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Overview 

1. General question of biological regulation: 

the MetaGenoReg project 

2. Analysis of metabolic coupling in gene regulatory networks 

3. Metabolic model 

4. Integrating gene and metabolic models 
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1. General question of biological regulation 

 Cellular regulation involves several levels, including: 

 Gene regulatory networks  

 Metabolic regulation 

 These levels interact: 

 Gene expression impacts metabolism through changes in enzyme 

concentrations 

 Conversely metabolism influences gene expression 

What is the rationale articulating both types of regulation?  

 Are they interchangeable ?  

 How much are they constrained? 

 What is the relative importance of gene and metabolic regulation? 



 

 

‘Hierarchical’ analysis  
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MetaGenoReg project outline 

Modelling combined metabolic and gene regulation 

 Reduce and simplify in order to understand the system’s behaviour 

 Develop a method for joint modelling combining different approximations 

suited to both types of regulation 

 Measure their respective contribution 

 Analyse the model’s strengths and weaknesses from a 

systemic point of view  

 Understand the biological rationale underlying the distribution of 

regulation between metabolism and gene expression 
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Glucose-acetate diauxie 

Well-characterised transition 

in E. coli 

 Involves major changes 

 at the metabolic level: 

gluconeogenesis vs. glycolysis 

 at the gene expression level 

 Strong interaction between metabolic 

and gene expression levels 

Oh et al. (2002) J Biol Chem. 277:13175-83. 



 

 

2. Analysis of metabolic coupling 

 Gene regulatory networks control changes in gene 

expression in response to environmental perturbations 

 They consist of genes, gene products (RNAs, proteins), and the 

regulatory effect of the latter on the expression of other genes 
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Bolouri (2008), Computational Modeling of Gene 

Regulatory Networks, Imperial College Press 

Brazhnik et al. (2002), Trends Biotechnol., 20(11):467-72 

 Gene regulatory networks 

include direct interactions 

(transcription regulation), but 

also indirect interactions 

(mediated by metabolism) 

 



 

 

Problem statement 

 Occurrence of indirect regulatory interactions between enzymes 

and genes: metabolic coupling 

 By which method can we analyze metabolic coupling in gene 

regulatory networks in a principled way? 

 How can we derive indirect interactions from underlying system of 

biochemical reactions? 

 How do indirect interactions influence system dynamics? 

 Practical constraints 

 Large systems (many species, many reactions) 

 Lack of information on specific reaction mechanisms 

 Lack of parameter values, lack of data to estimate parameter values 
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Problem statement 

Which new insights can this give us into the functioning of the 

carbon assimilation network in E. coli? 

 Upper part of glycolysis and gluconeogenesis pathways and their genetic 

and metabolic regulation  
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Outline of approach 

 By which method can we analyze metabolic coupling in gene 

regulatory networks in a principled way? 

 How can we derive indirect interactions from underlying system of 

biochemical reactions? 

 Approach based on reduction of stoichiometric model of system 

of biochemical reactions, making following weak assumptions: 

 Distinct time-scale hierarchies between metabolism and gene 

expression: model reduction using quasi-steady-state approximation 

 Stability of fast subsystem: use of control and elasticity coefficients 

from metabolic control analysis 
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Baldazzi et al. (2010), PLoS Comput. Biol., 6(6):e1000812 



 

 

Kinetic models and time-scale hierarchy 

 Kinetic model of form 

 Concentration variables 

 Reaction rates                             

 Stoichiometry matrix 
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Simplified model of glycolysis pathway, with 

metabolic and genetic regulation 

Heinrich and Schuster (1996),  

The Regulation of Cellular Systems, Chapman & Hall 

· 

· 

· 



 

 

Kinetic models and time-scale hierarchy 

 Kinetic model of form 

 Concentration variables 

 Reaction rates                             

 Stoichiometry matrix 

 Time-scale hierarchy motivates distinction between fast 

reaction rates                    and slow reaction rates              , 

such that 

 

  Typically, enzymatic and complex formation reactions are fast, 

protein synthesis and degradation are slow 
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Kinetic models and time-scale hierarchy 

 Separation of fast and slow reactions motivates a linear 

transformation                        of the variables 

 

    such that 

 

We call                 slow variables and                      fast 

variables  

 Separation of fast and slow variables allows                      to be 

rewritten as coupled slow and fast subsystems 
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Kinetic models and time-scale hierarchy 

 Separation of fast and slow reactions motivates a linear 

transformation                        of the variables 

 

    such that 

 

We call                 slow variables and                      fast 

variables  

 Slow variables are typically total protein concentrations, fast variables 

metabolites and biochemical complexes 
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Kinetic models and time-scale hierarchy 

 Separation of fast and slow variables allows original model to 

be rewritten as coupled slow and fast subsystems 
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Model reduction using time-scale hierarchy 

 Separation of fast and slow variables allows original model to 

be rewritten as coupled slow and fast subsystems 

  

 

 Under quasi-steady-state approximation (QSSA), fast 

variables are assumed to instantly adapt to slow dynamics 

 

Mathematical basis for QSSA is given by Tikhonov’s theorem 
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 

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall 

Khalil (2001), Nonlinear Systems, Prentice Hall, 3rd ed. 



 

 

Model reduction using time-scale hierarchy 

 QSSA implicitly relates steady-state value of fast variables to 

slow variables 

 

 This gives reduced model on the slow time-scale 

 

 Reduced model describes direct and indirect interactions between slow 

variables (total protein concentrations) 

 Mathematical representation of effective gene regulatory network 
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Analysis of metabolic coupling 

 Gene regulatory networks control changes in gene 

expression in response to environmental perturbations 

 They consist of genes, gene products (RNAs, proteins), and the 

regulatory effect of the latter on the expression of other genes 
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Bolouri (2008), Computational Modeling of Gene 

Regulatory Networks, Imperial College Press 

Brazhnik et al. (2002), Trends Biotechnol., 20(11):467-72 

 Gene regulatory networks 

include direct interactions 

(transcription regulation), but 

also indirect interactions 

(mediated by metabolism) 

 



 

 

Model reduction using time-scale hierarchy 

 QSSA implicitly relates steady-state value of fast variables to 

slow variables 

 

 This gives reduced model on the slow time-scale 

 

 Reduced model describes direct and indirect interactions between slow 

variables (total protein concentrations) 

 Mathematical representation of effective gene regulatory network 

 But 

 Generally function      is not easy to obtain due to nonlinearities 

 Function      depends on unknown parameter values 
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Jacobian matrix and regulatory structure 

 Derivation of interaction structure between slow variables 

by computation of Jacobian matrix 

 

 

 

 

 Implicit differentiation of QSSA equation                                  

yields 

 

where                                                     is Jacobian matrix of fast system 
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Direct regulation by 

transcription factors 

Indirect regulation through 

metabolic coupling 



 

 

Jacobian matrix and regulatory structure 

 Relation between obtained expression for Jacobian matrix and 

Metabolic Control Analysis (MCA)  

 

 

 

 Concentration control coefficients characterize the steady-

state response of fast variables (metabolite concentrations) to 

changes in slow variables (enzyme concentrations) 
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Concentration control coefficients 

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall 



 

 

Jacobian matrix and regulatory structure 

 Relation between obtained expression for Jacobian matrix and 

Metabolic Control Analysis (MCA)  

 

 

 

 

 

 System-level response expressed in terms of elasticity 

coefficients, which quantify the response of reaction rates to 

changes in variables 
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Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall 

Elasticity coefficients 



 

 

 Can we derive signs for regulatory interactions (elements of 

Jacobian matrix) without quantitative knowledge on rate laws 

and parameter values? 

 Rate laws are generally monotone functions in variables, so signs of 

elasticities are known 

 

Determination of interaction signs 

24 



 

 

 Can we derive signs for regulatory interactions (elements of 

Jacobian matrix) without quantitative knowledge on rate laws 

and parameter values? 

 Rate laws are generally monotone functions in variables, so signs of 

elasticities are known 

 But 

 Reversible reactions: signs of                           change with flux direction 

 

 

 Therefore, derive signs of regulatory interaction for given flux directions 

 

 

Determination of interaction signs 
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Determination of interaction signs 

 Resolution of signs of (large) algebraic expressions defining 

interaction signs by means of computer algebra tools 

 

 

Symbolic Math Toolbox in Matlab 

 Use of additional constraints in sign resolution 

 Stability assumption for fast system: necessary condition for stability 

is that coefficients of characteristic polynomial                             have 

same sign 

 Experimental determination of some of the signs of concentration 

control coefficients in                (if available) 
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Determination of interaction signs 

 Derivation of interaction signs from simplified kinetic model of 

glycolysis 

 Enzymes influence expression of metabolic genes through metabolism 

(metabolic coupling) 

 Intuitive explation of metabolic coupling in this simple example 

27 



 

 

Application to E. coli carbon assimilation 

 Development of model of carbon assimilation network, analysis 

under following conditions: 

Glycolysis/gluconeogenesis (growth on glucose/pyruvate) 
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66 reactions and 40 species 



 

 

Application to E. coli carbon assimilation 

 Development of model of carbon assimilation network, analysis 

under following conditions: 

Glycolysis/gluconeogenesis (growth on glucose/pyruvate) 

 

 

 

 

 

 

 

 Few fast variables couple metabolism to gene expression 
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Glycolysis with allosteric effects 



 

 

Network is densely connected 

 Contrary to what is often maintained, gene regulatory network 

is found to be densely connected 

 Strong connectivity arises from metabolic coupling 

        : transcriptional network consisting of direct interactions only 

               : gene regulatory network in glycolytic growth conditions 

including direct and indirect interactions 

 

 

 Experimental evidence for indirect interactions in perturbation 

experiments (deletion mutants, enzyme overexpression) 
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Siddiquee et al. (2004), FEMS Microbiol. Lett., 235:25–33 



 

 

Network is largely sign-determined 

 Derived gene regulatory network for carbon assimilation in E. 

coli is largely sign-determined 

 Signs of interactions do not depend on explicit specification of kinetic 

rate laws or parameter values, but are structural property of system 

 

 

 

 

 

 Sign-determinedness not expected on basis of work in ecology 

  

31 

Glycolysis with allosteric effects 

Puccia and Levins (1985), Qualitative Modeling of Complex Systems, Harvard University Press 



 

 

Interaction signs change with fluxes 

 Radical changes in environment may invert signs of indirect 

interactions, because they change direction of metabolic 

fluxes and thus signs of elasticities and concentration control 

 

 

 

 

 

 

 Dynamic modification of feedback structure in response to 

environmental perturbations 
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Network under glycolytic conditions Network under gluconeogenic conditions 



 

 

Metabolic coupling and network dynamics 

 By which method can we analyze metabolic coupling in gene 

regulatory networks in a principled way? 

 How do indirect interactions influence system dynamics? 

 Approach: reduce integrated network to gene regulatory 

network with metabolic coupling 

 

 Description of effective network structure on time-scale of gene 

expression 

 Use of standard (qualitative or quantitative) models for describing direct 

and indirect interactions between genes 
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Qualitative modeling of network dynamics 

 Qualitative models capture in simple manner complex dynamic 

of large regulatory networks without quantitative data 

Interesting in their own right, or first step towards fully quantitative modeling 

 Approach based on description of network dynamics by means 

of piecewise-linear (PL) DE models  

 PL models describe dynamics of gene regulatory networks by means of 

approximate, switch-like response functions 

 

 Relation with discrete, logical models of gene regulation 

Thomas and d’Ari (1990), Biological Feedback, CRC Press 

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29 
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Qualitative analysis of PL models 

PL models using step functions 

de Jong et al. (2004), Bull. Math. Biol., 66(2):301-40 

Batt et al. (2005), Bioinformatics, 21(supp. 1): i19-i28  
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Formulation of PL models 

 Can PL models account for adaptation of gene expression  

in E. coli following glucose-acetate diauxie? 

 Translation of network diagram into PL models 
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Baldazzi et al. (2012) J. Theor. Biol., 295:100-115  



 

 

Formulation of PL models 

 Can PL models account for adaptation of gene expression  

in E. coli following glucose-acetate diauxie? 

 Translation of network diagram into PL models 

 Straightforward for direct interactions… 

 … but also possible for indirect interactions 
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Baldazzi et al. (2012) J. Theor. Biol., 295:100-115  



 

 

Dynamic analysis of metabolic coupling 

 Can PL models account for adaptations of gene expression  

in E. coli following glucose-acetate diauxie? 

 Comparison of model predictions with published data sets 

 Steady-state mRNA concentration levels and initial transcriptional 

response of metabolic and regulatory genes 

 Indirect interactions induced by metabolic coupling are 

essential for reproducing gene expression dynamics 
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Baldazzi et al. (2012) J. Theor. Biol., 295:100-115  



 

 

Conclusions on metabolic coupling 

Metabolic coupling gives rise to indirect interactions between 

enzymes and genes in gene regulatory networks 

 Systematic derivation of effective structure of gene regulatory network on 

time-scale of gene expression  

Metabolic coupling leads to densely-connected networks with 

robust and flexible structure 

 Robust to changes kinetic properties (results not dependent on 

parameter values and rate laws) 

 Flexible rewiring of network structure following radical changes in 

environment (changes in flux directions) 

 Including metabolic coupling in dynamic models is essential to 

account for measured changes in gene expression 
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Towards quantitative models? 

 Above approach leads to models that view metabolism as 

intermediary between gene regulatory interactions 

 However, metabolism is not explicitly modeled 

 PL models aggregate and approximate complex rate functions in 

reduced model 

 

Moreover, models provide qualitative instead of quantitative 

picture of dynamics 

 Qualitative models help provide intuitive idea of global system dynamics, 

but for some questions quantitative precision is required  

 

 

 

f (     )  
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Towards quantitative models? 

 Another approach explicitly models metabolism and gene 

expression, followed by integration of two parts 

 

 

 Approach based on suitable approximations of 

• Approximations should provide good phenomenological description of 

metabolic rate laws 

• Minimal number of parameters to facilitate identification of parameter 

values from experimental data    

 

 

 

 

 
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3. Metabolic model 

 Toy model entirely specified with ODEs 

 ‘Experimental’ object used to test the quality of various 

reductions and approximations by comparison of simplified 

models with complete ODE model 

 A suitable approximation would ideally allow us to calculate 

   analytically 
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Which approximations? 

 Various types of linearisation of metabolic effects 

 Compare reduced / approximated models  

with complete ODE-specified model  

 

 



 

 

Assessing approximations of metabolism 

 Randomly change enzyme concentrations in a 25-fold range on 

benchmark model (Matteo Brilli) 

 Test steady-state obtention 



 

 

Approximation 1, from MCT 

 

v = diag f(x) · e 

 

dX/de = G · dv/de 

 

DlnX ~ (diag X0)
-1 · G · diag f(X0) · De 

 

Linearization around steady-state using control coefficients 

 



 

 

Approximation 2, linlog 

 Linearization of kinetic laws: 

 

v(x) ~ diag e · ( A + B · lnx ) 

  

 Steady-state implies: 

N · v(X) =  0 

 

lnX ~ - ( N · diag e · B )-1 · N · diag e · A 
 

 



 

 

Approximation 3, hyperbolic 

 Suggested from earlier work by Kacser: 

 

D(1/X) ~  (diag X0 )
-1 · CX · diag e0 · D(1/e)  

 

D(1/J) ~  (diag J0 )
-1 · CJ · diag e0 · D(1/e)  

 

 Linearization around steady-state using control coefficients

  



 

 

Metabolite estimates 

 Root mean square Log deviation 



 

 

Flux estimates 

 Median flux absolute Log deviation 



 

 

Model of E. coli carbon metabolism 

 Simplified model 

 32 reactions  

 17 metabolites  

 Linlog approximation 

 J ~ diag e · ( A + B · lnX ) 

 Independent linear regression 

possible for each reaction if 

sufficient data available : 

 Fluxes 

 Enzyme expression 

 Metabolite concentrations 

 



 

 

Issues with metabolic model identification 

 Difficulties to obtain high quality complete datasets  

 Fluxes, metabolite and enzyme concentrations  

with sufficient numbers of distinct observations 

Missing data can be handled efficiently 

 EM or maximum likelihood methods  

Berthoumieux et al. (2011) Bioinformatics 27:i186-i195 

 Identifiability issues arise when there is insufficient variability or 

dependencies between metabolite concentrations because of 

 Reactions close to equilibrium 

 Steady-state constraints 

 Homeostasis 
Usefulness of dynamic non steady-state measurements (difficult to obtain)  



 

 

Working around identifiability issues 

 Use Principal Component Analysis on lnX 

 Reduce metabolite data by Singular Value Decomposition 

 

 Determine effective dimension of lnX from singular values si ,  

neglecting si
2 smaller than experimental variance 

 Reduce metabolite data and reformulate identification accordingly 

 

 Estimate parameters Br for the reduced model such that 

 

 One among an infinite number of choices for full parameters is   

ln ln T X X USV

( ln lnT

r Y U X X

/ r J e J / e B Y

T

r rB B U



 

 

4. Integrating gene and metabolic models 

 Identify separately the fast component (metabolic)  

and the slow component (gene expression) 

 Use the resulting analytical model of metabolic steady-states  

as a ‘plugin’ function in the gene network model 

 

 

 Critical issue: identification methods and, especially, quality and 

quantity of experimental data 

 



 

 

Experimental data on metabolism 

 Quantification of extra-cellular metabolites by means of nuclear 

magnetic resonance (NMR) spectroscopy 

 

 



 

 

Experimental data on metabolism 

 Quantification of intra-cellular metabolites by means of mass 

spectrometry 

 

 



Isotope Dilution Mass Spectrometry 



 

 

Experimental data on metabolism 

 Quantification of intra-cellular metabolites by means of mass 

spectrometry 

 

 



 

 

 Quantification of gene expression by means of fluorescent and 

luminescent reporter genes 

 Expression of reporter gene is proportional to expression of target gene 

 

 

Experimental data on gene expression 

Global 

regulator 

GFP 

E. coli 

genome 

Reporter 
gene 

excitation 

emission 



 

 

Experimental data on gene expression 
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Prospect:  

Roles of metabolic and gene regulation 

 Identify parameters of the reduced system from data 

 Study the metabolic response in the model  

when gene regulation is abolished 

 Evaluate (quantify) the contribution of gene regulation  

to the metabolic response 

 Conversely calculate the contribution of metabolic effects  

to gene regulation 

 Understand the biological rationale underlying the distribution of 

regulation between metabolism and gene expression 

 




