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Abstract

Probably one of the most characteristic features of a living system is its continual propensity to change as it
juggles the demands of survival with the need to replicate. Internally these adjustments are manifest as
changes in metabolite, protein, and gene activities. Such changes have become increasingly obvious to
experimentalists, with the advent of high-throughput technologies. In this chapter we highlight some of
the quantitative approaches used to rationalize the study of cellular dynamics. The chapter focuses
attention on the analysis of quantitative models based on differential equations using biochemical control
theory. Basic pathway motifs are discussed, including straight chain, branched, and cyclic systems. In
addition, some of the properties conferred by positive and negative feedback loops are discussed, particu-
larly in relation to bistability and oscillatory dynamics.
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1. Introduction

Probably, one of the most characteristic features of a living system
is its continual propensity to change even though it is also arguably
the one characteristic that, as molecular biologists, we often
ignore. Part of the reason for this neglect is the difficulty in making
time-dependent quantitative measurements of proteins and other
molecules although that is rapidly changing with advances in
technology. The dynamics of cellular processes, and in particular
cellular networks, is one of the defining attributes of the living
state and deserves special attention.

Before proceeding to the main discussion, it is worth briefly
listing the kinds of questions that can and have been answered by a
quantitative approach (See Table 13.1). For example, the notion

Jason McDermott et al. (eds.), Computational Systems Biology, vol. 541
ª Humana Press, a part of Springer Science+Business Media, LLC 2009
DOI 10.1007/978-1-59745-243-4_13

269



of the rate-limiting step was originally a purely intuitive invention;
once analyzed quantitatively, however, it was shown to be incon-
sistent with both logic and experimental evidence. There are many
examples such as this where a quantitative analysis has overturned a
long-held view of how cellular networks operate. In the long term,
one of the aims of a quantitative approach is to uncover the general
principles of cellular control and organization. In turn this will lead
to new approaches to engineering organisms and the development
of new therapeutics.

Although traditionally the discipline of molecular biology has
had little need for the machinery of mathematics, the non-trivial
nature of cellular networks and the need to quantify their dynamics
have made mathematics a necessary addition to our arsenal. In this
chapter we can sketch only some of the quantitative results and
approaches that can be used to describe network dynamics. We will
not cover topics such as flux balance, bifurcation analysis, or
stochastic models, all important areas of study for systems biology.
For the interested reader, much more detail can be had by con-
sulting the reading list at the end of the chapter. Moreover, in this
chapter we will not deal with the details of modeling specific
systems because this topic is covered in other chapters.

1.1. Quantitative

Approaches

The most common formal approach to representing cellular net-
works has been to use a deterministic and continuous formalism,
based invariably on ordinary differential equations (ODE). The
reason for this is twofold, firstly ODEs have been shown in many
cases to represent adequately the dynamics of real networks, and

Table 13.1
Some problems amenable to a quantitative approach

Problem Representative solution

Rate-limiting steps Kacser and Burns (49)

Role of feedback and robustness Savageau (77)

Analysis of cell-to-cell variation Mettetal et al. (61)

Rationalization of network structure Voit et al. (87)

Design of synthetic networks Kaern and Weiss (51)

New principles of regulation Altan-Bonnet and Germain (1)

New therapeutic approaches Bakker et al. (5)

Origin of dominance and recessivity Kacser and Burns (50)

Missing interactions Ingolia (46)

Multistationary systems Many Examples Exist (52)
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secondly, there is a huge range of analytical results on the ODE-
based models one can draw upon. Such analytical results are
crucial to enabling a deeper understanding of the network
under study.

An alternative approach to describing cellular networks is to
use a discrete, stochastic approach, based usually on the solution of
the master equation via the Gillespie method (27,28). This
approach takes into account the fact that at the molecular level,
species concentrations are whole numbers and change in discrete,
integer amounts. In addition, changes in molecular amounts are
assumed to be brought about by the inherent random nature of
microscopic molecular collisions. In principle, many researchers
view the stochastic approach to be a superior representation
because it directly attempts to describe the molecular milieu of
the cellular space. However, the approach has two severe limita-
tions, the first is that the method does not scale, that is, when
simulating large systems, particularly where the number of mole-
cules is large (>200), it is computationally very expensive. Sec-
ondly, there are few analytical results available to analyze stochastic
models, which means that analysis is largely confined to numerical
studies from which it is difficult to generalize. One of the great and
exciting challenges for the future is to develop the stochastic
approach to a point where it is as powerful a description as the
continuous, deterministic approach. Without doubt, there is a
growing body of work, such as studies on measuring gene expres-
sion in single cells, which depends very much on a stochastic
representation. Unfortunately, the theory required to interpret
and analyze stochastic models is still immature though rapidly
changing (66, 78). The reader may consider the companion chap-
ter by Resat et al. for the latest developments in stochastic
dynamics.

In this chapter we will concentrate on some properties of
network structures using a deterministic, continuous approach.

2. Stoichiometric
Networks

The analysis of any biochemical network starts by considering the
network’s topology. This information is embodied in the stoichio-
metry matrix, N (Note 1). In the following description we will
follow the standard formalism introduced by Reder (70). The
columns of the stoichiometry matrix correspond to the distinct
chemical reactions in the network, the rows to the molecular
species, one row per species. Thus the intersection of a row and
column in the matrix indicates whether a certain species takes part
in a particular reaction or not, and, according to the sign of the
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element, whether it is a reactant or product, and by the magnitude,
the relative quantity of substance that takes part in that reaction.
Stoichiometry thus concerns the relative mole amounts of chemi-
cal species that react in a particular reaction; it does not concern
itself with the rate of reaction.

If a given network is composed of m molecular species
involved in n reactions, then the stoichiometry matrix is an m �
n matrix. Only those molecular species that evolve through the
dynamics of the system are included in this count. Any source and
sink species needed to sustain a steady state (non-equilibrium in
the thermodynamic sense) are set at a constant level and therefore
do not have corresponding entries in the stoichiometry matrix
(Fig. 13.1).

2.1. The System

Equation

To fully characterize a system one also needs to consider the
kinetics of the individual reactions as well as the network’s topol-
ogy. Modeling the reactions by differential equations, we arrive at
a system equation that involves both the stoichiometry matrix and
the rate vector, thus:

dS

dt
¼ Nv; ½1�

where N is the m � n stoichiometry matrix and v is the n dimen-
sional rate vector, whose ith component gives the rate of reaction i
as a function of the species concentrations.

2.2. Conservation Laws In many models of real systems, there will be mass constraints on
one or more sets of species. Such species are termed conserved
moieties (71). A recent review of conservation analysis, which also
highlights the history of stoichiometric analysis, can be found in
(73). In this section only the main results will be given.

A typical example of a conserved moiety in a computa-
tional model is the conservation of adenine nucleotide, i.e.,
when the total amount of ATP, ADP, and AMP is constant
during the evolution of the model. Other examples include
NAD/NADH, phosphate, phosphorylated proteins forms, and
so on. Figure 13.2 illustrates the simplest possible network
that displays a conserved moiety; in this case the total mass,
S1 + S2, is constant during the entire evolution of the network.

Si

vj⎡
⎢⎣

αij ...    ...
...
...

⎤
⎥⎦

Fig. 13.1. Stoichiometry matrix: N: m � n, where �ij is the stoichiometric coefficient. Si

denotes the ith species, and vj the jth reaction.
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The total amount of a particular moiety in a network is time-
invariant and is determined solely by the initial conditions imposed
on the system (Note 2).

Conserved moieties in the network reveal themselves as linear
dependencies in the rows of the stoichiometry matrix (42, 14).

If we examine the system equations for the model depicted in
Fig. 13.2, it is easy to see that the rate of appearance of S1 must
equal the rate of disappearance of S2, in other words dS1/dt =
�dS2/dt. This identity is a direct result of the conservation of
mass, namely that the sum S1 + S2 is constant throughout the
evolution of the system.

The stoichiometry matrix for the network depicted in Fig. 13.2
has two rows [1,�1] and [�1, 1]. Since either row can be derived
from the other by multiplication by�1, they are linearly dependent,
and the rank of the matrix is 1. Whenever the network exhibits
conserved moieties, there will be dependencies among the rows of
N, and so the rank of N (rank(N)) will be less than m, the number of
rows of N. The rows of N can be rearranged so that the first rank(N)
rows are linearly independent. The species which correspond to
these rows can then be defined as the independent species (Si).
The remaining m � rank(N) are called the dependent species (Sd).

In the simple example shown in Fig. 13.2, there is one inde-
pendent species, S1, and one dependent species, S2 (or, alterna-
tively, S2 is independent and S1 dependent).

Once the matrix N has been rearranged as described, we can
partition it as

N ¼
N R

N 0

� �
;

where the submatrix NR is full rank, and each row of the submatrix
N0 is a linear combination of the rows of NR. Following Reder
(69), we make the following construction. Since the rows of N0 are
linear combinations of the rows of NR, we can define a link-zero
matrix L0 which satisfies N0 = L0NR. We can combine L0 with the
identity matrix (of dimension rank(N)) to form the link matrix L
and hence we can write:

N ¼
N R

N 0

� �
¼

I

L0

� �
N R ¼ LN R:

S1 S2

A B

D C

Fig. 13.2. Simple conserved cycle with the constraint, S1 + S2 = T.
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By partitioning the stoichiometry matrix into dependent and
independent sets, we also partition the system equation. The full
system equation, which describes the dynamics of the network, is
thus:

I

L0

� �
N Rv ¼ dS

dt
¼

dSi=dt

dSd=dt

� �
;

where the terms dSi/dt and dSd/dt refer to the independent and
dependent rates of change, respectively. From the above equation,
it can be shown that the relationship between the dependent and
the independent species is given by: Sd(t) � Sd(0) ¼ L0 [Si(t) �
Si(0)] for all time t. Introducing the constant vector T ¼ Sd(0) �
L0Si(0), and recalling that S ¼ (Si, Sd), we can introduce G ¼
[�L0, I], and write the vector T concisely as

GS ¼ T :

G is called the conservation matrix.
In the example shown in Fig. 13.2, the conservation matrix G

can be shown to be

G ¼ 1 1½ �:
A more complex example is illustrated in Box 1. Algorithms

for evaluating the conservation constraints and the Link matrix can
be found in (42, 14, 73, 85).

Box 1. Conservation Analysis.

Consider the simple reaction network shown on the left below:

v2

v3

ES E

S1

S2

v1

ES

S1

S2

E

v1 v2 v3⎡
⎢⎢⎣

0 −1 1
−1 1 0

1 0 −1
0 1 −1

⎤
⎥⎥⎦

The stoichiometry matrix for this network is shown on the
right. This network possesses two conserved cycles given by the
constraints: S1 + S2 + ES = T1 and E + ES = T2. The set of
independent species includes {ES, S1}, and the set of dependent
species {E, S2}.
The L0 matrix can be shown to be:

L0 ¼
�1 �1

�1 0

� �
:
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The complete set of equations for this model is therefore:

S2

E

� �
¼
�1 �1

�1 0

� �
ES

S1

� �
þ

T1

T2

� �

dES=dt

dS1=dt

� �
¼

0 �1 1

�1 1 0

� � v1

v2

v3

2
64

3
75:

Note that even though there appears to be four variables in this
system, there are in fact only two independent variables, {ES,
S1}, and hence only two differential equations and two linear
constraints.

An excellent source of material related to the analysis of the
stoichiometry matrix can be found in the text book by Heinrich
and Schuster (37) and more recently (53).

3. Biochemical
Control Theory

The system Eq. [1] describes the time evolution of the network.
This evolution can be characterized in three ways: thermodynamic
equilibrium where all net flows are zero and no concentrations
change in time; steady state where net flows of mass traverse the
boundaries of the network and no concentrations change in time;
and finally the transient state where flows and concentrations are
both changing in time. Only the steady state and transients states are
of real interest in biology. Steady states can be further characterized
as stable or unstable, which will be discussed in a later section.

The steady-state solution for a network is obtained by setting
the left-hand side of the system Eq. [1] to zero, Nv = 0, and solving
for the concentrations. Consider the simplest possible model:

Xo ! S1 ! X1; ½2�

where we will assume that Xo and X1 are boundary species that do
not change in time and that each reaction is governed by simple
mass-action kinetics. With these assumptions we can write down
the system equation for the rate of change of S1 as:

dS1=dt ¼ k1Xo � k2S1:

We can solve for the transient behavior of this system by integrating
the system equation and setting an initial condition, S1(0) = Ao, to yield:

S1ðtÞ ¼ Aoe
�k2t þ k1X0

k2
1� e�k2t
� �

:
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This equation describes how the concentration of S1 changes in
time. The steady state can be determined either by letting t go to
infinity or by setting the system equation to zero and solving for S1;
either way, the steady-state concentration of S1 can be shown to be:

S1 ¼
k1X0

k2
:

Although simple systems such as this can be solved analytically
for both the time course evolution and the steady state, the method
rapidly becomes unworkable for larger systems. The problem
becomes particulary acute when, instead of simple mass-action
kinetics, we begin to use enzyme kinetic rate laws that introduce
nonlinearities into the equations. For all intent and purposes, ana-
lytical solutions for biologically interesting systems are unattainable.
Instead one must turn to numerical solutions; however, numerical
solutions are particular solutions, not general, which an analytical
approach would yield. As a result, to obtain a thorough under-
standing of a model, many numerical simulations may need to be
carried out. In view of these limitations many researchers apply small
perturbation theory (linearization) around some operating point,
usually the steady state. By analyzing the behavior of the system
using small perturbations, only the linear modes of the model are
stimulated and therefore the mathematics becomes tractable. This is
a tried and tested approach that has been used extensively in many
fields, particularly engineering, to deal with systems where the
mathematics makes analysis difficult.

Probably, the first person to consider the linearization of bio-
chemical models was Joseph Higgins at the University of Pennsylvania
in the 1950s. Higgins introduced the idea of a ‘‘reflection coefficient’’
(40, 38), which described the relative change of one variable to
another for small perturbations. In his Ph.D. thesis, Higgins describes
many properties of the reflection coefficients and in later work, three
groups, Savageau (75, 77), Heinrich and Rapoport (36, 35), and
Kacser and Burns (9, 49) independently and simultaneously devel-
oped this work into what is now called Metabolic Control Analysis or
Biochemical Systems Theory. These developments extended Higgins’
original ideas significantly and the formalism is now the theoretical
foundation for describing deterministic, continuous models of bio-
chemical networks. The theory has, in the past 20 years or so, been
further developed with the most recent important advances by Ingalls
(45) and Rao (68). In this chapter we will call this approach Biochem-
ical Control Theory, or BCT.

3.1. Linear Perturbation

Analysis

3.1.1. Elementary

Processes

The fundamental unit in biological networks is the chemical trans-
formation. Such transformations vary, ranging from simple bind-
ing processes, transport processes, to more elaborate aggregated
kinetics such as Michaelis-Menten and complex cooperative
kinetics.
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Traditionally, chemical transformations are described using a
rate law. For example, the rate law for a simple irreversible Michae-
lis-Menten reaction is often given as

v ¼ V max S

Kmþ S
; ½3�

where S is the substrate and the Vmax and Km kinetic constants.
Such rate laws form the basis of larger pathway models.

A fundamental property of any rate law is the so-called kinetic
order, sometimes also called the reaction order. In simple mass-
action chemical kinetics, the kinetic order is the power to which a
species is raised in the kinetic rate law. Reactions with zero-order,
first-order, and second-order are the common types of reactions
found in chemistry, and in each case the kinetic order is zero, one,
and two, respectively. It is possible to generalize the kinetic order
as the scaled derivative of the reaction rate with respect to the
species concentration, thus

Elasticity Coefficient: ev
S ¼

@v

@S

S

v
¼ @ ln v

@ ln S
� v%=S%:

When expressed this way, the kinetic order in biochemistry is
called the elasticity coefficient. Applied to a simple mass-action rate
law such as v = kS, we can see that ev

S ¼ 1. For a generalized mass-
action law such as

v ¼ k
Y

Sni

i ;

the elasticity for the ith species is simply ni, that is, it equals the
kinetic order. For aggregate rate laws such as the Michaelis-Men-
ten rate law, the elasticity is more complex, for example, the
elasticity for the rate law Eq. [3] is:

ev
S ¼

Km

S þKm
:

This equation illustrates that the kinetic order, though a con-
stant for simple rate laws, is a variable for complex rate laws. In this
particular case, the elasticity approaches unity at low substrate
concentrations (first-order) and zero at high substrate concentra-
tions (zero-order).

Elasticity coefficients can be defined for any effector molecule
that might influence the rate of reaction, this includes substrates,
products, inhibitors, activators, and so on. Elasticities are positive for
substrates and activators, but negative for products and inhibitors.

At this point, elasticities might seem like curiosities and of no
great value; left on their own, this might well be true. The real
value of elasticities is that they can be combined into expressions
that describe how the whole pathway responds collectively to
pertubations. To explain this statement one must consider an
additional measure, the control coefficient.
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3.1.2. Control Coefficients Unlike an elasticity coefficient, which describes the response of a
single reaction to perturbations in its immediate environment, a
control coefficient describes the response of a whole pathway to
perturbations in the pathway’s environment.

At steady state, a reaction network will sustain a steady rate
called the flux, often denoted by the symbol, J. The flux describes
the rate of mass transfer through the pathway. In a linear chain of
reactions, the steady-state flux has the same value at every reaction.
In a branched pathway, the flux divides at the branch points. The
flux through a pathway can be influenced by a number of external
factors, such as enzyme activities, rate constants, and boundary
species. Thus, changing the gene expression that codes for an
enzyme in a metabolic pathway will have some influence on the
steady-state flux through the pathway. The amount by which the
flux changes is expressed by the flux control coefficient.

CJ
Ei
¼ dJ

dEi

Ei

J
¼ d ln J

d ln Ei
� J %=Ei%: ½4�

In the expression above, J is the flux through the pathway and
Ei the enzyme activity of the ith step. The flux control coefficient
measures the fractional change in flux brought about by a given
fractional change in enzyme activity. Note that the coefficient as
well as the elasticity coefficients are defined for small changes.

For a reaction pathway one can plot (Fig. 13.3) the steady-
state flux, J, as a function of the activity of one of the enzymes. The
flux control coefficient can be interpreted on this graph as the
scaled slope of the response at a given steady state. Given that
the curve is a function of the enzyme activity, it should be clear that
the value of the control coefficient is also a function of enzyme
activity and consequently the steady state. Control coefficients are
not constants but vary according to the current steady state.

Fig. 13.3. Typical response of the pathway steady-state flux as a function of enzyme
activity. The flux control coefficient is defined at a particular operating point, marked
(a) on the graph. The value of the coefficient is measured by the scaled slope of the
curve at (a).

278 Sauro



One can also define a similar coefficient, the concentration
control coefficient, with respect to species concentrations, thus:

CS
Ei
¼ dS

dEi

Ei

S
¼ d ln S

d ln Ei
� S%=Ei%: ½5�

3.1.3. Relationship

Between Elasticities and

Control Coefficients

One of the most significant discoveries made early on in the devel-
opment of BCT (Biochemical Control Theory) was the existence of a
relationship between the elasticities and the control coefficients. This
enabled one, for the first time, to describe in a general way, how
properties of individual enzymes could contribute to pathway beha-
vior. More importantly, this relationship could be studied without
the need to solve, analytically, the system Eq. [1]. Particular exam-
ples of these relationships will be given in the subsequent sections;
here we will concentrate on the general relationship.

There are two related ways to derive the relationship between
elasticities and control coefficients, the first is via the differentia-
tion of the system Eq. [1] at steady state and the second by the
connectivity theorem.

System Equation Derivation. The system equation can be
written more explicitly to show its dependence on the enzyme
activities (or any parameter set) of the system: Nv(s(E),E) = 0.
By differentiating this expression with respect to E, we obtain

ds

dE
¼ � N R

@v

@s
L

� ��1

N R
@v

@E
: ½6�

The terms @v/@s and @v/@E are unscaled elasticities [See (69,
37, 43, 53) for details of the derivation]. By scaling the equation
with the species concentration and enzyme activity, the left-hand
side becomes the concentration control coefficient expressed in
terms of scaled elasticities. The flux control coefficients can also be
derived by differentiating the expression: J = v [s(p), p] to yield:

dJ

dE
¼ I � @v

@s
N R

@v

@s
L

� ��1

N R

" #
@v

@E
: ½7�

Again, the flux expression can be scaled by E and J to yield the
scaled flux control coefficients. These expressions, though
unwieldy to some degree, are very useful for deriving symbolic
expressions relating the control coefficients to the elasticities. A
very thorough treatment together with the derivations of these
equations and much more can be found in Hofmeyr 2001.

Theorems. Examination of expressions [6] and [7] yields some
additional and unexpected relationships between the control coeffi-
cients and the elasticities, called the summation and connectivity
theorems. These theorems were originally discovered by modeling
small networks using an analog computer (Jim Burns, personal
communication), but have since been derived by other means.
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The flux summation theorem states that the sum of all the flux
control coefficients in any pathway is equal to unity.

Xn

i¼1

CJ
i ¼ 1

It is also possible to derive a similar relationship with respect to
species concentrations, namely

Xn

i¼1

CSk

i ¼ 0

In both relationships, n, is the number of reaction steps in the
pathway. The flux summation theorem indicates that there is a
finite amount of ‘‘control’’(or sensitivity) in a pathway and implies
that control is shared between all steps. In addition, it states that if
one step were to gain control, then one or more other steps must
lose control.

Arguably, the most important relationship is between the
control coefficients and the elasticities.X

CJ
i e

i
S ¼ 0

This theorem, and its relatives (88, 19, 20), is called the con-
nectivity theorem and is probably the most significant relation-
ship in computational systems biology because it relates two
different levels of description, the local level, in the form of elasti-
cities, and the system level, in the form of control coefficients.
Given the summation and connectivity theorems, it is possible to
combine them and solve for the control coefficients in terms of the
elasticities. For small networks this approach is a viable way to
derive the relationships (19), especially when combined with soft-
ware such as MetaCon (81), which can compute the relationships
algebraically. Box 2 illustrates a simple example of this method.

Box 2. Using Theorems to Derive Control Equations

Consider the simple reaction network, comprising three
enzyme-catalyzed reactions, shown below:

X
E1

o! S
E2

1! S
E3

2!X1;

where, Xo and X1 are fixed boundary species. The flux summa-
tion theorem can be written down as:

CJ
E1
þ CJ

E2
þ CJ

E3
¼ 1;
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while the two connectivity theorems, one centered around each
species, are given by:

CJ
E1
e1
1 þ CJ

E2
e2
1 ¼ 0

CJ
E2
e2
2 þ CJ

E3
e3
2 ¼ 0:

These three equations can be recast in matrix form as:

1 1 1

e1
1 e2

1 0

0 e2
2 e3

2

2
64

3
75

CJ
E1

CJ
E2

CJ
E3

2
664

3
775 ¼

1

0

0

2
64
3
75

The matrix equation can be rearranged to solve for the vector,
½CJ

E1
CJ

E2
CJ

E3
�T , by inverting the elasticity matrix, to yield:

CJ
E1
¼ e2

1e
3
2

e1
1e

2
2 � e1

1e
3
2 þ e2

1e
3
2

CJ
E2
¼ �e1

1e
3
2

e1
1e

2
2 � e1

1e
3
2 þ e2

1e
3
2

CJ
E3
¼ �e1

1e
2
2

e1
1e

2
2 � e1

1e
3
2 þ e2

1e
3
2

Further details of the procedure can be found in (19, 20). For
larger systems Eq. [7] can be used in conjunction with software
tools such as Maple, bearing in mind that Eq. [7] yields
unscaled coefficients.

3.2. Linear Analysis of

Pathway Motifs
In the following sections we will describe the application of BCT
to some basic and common motifs found in cellular networks.
These include, straight chains, branches, cycles, and feedback
loops.

3.2.1. Straight Chains Although linear sequences of reaction steps are actually quite rare
in cellular networks (most networks are so heavily branched that
uninterrupted sequences are quite uncommon), their study can
reveal some basic properties that are instructive to know.

One of the oldest concepts in cellular regulation is the notion
of the rate-limiting step. It was Blackman in 1905 (6) who wrote
the famous phrase: ‘when a process is conditioned as to its rapidity
by a number of separate factors, the rate of the process is limited by
the pace of the slowest factor’. It was this statement that started a
century long love-affair with the idea of the rate-limiting step in
biochemistry, a concept that has lasted to this very day. From the
1930s to the 1950s, there were, however, a number of published
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papers which were highly critical of the concept, most notably
Burton (11), Morales (62) and Hearon (33) in particular. Unfor-
tunately, much of this work did not find its way into the rapidly
expanding fields of biochemistry and molecular biology after the
second world war, and instead the intuitive idea first pronounced
by Blackman still remains today one of the basic but erroneous
concepts in cellular regulation. This is more surprising because a
simple quantitative analysis shows that it cannot be true, and there
is ample experimental evidence (34, 10) to support the alternative
notion, that of shared control.

The confusion over the existence of rate-limiting steps stems
from a failure to realize that rates in cellular networks are governed
by the law of mass-action, that is, if a concentration changes, then
so does its rate of reaction. Many researchers try to draw analogies
between cellular pathways and human experiences such as traffic
congestion on freeways or customer lines at shopping store check-
outs. In each of these analogies, the rate of traffic and the rate of
customer checkouts does not depend on how many cars are in the
traffic line or how many customers are waiting. Such situations
warrant the correct use of the phrase rate-limiting step. Traffic
congestion and the customer line are rate-limiting because the
only way to increase the flow is to either widen the road or increase
the number of cash tills, that is, there is a single factor which
determines the rate of flow. In reaction networks, flow is governed
by many factors, including the capacity of the reaction (Vmax) and
substrate/ product/effector concentrations. In biological path-
ways, rate-limiting steps are therefore the exception rather than
the rule. Many hundreds of measurements of control coefficients
have born out this prediction. A simple quantitative study will also
make this clear.

Consider a simple linear sequence of reactions governed by
reversible mass-action rate laws:

Xo Ð S1 Ð S2 . . . Sn Ð Sn�1 ! Xn;

where Xo and Xn are fixed boundary species so that the pathway
can sustain a steady state. If we assume the reaction rates to have
the simple form:

vj ¼ kj Sj �
Sjþ1

qj

� �
;

where qj is the thermodynamic equilibrium constant and kj the
forward rate constant, we can compute the steady state flux, J, to
be (37):

J ¼
Xo

Qn
j¼1 qj �X1

Sn
l¼11=kl

Qn
j¼l qj

:
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By modifying the rate laws to include an enzyme factor, such as:
vj ¼ Ej kj Sj � Sjþ1

qj

� 	
, we can also compute the flux control coeffi-

cients as (37):

CJ
i ¼

1=ki

Qn
j¼i qj

Sn
l¼11=kl

Qn
j¼l qj

:

Both equations show that the ability of a particular step
to limit the flux is governed not only by the particular step
itself but also by all other steps. Prior to the 1960s, this was a
well-known result (62, 33), but was subsequently forgotten
with the rapid expansion of biochemistry and molecular biol-
ogy. The control coefficient equation also puts limits on the
values for the control coefficients in a linear chain, namely
0 � CJ

i � 1 and

Xn

i¼1

CJ
i ¼ 1;

which is the flux control coefficient summation theorem. In a
linear pathway the control of flux is therefore most likely to be
distributed among all steps in the pathway. This simple study
shows that the notion of the rate-limiting step is too simplistic
and a better way to describe a reaction’s ability to limit flux is to
state its flux control coefficient.

Although a linear chain puts bounds on the values of the flux
control coefficients, branched systems offer no such limits. It is
possible that increases in enzyme activity in one limb can decrease
the flux through another, hence the flux control coefficient can be
negative. In addition, it is possible for the flux control coefficient
to be greater than unity (Note 3).

3.2.2. Branched Systems Branching structures in metabolism are probably one of the most
common metabolic patterns. Even a pathway such as glycolysis,
often depicted as a straight chain in textbooks, is in fact a highly
branched pathway.

A linear perturbation analysis of a branched pathway can reveal
some interesting potential behavior. Consider the following sim-
ple branched pathway (Fig. 13.4):

Fig. 13.4. A simple branched pathway. This pathway has three different fluxes, J1, J2,
and J3, which at steady state are constrained by J1 = J2 + J3.
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where Ji are the steady state fluxes. By the law of conservation of
mass, at steady state, the fluxes in each limb are governed by the
relationship:

J1 � ðJ2 þ J3Þ ¼ 0:

In terms of control theory, there will be four sets of control
coefficients, one concerned with changes in the intermediate, S,
and three sets corresponding to each of the individual fluxes.

Let the fraction of flux through J2 be given by a = J2/J1 and the
fraction of flux through J3 be 1 � a = J3/J1. The flux control
coefficients for step two and three can be derived and shown to
be equal to (19):

CJ2

E2
¼ e1 � e3ð1� aÞ

e1 � e2a� e3ð1� aÞ
40 CJ2

E3
¼ e2ð1� aÞ

e1 � e2a� e3ð1� aÞ
50:

Note that the flux control coefficient CJ2

E3
is negative, indicating

that changes in the activity of E3 decrease the flux in the other limb.
To understand the properties of a branched system, it is instructive
to look at different flux distributions. For example, consider the case
when the bulk of flux moves down J3 and only a small amount goes
through the upper limb J2, that is, a! 0 and 1� a! 1 (See
Fig. 13.5b). Let us examine how the small amount of flux through
J2 is influenced by the two branch limbs, E2 and E3.

CJ2

E2
! e1 � e3

e1 � e3
¼ 1:

CJ2

E3
! e2

e1 � e3
:

Branch Point Properties System Output: 

S
~ 0< 1

< 1

(a) Most flux goes through 

Pathway behaves as a linear chain 
of reactions with respect to       

J2

J2

S

J2

>> 0 << 0

~ 1

(b) Most flux goes through 

Flux through        exhibts pathway
amplifcation.

J3

J3

J2

J2

J2

J1 J1

J3

Fig. 13.5. The figure shows two flux extremes relative to the flux through branch J2. In
case (a) where most of the flux goes through J2, the branch reverts functionally to a
simple linear sequence of reactions comprising J1 and J2. In case (b), where most of the
flux goes through J3, the flux through J2 now becomes very sensitive to changes in
activity at J1 and J3. Given the right kinetic settings, the flux control coefficients can
become ‘‘ultrasensitive’’ with values greater than one (less than minus one for activity
changes at J3). The values next to each reaction indicates the flux control coefficient for
the flux through J2 with respect to activity at the reaction.
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The first thing to note is that E2 tends to have proportional
influence over its own flux. Since J2 carries only a very small
amount of flux, any changes in E2 will have little effect on S,
hence the flux through E2 is almost entirely governed by the
activity of E2. Because of the flux summation theorem and the
fact that CJ2

E2
¼ 1, the remaining two coefficients must be equal

and opposite in value. Since CJ2

E3
is negative, CJ2

E1
must be positive.

Unlike a linear chain, the values for CJ2

E2
and CJ2

E1
are not bounded

between zero and one and depending on the values of the elasti-
cities it is possible for the control coefficients to greatly exceed one
(48, 55). It is conceivable to arrange the kinetic constants so that
every step in the branch has a control coefficient of unity (one of
which must be–1). Using the old terminology, we would conclude
from this that every step in the pathway is the rate-limiting step.

Let us now consider the other extreme, when most of the flux
is through J2, that is a! 0 and 1� a! 0 (See Fig. 13.5a). Under
these conditions the control coefficients yield:

CJ2

E2
! e1

e1 � e2

CJ2

E3
! 0

In this situation the pathway has effectively become a simple
linear chain. The influence of E3 on J2 is negligible. Figure 13.5
summarizes the changes in sensitivities at a branch point.

3.2.3. Cyclic Systems Cyclic systems are extremely common in biochemical networks;
they can be found in metabolic, genetic, and particularly signaling
pathways. The functional role of cycles is not however fully under-
stood, although in some cases their operational function is begin-
ning to become clear. We can use linear perturbation analysis to
uncover some of the main properties of cycles.

Figure 13.6 illustrates two common cyclic structures found in
signaling pathways. Such cycles are often formed by a combination
of a kinase and a phosphatase. In many cases only one of the
molecular species is active. For example, in Fig. 13.6a, let us assume
that S2 is the active (output) species, while in Fig. 13.6b, S3 is the
active (output) species. In a number of cases one observes multiple
cycles formed by multi-site phosphorylation. Figure 13.6b shows a
common two-stage multi-site cycle. Note that in each case, the cycle
steady-state is maintained by the turnover of ATP. One question
that can be addressed is how the steady-state output of each cycle, S2

and S3, depends on the input stimulus, S. This stimulus is assumed
to be a stimulus of the kinase activity.

One approach to this is to build a detailed kinetic model and
solve for the steady-state concentration of S2 and S3 as a function of
S. This has been done analytically in a few cases (30, 31), but
requires the modeler to choose a particular kinetic model for the
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kinase and phosphatase steps. A perturbation analysis based on
BCT need only be concerned with the response characteristics of
the kinase and phosphatase steps, not the details of the kinetic
mechanism. The response of S2 to changes in the stimulus S can be
shown to be given by the expression (79, 74):

CS2

S ¼
M1

e1
1M2 þ e2

2M1
;

where CS2

S is the control coefficient of S2 with respect to S. M1 and
M2 are the mole fractions of S1 and S2, respectively, and e1

1 the
elasticity of v1 with respect to S1 and e2

2 the elasticity of v2 with
respect to S2. If kinase and phosphatase are operating below
saturation, then the elasticities will equal one, e1

1 ¼ 1 and e2
2 ¼ 1;

therefore, the response of S2 to S is simply given by the mole
fraction M1, which means that the response is bounded between
zero and one. This situation is equivalent to the non-ultrasensitive
response, sometimes termed the hyperbolic response (31).

In contrast, if the kinase and phosphatase operate closer to satura-
tion, such that the elasticities are much smaller than one, then the
denominator in the response equation can be less than the numerator
and the control coefficient can exceed one. This situation is represen-
tative of zero-order ultrasensitivity and corresponds to the well-
known sigmoid response (31). Thus without any reference to detailed
kinetic mechanisms, it is possible to uncover the ultrasensitive beha-
vior of the network. We can carry out the same kind of analysis on the
dual cycle, Fig. 13.6b, to derive the following expression for CS3

S :

CS3

S ¼
S1ðe3

2 þ e2
2Þ þ S2e1

1

e3
2e

4
3S1 þ e1

1e
4
3S2 þ e1

1e
3
3S3

:

Fig. 13.6. Two common cyclic motifs found in signaling pathways. (a) Single covalent
modification cycle, S2 is the active species, S is the stimulus; (b) Double cycle with S3 the
active species, S is the stimulus.
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If we assume linear kinetics on each reaction such that all the
elasticities equal one, the equation simplifies to

CS3

S ¼
2S1 þ S2

S1 þ S2 þ S3
:

This shows that given the right ratios for S1, S2, and S3, it is
possible for CS3

S
4 1. Therefore, unlike the case of a single cycle

where near saturation is required to achieve ultrasensitivity, multi-
ple cycles can achieve ultrasensitivity with simple linear kinetics (See
Fig. 13.7).

The cyclic models considered here assume negligible seques-
tration of the cycle species by the catalyzing kinase and phospha-
tase. In reality, this is not likely to be the case because experimental
evidence indicates that the concentrations of the catalyzing
enzymes and cycle species are comparable [See (8) for a range of
illustrative data]. In such situations additional effects are manifest
(21, 72), of particular interest is the emergence of new regulatory
feedback loops, which can alter the behavior quite markedly
(See 60, 64).

3.2.4. Negative Feedback A common regulatory motif found in cellular networks is the
negative feedback loop (Fig. 13.8). Feedback has the potential
to confer many interesting properties on a pathway, with home-
ostasis probably being the most well known. In this chapter we do
not have space to cover all the effects of negative feedback and will
focus instead on two properties, homeostasis and instability; how-
ever, more details can be found in (74). Using BCT it is easy to
show the effect of negative feedback on a pathway.

Fig. 13.7. Steady-state responses for the cycles shown in Fig. 13.6. The simplest cycle
6(a) shows a hyperbolic response when the kinase and phosphatase operate below
saturation (dotted line). The double cycle 6(b) shows more complex behavior in the form
of a sigmoid response, the kinetics again operating below saturation (solid line). This
shows that zero-order kinetics is not a necessary condition of ultrasensitivity.
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The flux control coefficients for the three steps in Fig. 13.8
are shown below (77, 48). To aid comparison, the left-hand equa-
tions show the equations with feedback while the right-hand
equations have been derived assuming no feedback. The feedback
term is represented by a single elasticity term, e1

2. This elasticity
measures the strength of the feedback and has a negative value,
indicating that changes in S2 result in decreases in the reaction rate
of v1. For cooperative enzymes, the elasticity may also have values
less than–1.

With Feedback Without Feedback

CJ
E1
¼ e2

1e
3
2

e2
1
e3
2
�e1

1
e3
2
þe1

1
e2
2
�e2

1
e1
2

CJ
E1
¼ e2

1e
3
2

e2
1
e3
2
�e1

1
e3
2
þe1

1
e2
2

CJ
E2
¼ �e1

1e
3
2

e2
1
e3
2
�e1

1
e3
2
þe1

1
e2
2
�e2

1
e1
2

CJ
E2
¼ �e1

1e
3
2

e2
1
e3
2
�e1

1
e3
2
þe1

1
e2
2

CJ
E3
¼ e1

1e
2
2�e2

1e
1
2

e2
1
e3
2
�e1

1
e3
2
þe1

1
e2
2
�e2

1
e1
2

CJ
E3
¼ e1

1e
2
2

e2
1
e3
2
�e1

1
e3
2
þe1

1
e2
2

The first difference to notice in the equations is that the
denominator, though remaining positive in value, has an addi-
tional term compared to the system without feedback, e2

1e
1
2. This

additional term includes the elasticity of the feedback mechanism.
The numerators for E1 and E2 are both unaffected by the

feedback. However, because the denominator has an additional
positive term, the ratio of numerator to denominator in both cases
must be smaller. The flux control coefficients for E1 and E2 are
therefore reduced in the presence of feedback.

This result might appear at first glance counter-intuitive,
surely the ‘‘controlled’’ step must have more ‘‘control’’ (as
many undergraduate textbooks will assert)? Closer inspection,
however, will reveal a simple explanation. Suppose the concen-
trations of either E1 or E2 are increased. This will cause the
concentration of the signal metabolite S2 to increase. An increase
in S2 will have two effects: the first is to increase the rate of the last
reaction step, the second will inhibit the rate through E1. The
result of this is that the rate increase originally achieved by the
increase in E1 or E2 will be reduced by the feedback. Therefore,
compared to the non-feedback pathway, both enzymes E1 and E2

will have less control over the pathway flux. In addition, the
greater the feedback elasticity, e1

2 the smaller the control coeffi-
cients, CJ

E1
; CJ

E2
. Thus the stronger the feedback, the less ‘‘con-

trol’’ the E1 and E2 have over the flux.

Fig. 13.8. Simple negative feedback loop. v1, v2, and v3 are the reaction rates. S2 acts to
inhibit its own production by inhibition of v1.

288 Sauro



What about the flux control coefficient distal to the feedback
signal, CJ

E3
? According to the summation theorem, which states

that the sum of the flux control coefficients of a pathway must sum
to unity, if some steps experience a reduction in control, then
other steps must acquire control. If the flux control of the first
two steps decline, then it must be the case that control at the third
step must increase. Examination of the third control coefficient
equation reveals that as the feedback elasticity ðe1

2Þ strengthens,
then CJ

E3
approaches unity, that is, the last step of the feedback

system acquires most of the control.
For drug companies wishing to target pathways, this simple

analysis would suggest that the best place to target a drug would be
the steps distal to a controlling signal. Traditionally, many have
believed it to be the controlled step that should be targeted;
however, this analysis indicates that the controlled step is the
worst step to target, since it has the least effect on the system.
This argument assumes that the targeting does not affect the
strength of the feedback itself.

As mentioned previously, one of the most well-known effects
of negative feedback is to enhance homeostasis. In this case
homeostasis refers to the stabilization of the end product S2.
We can examine the effect of negative feedback on the home-
ostasis of S2 by writing down the concentration control coeffi-
cient for CS2

E3

CS2

E3
¼ e1

1 � e2
1

e2
1e

3
2 � e1

1e
3
2 þ e1

1e
2
2 � e2

1e
1
2

:

Note that the numerator is unaffected by the presence of the
feedback, whereas the denominator has an additional positive term
originating from the feedback mechanism. This means that the
feedback decreases the sensitivity of end product, S2, with respect
to the distal step, E3. The effect of the feedback is to stabilize the
end product concentration in the face of changing demand from
distal steps. This allows a pathway to satisfy the changing demand
characteristics of a subsystem distal to the negative feedback loop.
We see such an arrangement in many metabolic pathways, clear
examples include glycolysis, where demand is measured by ATP
consumption, or amino biosynthesis, where demand is protein
synthesis. In both cases one could imagine that it is important
for the demand system, energy consumption and protein produc-
tion, to be unimpeded by supply restraints.

Negative feedback therefore has the important task of match-
ing different cellular systems. Hofmeyr and Cornish-Bowden (44)
have written extensively on this topic, which they call supply-
demand analysis. Interfacing different cellular modules using
negative feedback, particularly in signalling pathways, is also dis-
cussed in (74).
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Only a simple feedback loop has been considered here; for
readers who are interested in a more exhaustive analysis, the
work by Savageau and co-workers (76, 77, 2) is highly recom-
mended. Moreover, feed-forward negative loops have recently
been found to be a common motif and further details can be
found in (59).

3.3. Relationship to

Engineering Control

Theory

In engineering there is much emphasis on questions concerning the
stability and performance of technological systems. Over the years,
engineers have developed an elaborate and general theory of con-
trol, which is applicable to many different technological systems. It
is therefore the more surprising that engineering control theory has
had little impact on understanding control systems found in biolo-
gical networks. Part of the problem is related to the rich terminol-
ogy and abstract nature of some of the mathematics that engineers
use, this in turn makes the connection to biological systems difficult
to see. This also partly explains why the biological community
developed its own theory of control in the form of BCT. Until
recently, there was little appreciation of what, if any connection,
existed between these two approaches. It turns out the connection is
rather more direct any anyone expected. The work by Ingalls (45) in
particular [but also (68)], showed that the control coefficients in
BCT and the transfer functions used so often in engineering are one
and the same thing. This means that much of the machinery of
engineering control theory, rather than being perhaps unrelated to
biology, can in fact be transferred directly to biological problems.

Following Ingalls (45), let us write down the system equation
in the following form:

ds

dt
¼ Nvðs; pÞ:

This equation can be linearized around a suitable operating
point such as a steady state to obtain the linearized equation:

dx

dt
¼ N R

@v

@s
L

� �
xðtÞ þ N R

@v

@p

� �
uðtÞ: ½8�

This equation describes the rate of change of a perturbation x
around the steady state. For a stable system, the perturbation x will
decay toward the steady state and xðtÞ will thus tend to zero. The
linearized equation has the standard state space form commonly
used in engineering control theory, that is

dx

dt
¼ AxðtÞ þ BuðtÞ;

with

A ¼ N R
@v

@s
L and B ¼ N R

@v

@p
; ½9�
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u(t) is the input vector to the system, and may represent a set of
perturbations in boundary conditions, kinetic constants, or
depending on the particular model, gene expression changes.

Because of its equivalence to the state space form, Eq. [8]
marks the entry point for describing biological control systems
using the machinery of engineering control theory. In the follow-
ing sections two applications, frequency analysis and stability ana-
lysis, will be presented, which apply engineering control theory,
rephrased using BCT, to biological problems.

3.3.1. Frequency Response It has been noted previously (3) that chemical networks can act as
signal filters, that is, amplify or attenuate specific varying inputs. It
may be the case that the ability to filter out specific frequencies has
biological significance; for example, a cell may receive many dif-
ferent varying inputs that enter a common signaling pathway;
signals that have different frequencies could be identified. In addi-
tion, multiple signals could be embedded in a single chemical
species (such as Ca2+) and demultiplexed by different target sys-
tems. Finally, gene networks tend to be sources of noisy signals
that may interfere with normal functioning; one could imagine
specific control systems that reduce the noise using high frequency
filtering (15).

In steady state, sinusoidal inputs to a linear or linearized
system generate sinusoidal responses of the same frequency but
of differing amplitude and phase. These differences are a functions
of frequency. For a more detailed explanation, Ingalls (45) pro-
vides a readable introduction to concept of the frequency response
of a system in a biological context.

Whereas the linearized Eq. [8] describes the evolution of the
system in the time domain, the frequency response must be
determined in the frequency domain. Mathematically there is a
standard approach, called the Laplace transform, to moving a
time domain representation into the frequency representation.
By taking the ratio of the Laplace transform of the output to the
transform of the input, one can derive the transfer function,
which is a complex expression describing the relationship
between the input and the output in the frequency domain.
The change in the amplitude between the input and output is
calculated by taking the absolute magnitude of the transfer func-
tion. The phase shift that indicates how much the output signal
has been delayed can be computed by computing the phase angle.
Note that under a linear treatment, the frequency does not
change.

In biological systems the outputs are often the species con-
centrations or fluxes while the inputs are parameters such as kinetic
constants, boundary conditions, or gene expression levels. By
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taking the Laplace transform of Eq. [8] one can generate its
transfer function (45, 68) The transfer function for the species
vector s with respect to a set of parameters p is given by:

Rs
pðwÞ ¼ iwI �N R

@v

@s
L

� ��1

N R
@v

@p
: ½10�

The response at zero frequency is given by

Rs
pð0Þ ¼ � N R

@v

@s
L

� ��1

N R
@v

@p
:

Comparison of the above equation with the concentration
control coefficient Equation [6] shows they are equivalent. This
is the most important result because it links classical control theory
directly with BCT. Moreover, it gives a biological interpretation to
the transfer functions so familiar to engineers. The transfer func-
tions can be interpreted as a sensitivity of the amplitude and phase
of a signal to perturbations in the input signal. The control coeffi-
cients of BCT are the transfer functions computed at zero fre-
quency. Moreover, the denominator term in the transfer functions
can be used to ascertain the stability of the system, a topic that will
be covered in a later section.

Frequency Analysis of Simple Linear Reaction Chains. The
simplest example to consider for a frequency analysis is a two-step
pathway, that can be represented as a single gene expressing a
protein that undergoes degradation (Fig. 13.9). This simple sys-
tem has been considered previously by Arkin (3) who used a con-
ventional approach to compute the response. Here we will use the
BCT approach, which allows us to express the frequency response in
terms of elasticities. Using Eq. [10] and assuming that the protein
concentration has no effect on its synthesis, we can derive the
following expression:

CP
G ¼

1

eD
p þ iw

;

where eD
P is the elasticity for protein degradation with respect to

the protein concentration. i is the complex number and w, the
frequency input. At zero frequency ðw ¼ 0Þ the equation reduces
to the traditional control coefficient.

The frequency response of the simple network shown in
Fig. 13.9 is given in Fig. 13.10. This response shows a classic
low-pass filter response, where at low frequencies the response is
high and as the frequency increases the response of the system falls
off. The explanation for this is straight forward; at high frequen-
cies, kinetic mechanisms are simply too sluggish to respond fast
enough to a rapidly changing signal and the system is unable to
pass the input to the output (Fig. 13.10).
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If we cascade a series of genes one after the other (Fig. 13.11),
the effect is simply to increase the attenuation so that even mod-
erate frequencies are filtered out.

The unscaled response equation for the model shown in
Fig. 13.11 is given by

CS3
v1
¼ ð~eÞn~ep

ðiw þ ~eÞn ;

where the tilde, �, indicates an unscaled elasticity. n equals the
number of genetic stages. We assume that all the elasticities are
equal in value.

Many simple systems behave as low-pass filters because physically
they are unable to respond fast enough at higher frequencies. Che-
mical systems are not unusual in this respect. It is possible however
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Fig. 13.10. Low-pass frequency response of the simple genetic circuit, Fig. 13.9. The two plots on the left indicate the
amplitude and phase response, respectively. The three plots on the right show in each case the input signal and
corresponding output signal. Each plot on the right was computed at a different frequency; these frequencies are indicated
by the marked circles on the plots on the left.

Fig. 13.9. Simple genetic circuit that can act as a low-pass filter.
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through added regulation to change the frequency response. In the
paper by Paladugu (65) examples of networks exhibiting a variety of
frequency responses are given, including high-pass and band-pass
filters. In the next section we will consider how negative feedback
can significantly change the frequency response.

Frequency Analysis of a Simple Negative Feedback. In earlier
discussions on the effect of negative feedback, the analysis focused
on the response to step perturbations on the steady state, effec-
tively the response at zero frequency in the frequency response
curve. Here we wish to investigate the frequency response across
the entire frequency range.

Figure 13.12 shows the frequency response for the simple
network shown in Fig. 13.8. The figure includes two graphs,
one computed with negative feedback and another without
feedback. Without feedback the pathway operates as a simple
low-pass filter (Solid line). With feedback (Dotted line), the
frequency response is different. As expected, the response at
low frequencies is attenuated, which reflects the homoeostatic
properties of the pathway. What is more interesting is the
increase in responsiveness at higher frequencies, that is, the
system becomes more sensitive to disturbances over a certain
frequency range. This suggests that negative feedback adds a
degree of resonance to the system and, given the right condi-
tions, can cause the system to become unstable and

Fig. 13.11. Cascade of simple genetic circuits. See Fig. 13.9 for symbolism. The graph
shows the frequency response as the cascade grows in stages. The more stages the
greater the attenuation.
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spontaneously oscillate. The shift in sensitivity to higher fre-
quencies as a result of negative feedback has been observed
experimentally in synthetic networks (4).

3.3.2. Stability Analysis The stability of a system is the response it has to a disturbance
to its internal state. Such disturbances can arise as a result of
stochastic fluctuations in the concentrations of species or as
external disturbances that impose changes on the internal
species. If the system recovers to the original state after a
disturbance, then it is classed as stable; if the system diverges,
then it is classed as unstable. An excellent review by Jorg
Stucki that focuses on stability in biochemical systems can be
found in (80).

Consider the simple pathway shown in Eq. [2]. The differen-
tial equation for this simple pathway is given by

dS1=dt ¼ k1Xo � k2S1: ½11�

It can easily be shown that disturbances to S1 are stable. At
steady state, dS1/dt = 0; thus by making a small disturbance, dS1 in
S1 we can compute the effect this has on the rate of change of dS1 to
be:

dðdS1Þ=dt ¼ � k2dS1: ½12�

This shows that after the initial disturbance, the disturbance
itself declines exponentially to zero; in other words, the system
returns to the original steady state and the system is therefore
stable. By dividing both sides by dS1 and taking the limit to
infinitesimal changes, one can show (53) that the term, �k2, is
equal to, @d(S1/dt)/@S1. The stability of this simple system can
therefore be determined by inspecting the sign of @d(S1/dt)/
@S1.
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Fig. 13.12. Frequency response of end product S2 with respect to the input species Xo for
a model of the kind shown in Fig. 13.8.
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Now consider a change to the kinetic law, k1Xo, governing the
first reaction. Instead of simple linear kinetics let us use a coopera-
tive enzyme which is activated by the product S1. The rate law for
the first reaction is now given by:

v1 ¼
k1XoðXo þ 1ÞðS1 þ 1Þ2

ðS1 þ 1Þ2ðXo þ 1Þ2 þ 80000
:

Setting Xo = 1, k1 = 100, k2 = 0.14, a steady-state concentra-
tion of S1 can be determined to be 66.9. Evaluating the derivative
@d(S1/dt)/@S1 at this steady state yields a value of 0.084, which is
clearly a positive value. This means that any disturbance to S1 at this
particular steady state will cause S1 to increase; in other words, this
steady state is unstable.

For single variable systems the question of stability reduces to
determining the sign of the @d(S1/dt)/@S1 derivative. For larger
systems the stability of a system can be determined by looking at all
the terms @d(Si/dt)/@Si which are given collectively by the
expression:

dðds=dtÞ
ds

¼ J ; ½13�

where J is called the Jacobian matrix containing elements of the
form @d(Si/dt)/@Si. Equation [12] can be generalized to:

dðdsÞ
dt
¼ J ds:

Analysis shows that solutions to the disturbance equations
[12] and [13] are sums of exponentials where the exponents of
the exponentials are given by the eigenvalues of the Jacobian
matrix, J (53). If the eigenvalues are negative then the exponents
decay (stable), whereas if they are positive then the exponents
grow (unstable).

Another way to obtain the eigenvalues is to look at the roots
(often called the poles in engineering) of the characteristic equa-
tion, which can be found in the denominator of the transfer
function, Eq. [10]. For stability, the real parts of all the poles
of the transfer function should be negative. If any pole is positive,
then the system is unstable. The characteristic equation can be
written as a polynomial, where the order of the polynomial
reflects the size of the model.

ansn þ an�1sn�1 þ . . .þ a1s þ ao ¼ 0

A test for stability is that all the coefficients of the poly-
nomial must have the same sign if all the poles are to have
negative real parts. Also it is necessary for all the coefficients
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to be nonzero for stability. A technique called the Routh-Hurwitz
criterion can be used to determine the stability. This proce-
dure involves the construction of a ‘‘Routh Array’’ shown in
Table 13.2. The third and fourth rows of the table are computed
using the relations:

b1 ¼
an�1an�2 � anan�3

an�1
b2 ¼

an�1an�4 � anan�5

an�1
etc:

c1 ¼
b1an�3 � b2an�1

b1
c2 ¼

b1an�5 � b3an�1

b1
etc:

Rows to the table are added until a row of zeros is
reached. Stability is then determined by the number of sign
changes in the 1st column, which is equal to the number of
poles with real parts greater than zero. Table 13.3 shows the
Routh table for the characteristic equation s3 + s2 � 3s � 1 = 0
where s = iw. From the Table 13.3 we see one sign change
between the second and the third rows. This tells us that there
must be one positive root. Since there is one positive root, the
system from which this characteristic equation was derived is
unstable.

The advantage of using the Routh-Hurwitz table is that
entries in the table will be composed from elasticity coefficients.
Thus sign changes (and hence stability) can be traced to particular
constraints on the elasticity coefficients. Examples of this will be
given in the next section.

Table 13.2
Routh-Hurwitz table

an an−2 an−4 · · ·
an−1 an−3 an−5 · · ·
b1 b2 b3 · · ·
c1 c2 c3 · · ·
etc.

1 –3
1 –1
–2
–1

Table 13.3
Routh-Hurwitz table
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3.4. Dynamic Motifs

3.4.1. Bistable Systems

The question of stability leads on to the study of systems with non-
trivial behaviors. In the previous section a model was considered,
which was shown to be unstable. This model was described by the
following set of rate equations:

v1 ¼
k1XoðXo þ 1ÞðS1 þ 1Þ2

ðS1 þ 1Þ2ðXo þ 1Þ2 þ 80000
;

v2 ¼ k2S1:

The network is depicted in Fig. 13.13 and illustrates a positive
feedback loop, that is, S1 stimulates its own production.

The steady state of this simple model is computed at dS1/dt =
v1�v2 = 0 or v1 = v2. If v1 and v2 are plotted against S1 (Fig. 13.14),
the points where the curves intersect correspond to the steady
states of the system. Inspection of Fig. 13.14 shows three inter-
section points.

The steady-state solution that was examined earlier (S1 = 66.9)
corresponds to the second intersection point and, as shown, this
steady state is unstable. Solutions to the system can be found at

Fig. 13.14. Graph showing v1 and v2 plotted against the species concentration, S1 for the
model depicted in Fig. 13.13. The intersection points, where v1 = v2 are marked with small
circles and indicate three possible steady states. Rate equations: v1 = (k1Xo(Xo + 1)(S1 +
1)2)/((S1 + 1)2(Xo + 1)2 + 80000), v2 = k2S1, and parameter values Xo = 1, k1 = 100, k2 =
0.14. The steady-state solutions correspond to values of S1 at 0.019, 66.89, and 288.23.

Fig. 13.13. Simple pathway with positive feedback.
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values of S1 at 0.019, 66.89, and 288.23. By substituting these
values into the equation for dS1/dt we can compute the Jacobian
element in each case (Table 13.4).

This system possess three steady states, one unstable and two
stable. Such a system is known as a bistable system because it can
rest in one of two stable states. One question which arises is what
are the conditions for bistability? This can be easily answered using
BCT. The unscaled frequency response of S1 with respect to v1 can
be computed using Eq. [10] to yield:

CS1
v1
¼ 1

e2
1 � e1

1 þ iw
:

Constructing the Routh-Hurwitz table indicates one sign
change, which is determined by the term, e2

1 � e1
1. Note that e1

1

has a positive value because S1 activates v1. Because the path-
way is a linear chain the elasticities can be scaled without
changes to the stability terms criterion, thus the pathway is
stable if

e1
1
4e2

1:

If we assume first-order kinetics in the decay step, v2, then the
scaled elasticity, e2

1 will be equal to unity, hence

e1
141:

This result shows that it is only possible to achieve bistability
if the elasticity of the positive feedback is greater than one
(assuming the consumption step is first order). The only way to
achieve this is through some kind of cooperative or multimeric
binding, such as dimerization or tetramer formation. The bist-
ability observed in the lac operon is a possible example of this
effect (57, 56).

Table 13.4
Table of steady-state S1 and corresponding value for the
Jacobian element. Negative Jacobian values indicate a
stable steady state, positive elements indicate an unstable
steady state. The table shows one stable and two unstable
steady states

Steady State S1 Jacobian Element: (dS1/dt)/dS1

0.019 �0.086

66.89 0.084

288.23 �0.135
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3.4.2. Feedback and

Oscillatory Systems

The study of oscillatory systems in biochemistry has a long history
dating back to at least the 1950s. Until recently, however, there
was very little interest in the topic from mainstream molecular
biology. In fact, one suspects that the concept of oscillatory beha-
vior in cellular networks was considered more a curiosity, and a
rare one at that, than anything serious. With the advent of new
measurement technologies, particulary high-quality microscopy,
and the ability to monitor specific protein levels using GFP and
other fluorescence techniques, a whole new world has opened up
to many experimentalists. Of particular note is the recent discovery
of oscillatory dynamics in the p53/Mdm2 couple (54, 26) and Nf-
kB (41) signaling; thus rather than being a mere curiosity, oscilla-
tory behavior is in fact an important, though largely unexplained,
phenomenon in cells.

Basic Oscillatory Designs. There are two basic kinds of oscillatory
designs, one based on negative feedback and a second based on a
combination of negative and positive feedback. Both kinds of oscilla-
tory design have been found in biological systems. An excellent review
of these oscillators and specific biological examples can be found in (84,
18). A more technical discussion can be found in (83, 82).

Negative Feedback Oscillator. Negative feedback oscillators are
the simplest kind to understand and probably one of the first to
be studied theoretically (32). Savageau (77) in his book provides
a detailed analysis and summary of the properties of feedback
oscillators. Figure 8 shows a simple example of a system with a
negative feedback loop. We can use BCT to analyze this system by
deriving the characteristic equations (the denominator of the
frequency response) and constructing a Routh- Hurwitz table.
Using this technique it can be easily shown that a pathway
with only two intermediates in the feedback loop cannot
oscillate. In general, a two-variable system with a negative
feedback is stable under all parameter regimes. Once a third
variable has been added, the situation changes and the path-
way shown in Fig. 13.15, which has three variables, can admit
oscillatory behavior.

A critical factor that determines the onset of oscillations,
apart from the number of variables, is the strength of the feed-
back. Savageau (77) showed that if the substrate elasticities were
equal (e.g., all first-order kinetics), then the ratio of the feedback
elasticity (Einh) to the output elasticity esub ; e4

3

� �
determined the

onset of oscillations (Table 13.5). Table 13.5 shows that as the

Fig. 13.15. Simple negative feedback model with three variables, S1, S2, and S3. This
network can oscillate.
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pathway becomes longer less feedback inhibition is required to
destabilize the pathway. This highlights the other factor that
contributes to instability, the delay in routing the signal around
the network. All feedback oscillators require some device to
provide amplification of a signal combined with a suitable time
delay so that the signal response can go out of phase. In metabolic
pathways, amplification is often provided by a cooperative
enzyme while the delay is provided by the intermediate steps in
the pathway. In signaling pathways, amplification can be gener-
ated by covalent modification cycles. Amplification can also be
provided by another means. The criterion for instability is the
ratio of the inhibition elasticity to the substrate elasticity. If the
output reaction of the pathway is governed by a saturable
enzyme, then it is possible to have Esub less than unity. This
means that it is possible to trade cooperativity at the inhibition
site with saturation at the output reaction. The modified Good-
win model of Bliss (7) illustrates the model with no cooperativity
at the inhibition site, but with some saturation at the output
reaction by using a simple Michaelis-Menten rate law.

A second property uncovered by BCT is that stability is
enhanced if the kinetic parameters of the participating reactions
are widely separated, that is, a mixture of ‘‘fast’’ and ‘‘slow’’ reac-
tions. The presence of ‘‘fast’’ reactions effectively shortens the
pathway, and thus it requires higher feedback strength to destabi-
lize the pathway since the delay is now less.

Table 13.5
Relationship between the pathway length and the degree of
feedback inhibition on the threshold for stability. Einh is the
elasticity of the feedback inhibition and Esub is the elasticity
of the distal step with respect to the signal

Length of pathway Instability threshold –�inh/�sub

1 Stable

2 Stable

3 8.0

4 4.0

5 2.9

6 2.4

7 2.1

..

. ..
.

1 1.0
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One of the characteristics of negative feedback oscillators is
that they tend to generate smooth oscillations (Fig. 13.16), and in
man-made devices they are often used to generate simple trigono-
metric functions.

A related oscillator that operates in a similar way to the feedback
oscillator is the ring oscillator (See Fig. 13.17). This device is com-
posed of an odd number of signal inverters connected into a closed
chain. Instability requires sufficient amplification between each inver-
ter so that the signal strength is maintained. A ring oscillator has been
implemented experimentally in Escherichia coli (17) where it was
termed a repressilator. Ring oscillators with an even number of
inverters can be used to form memory units or toggle switches. The
even number of units means that the signal latches to either on or off,
the final state depending on the initial conditions. Toggle circuits
have also been implemented experimentally in E. coli (25).

Relaxation Oscillators. A favorite oscillator design amongst the-
orists (58, 63, 22, 23), as well as biological evolution (86, 24, 29,
67, 12), is the relaxation oscillator. This kind of oscillator operates
by charging a species concentration that, upon reaching a thresh-
old, changes the state of a bistable switch. When the switch

Fig. 13.17. Three ring oscillators, one-stage, three-stage, and five-stage oscillators. All
ring oscillators require an odd number of gating elements. Even rings behave as toggle
switches.

Concentration (S3)

Time

1

1.1

1.2

1.3

1.4

0 1 2 3 4 5

Fig. 13.16. Plot of S3 versus time for the model shown in Fig. 13.15. Note that the profile
of the oscillation is relatively smooth.
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changes state, it causes the species to discharge. Once the species
has discharged, the bistable switch returns to the original state and
the sequence begins again. Positive feedback or a two-step ring
oscillator forming a toggle switch is used to generate the bistabil-
ity, and a negative feedback loop provides the signal to switch the
bistable switch.

One of the characteristics of a relaxation oscillator is the
‘‘spiky’’ appearance of the oscillations. This is due to the rapid
switching of the bistable circuit, which is much faster com-
pared to the operation of the negative feedback. Man-made
devices that utilize relaxation oscillators are commonly used to
generate saw-tooth signals. Figure 13.18 illustrates a plot
from a hypothetical relaxation oscillator published by Tyson’s
group (84).

Oscillator Classification. As previously discussed, oscillators fall
into two broad categories, feedback oscillators and relaxation oscil-
lators. Within the relaxation oscillation group, some authors (84)
have proposed to divide this group into two and possibly three
additional subgroups; these include substrate-depletion, activator-
inhibitor, and toggle-based relaxation oscillators. The grouping is
based on two-variable oscillators and a comparison of the sign
patterns in the Jacobian matrix. Although toggle-based relaxation
oscillations have the same Jacobian sign pattern as substrate-deple-
tion based oscillations, the bistability is implemented differently.

Figure 13.19 shows examples of six different oscillators,
together with their classification and stylized forms.

Even though each mechanistic form (first column) in
Fig. 13.19 looks different, the stylized forms (second column)
fall into one of three types. The stylized forms reflect the structure

0

0.4

0.8

1.2

1.6

0 50 100 150 200 250 300

Time

Concentration (R)

Fig. 13.18. Typical spiky appearance of oscillatory behavior from a relaxation oscillator,
from Tyson (84), model 2(c).
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of the Jacobian for each model. Only a limited number of sign
patterns in the Jacobian can yield oscillators (39). Using evolu-
tionary algorithms (16, 65), many hundreds of related mechanisms
can be generated, see the model repository at www.sys-bio.org for
a large range of examples. Although many of these evolved oscilla-
tors look quite different, each one can be classified in a only a few
basic configurations.

Fig. 13.19. Classification of Relaxation Oscillators into substrate-depletion, activator-
inhibitor, and toggle-based. Note that although the mechanistic networks are quite
variable, the underling operation is the same as shown in the stylized column. Type
codes: SD = Substrate-Depletion; AI = Activator- Inhibitor; SD/T = Substrate-Depletion/
Toggle. The stylized form is generated by computing the Jacobian matrix for each
network. Elements in the Jacobian indicate how each species influences changes in
another. Model (a) corresponds to model (c) in Fig. 13.2 of (84) and model (e) to model (b)
in Fig. 13.2 of (84).
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4. Summary

This chapter has focused on describing some of the theory that is
available to analyze the dynamics of deterministic/continuous
models of biochemical networks. Some areas have been omitted,
in particular bifurcation analysis has not been discussed but is
probably one of the more important tools at our disposal because
it can be used to uncover the different qualitative behavioral
regimes a network might possess. Bifurcation analysis would
require an entire chapter to describe; however, good starting
points include the chapter by Conrad and Tyson (13) and the
book by Izhikevich (47).

The most significant area missing from this chapter is
undoubtedly a discussion on stochastic modeling (89). As more
experimental data becomes available on times series changes in
species concentrations, it is becoming abundantly clear that
many processes, particularly genetic networks, are noisy. In pro-
karyotic systems we are often dealing with small numbers of mole-
cules and the stochastic nature of reaction dynamics becomes an
important consideration. Unfortunately, there is at present little
accessible theory on the analysis of stochastic models, which
greatly impedes their utility. In almost all cases, the analysis of
stochastic systems relies exclusively on numeric simulation, which
means generalizations are difficult to make. Some researches have
started to consider the theoretical analysis of stochastic systems
(66, 78) and the field is probably one of the more exiting areas to
consider in the near future.

5. Notes

1. A recent and potentially confusing trend has been to use
the symbol S to signify the stoichiometry matrix. The use
of the symbol N has, however, a long tradition in the field,
the letter N being used to represent ‘‘number,’’ indicating
stoichiometry. The symbol, S, is usually reserved for
species.

2. There are rare cases when a ‘‘conservation’’ relationship arises
out of a non-moiety cycle. This does not affect the mathe-
matics, but only the physical interpretation of the relation-
ship. For example, A ! B + C; B + C ! D has the
conservation, B � C = T.

3. Possibly inviting the use of the term, ultra-rate-limiting?
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6. Reading List

The following lists books and articles that cover the material in this
chapter in much more depth.

Introductory and

Advanced Texts on

Systems Analysis

Fell, D (1996) Understanding the Control of Metabolism,
Ashgate Publishing, ISBN: 185578047X

Heinrich R, Schuster S (1996) The Regulation of Cellular
Systems. Chapman and Hall, ISBN: 0412032619

Klipp E, et al. (2005) Systems Biology in Practice, Concepts,
Implementation and Application. Wiley-VCH Verlag, ISBN:
3527310789

Izhikevich, E. M. (2007) Dynamical Systems in Neuroscience:
The Geometry of Excitability and Bursting, MIT Press, ISBN:
0262090430

Control Theory Ingalls, B. P. (2004) A frequency domain approach to sensitivity
analysis of biochemical systems, Journal of Physical Chemistry B,
108, 1143–1152

Bistablilty and

Oscillations

Tyson J, et al. (2003) Sniffers, buzzers, toggles and blinkers:
dynamics of regulatory and signaling pathways in the cell. Current
Opinion in Cell Biology, 15, 221–231

Stochastic Modeling Wilkinson D. J. (2006) Stochastic Modeling for Systems Biology.
Chapman and Hall, ISBN: 1584885408

Acknowledgments

I wish to acknowledge Ravishankar R. Vallabhajosyula for assis-
tance in preparing the simulation data and figures for the gene
cascade circuits. This work was support by a generous grant from
the NSF (award number CCF- 0432190).

References

1. Altan-Bonnet G, Germain RN (2005).
Modeling T cell antigen discrimination
based on feedback control of digital ERK
responses. PLoS Biol 3(11):1925–1938.

2. Alves R, Savageau MA (2000). Effect of
overall feedback inhibition in unbranched
biosynthetic pathways. Biophys J 79:
2290–2304.

3. Arkin AP (2000). Signal Processing by Bio-
chemical Reaction Networks. In J. Walleczek
(Ed.), Self-Organized Biological Dynamics
and Nonlinear Control, pp. 112–114. Cam-
bridge University Press.

4. Austin DW, Allen MS, McCollum JM, Dar
RD, Wilgus JR, Sayler GS, Samatova NF,
et al. (2006). Gene network shaping of

306 Sauro



inherent noise spectra. Nature 439(7076):
608–611.

5. Bakker BM, Westerhoff HV, Opperdoes FR,
Michels PAM (2000). Metabolic control
analysis of glycolysis in trypanosomes as an
approach to improve selectivity and effec-
tiveness of drugs. Mol Biochem Parasitology
106:1–10.

6. Blackman FF (1905). Optima and limiting
factors. Ann Botany 19:281–295.

7. Bliss RD, Painter PR, Marr AG (1982). Role
of feedback inhibition in stabilizing the clas-
sical operon. J Theor Biol 97(2):177–193.
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