89:1–45, 2004.

13


