
As biologists, we must grapple with, and reconcile, two 
very different views of cellular behaviour. On the one 
hand, we frequently think of cellular functions as being 
determined by ‘circuits’ of interacting genes and pro-
teins. In a loosely analogous way to electronic circuits, 
these chemical circuits encode genetic programmes 
that underlie differentiation, the cell cycle and other 
behaviours (FIG. 1a). They accurately respond to stimuli 
and generate precise behavioural programmes in indi-
vidual cells. On the other hand, there is the ‘noisy’ view of  
the cell we get when we actually look at cells: they exist 
in squishy, dynamic and heterogeneous populations, the 
morphologies, gene-expression patterns and differenti-
ated states of which differ from one another, even when 
environment and genotype are fixed (FIG. 1b). How can 
precisely defined genetic circuits give rise to heteroge-
neity and, conversely, how does heterogeneity affect the 
behaviour of biological circuits?

Movies offer a powerful way to address these questions 
(FIG. 1c). By engineering microbial strains to express fluo-
rescent protein reporters for key genes, researchers can 
follow the changing characteristics of individual cells over 
time. Quantitative detection methods, improved micro-
scope automation and software, and the range of fluores-
cent reporter genes that are now available, in conjunction 
with mathematical modelling, can be combined to analyse 
gene circuit dynamics. Together, these techniques allow 
researchers to characterize epigenetic states, identify new 
dynamic phenomena, analyse biochemical interactions 
within circuits and elucidate the physiological function 
of genetic circuits, all at the single-cell level. Finally, mov-
ies provide an aesthetically compelling view of cellular 

function that is often fascinating to watch. With movies, 
the eye often picks out subtle patterns in individual liv-
ing cells that would be difficult to notice with less direct 
techniques. Few techniques are more fun.

How does quantitative movie analysis compare with 
alternative techniques for analysing gene circuits? Time-
lapse microscopy follows a few genes over time in indi-
vidual living cells. It complements approaches such as 
microarrays (which provide genome-scale expression 
data averaged over populations, but do not allow analysis 
of variability) and flow cytometry (which allows high-
throughput acquisition of single-cell fluorescence values, 
but does not allow the same cell to be tracked over time). 
Movies also complement new single-cell quantitative PCR 
approaches, which enable analysis of expression of multi-
ple genes in individual cells, but, because they require lysis 
of the cell, do not permit tracking of expression dynamics1.  
Movies enable researchers to determine the ‘trajectories’ 
of gene expression levels in individual living cells. One 
potential drawback of movies is that although many 
genes, and their expression levels, may be important for 
a particular process under study, most studies currently 
follow the dynamics of only a few genes at a time owing to 
the lack of distinguishable reporters. In the future, multi-
spectral techniques may expand the number of simultane-
ous reporters2. However, studies that follow the dynamics 
of only two or three genes at a time can still be extremely 
informative.

Here we review work in which movies provide new 
insights into the dynamic behaviour of genetic compo-
nents and circuits. For this Review, we have confined 
ourselves to microbial systems and have therefore 
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Using movies to analyse gene circuit 
dynamics in single cells
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Abstract | Many bacterial systems rely on dynamic genetic circuits to control crucial 
biological processes. A major goal of systems biology is to understand these behaviours in 
terms of individual genes and their interactions. However, traditional techniques based on 
population averages ‘wash out’ crucial dynamics that are either unsynchronized between 
cells or are driven by fluctuations, or ‘noise’, in cellular components. Recently, the 
combination of time-lapse microscopy, quantitative image analysis and fluorescent protein 
reporters has enabled direct observation of multiple cellular components over time in 
individual cells. In conjunction with mathematical modelling, these techniques are now 
providing powerful insights into genetic circuit behaviour in diverse microbial systems.
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Noise
Fluctuations in molecular 
components. Noise arises 
owing to the low copy numbers 
of molecular species and the 
burst-like nature of 
transcription, among  
other mechanisms.

excluded interesting recent work in mammalian cell cul-
ture and multicellular organisms3–5. Because our focus 
is on gene circuit dynamics, we have also excluded fas-
cinating studies on the subcellular localization dynam-
ics of individual cellular components6–11. We will first 
review recent work in which time-lapse microscopy 
has been used to examine and characterize variability 
in single-cell gene expression. next, we describe how 
movies can facilitate quantitative analysis of biochemi-
cal interactions in individual cells. Finally, we explore 
how movies can provide integrated pictures of genetic 
circuit dynamics and thereby reveal key principles of 
genetic circuit design. Taken together, these studies are 
beginning to reveal intimate connections between the 
deterministic circuit and heterogeneous noisy views of 
the cell — although genetic circuits generate and control 
fluctuations in cellular components and heterogeneity 
in cellular states, variability is essential for at least some 
genetic circuits to function properly.

the origins of variability
If all cells behaved the same, it would be unnecessary to 
analyse individual cells. However, gene expression, and 
therefore cellular behaviour, is often variable, even in clonal 
cell populations grown in identical environments12–14. 

Where does this variability originate? It can arise from 
stochastic fluctuations, or noise, in cellular components 
and biochemical reactions12,15. These fluctuations are 
assumed to be significant given the low copy numbers of 
key molecular species in the cell16,17. However, variability 
can also reflect differences in the micro-environments 
inhabited by individual cells. Furthermore, pre-existing 
heterogeneity can be propagated to subsequent cell gen-
erations. such effects can be observed by following line-
ages over several cell generations. The interplay between 
these sources of variability is addressed in several recent 
studies that used movies.

Lineage analysis allows tracking of epigenetic states. In 
the 1950s and 1960s, Powell18,19 and others used phase-
contrast microscopy to observe the growth of bacterial 
micro-colonies. They carefully analysed the heritability 
of growth rates and other phenotypes, and suggested that 
stochastic fluctuations in cellular components might gen-
erate the observed variability. Improved acquisition tech-
niques (BOX 1; FIG. 2) now enable researchers to address 
these issues more systematically. Rather than tracking 
colonies for 2–3 generations by eye, it is now possible to 
record growth automatically over many generations20.

Perhaps the best example of how lineage can affect 
cell–cell variability, which is observed in diverse multicel-
lular systems and in yeast21, comes from the study of age-
ing cells. For example, Ackermann et al.22 took advantage 
of the asymmetric division cycle of Caulobacter crescentus, 
in which stalked cells divide to produce one stalked and 
one swarmer cell, to investigate the potential for ageing in 
bacteria. stalked cells were followed by time-lapse micro-
scopy for 300 hours as they divided repeatedly. some of 
the swarmer cells they produced converted to new stalked 
cells that could also be tracked in the movie. The authors 
found that the cell-division cycle of stalked cells slows 
or stops over time, suggesting that stalked cells undergo 
senescence22.

Although symmetrically dividing bacteria, such as 
Escherichia coli, seem to have no obvious means of age-
ing, cell-wall components may turn over slowly and be 
maintained in the poles where they are formed. By track-
ing over 35,000 E. coli cells using an automatic tracking 
programme, and using a flat micro-colony growth proto-
col (BOX 2), stewart et al. showed that E. coli cells indeed 
age23. After division, each daughter cell has one new pole, 
created by the septation event, and one old pole, inherited 
from the parent. By sorting the lineage tree by pole age, 
one can observe that cells with older poles have systemati-
cally reduced growth rates, as well as increased death rates, 
compared with cells with younger poles (FIG. 3a). Without 
a specific molecular marker for cell age, it is difficult to 
imagine how such effects could have been observed using 
traditional techniques.

Persistence at the single-cell level. When antibiotics are 
added transiently to a population of bacterial cells, most 
of the population is killed. In some cases, however, a small 
percentage of ‘persister’ cells survive antibiotic treat-
ments, grow and re-establish the population24. A second 
pulse of antibiotics leads to a similar result, showing that 

Figure 1 | circuit-driven versus noisy cells. a | Circuit-level view: genes and gene 
products interact to generate an ordered behavioural programme. b | Noisy view: isogenic 
populations exhibit large levels of heterogeneity, both in terms of gene expression and 
differentiated states. As an example, we show an image of a Bacillus subtilis strain with two 
sporulation reporter constructs (P

spoIIQ
–cfp, which is shown in yellow, and P

spoIID
–yfp, which is 

shown in red), superimposed on a phase contrast image (shown in grey). Cells were grown 
in sporulation medium. However, they initiate sporulation at different times, which causes 
vegetative cells (dark rods) to coexist with cells at various stages of sporulation (coloured 
cells). c | Movies allow us to analyse the effects of interactions on the relative timing of gene 
expression in variable and dynamic circuits. Here, two schematic gene expression traces 
are shown in red and green for a simple activating interaction (x activates z). The movie 
enables us to observe delayed correlations that would not be evident in snapshots.  
t indicates a typical delay before the regulatory effects of x are visible in z.
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Segmentation
Breaking up a complex image 
into individual objects, such as 
cells.

Edge detection
A computational algorithm that 
identifies sharp changes in 
intensity associated with 
boundaries between objects, 
such as cells.

Thresholding
One of the simplest 
segmentation techniques, in 
which groups of pixels for which 
the intensity exceeds a defined 
cut-off value are identified.

Hough transform
An algorithm for identifying 
particular shapes, such as 
circular disks, in complex 
images. The Hough transform 
is useful in many segmentation 
systems.

persistence is not due to mutation25. But is persistence 
induced by the antibiotic, or do some cells spontaneously 
enter a persistent state before the addition of antibiotics? 
The persister state can be identified in movies because 
it causes strongly reduced cell growth. using time-lapse 
microscopy of cells embedded in linear microfluidic cham-
bers, Balaban et al. showed that individual E. coli cells 
switch in and out of the persister state spontaneously in 
the absence of antibiotics26. In a second study, the group 
used movies to identify an intermediate state in the tran-
sition to persistence during which cells stop growing but 
continue to express proteins27. Cells remained susceptible 
to antibiotics during this period.

This methodology could provide insight into bio-
medically relevant pathogens, including the slow-growing  
mycobacteria that are responsible for tuberculosis24,28. 
Being able to study rare spontaneous state changes could 
help identify strategies that influence the susceptibility 
of persistent infections to drug treatments. A current 
limitation of this approach is the difficulty in analysing 
extremely rare events, which become increasingly difficult 
to find at the low frequencies that characterize some natu-
ral persister states (for example, 10–6 for E. coli). To cir-
cumvent this problem, Balaban et al.26 studied previously 
identified mutants that exhibit an elevated frequency of 
persisters29. With these imaging techniques established, an 
important challenge is to work out the underlying circuit 
that is responsible for inducing state changes in a proba-
bilistic manner. Recent efforts have begun to identify new 
genes that can participate in such a circuit (reviewed in 

reF. 30). It will be interesting to see whether this circuitry 
is similar to the excitable genetic circuit that is respon-
sible for the similarly transient and probabilistic process 
of competence induction in Bacillus subtilis (described 
below).

Heritability of cellular states. Cell-state heterogeneity can 
be analysed without movies, but movies can provide addi-
tional insights into the process. For example, Acar et al. 
recently analysed the galactose utilization system in yeast31. 
They showed that yeast cells with mutations in one feed-
back loop appear to spontaneously switch between states 
of high and low expression of galactose utilization genes. 
But it remained unclear whether (and how) these states 
are inherited across cell generations (or division events). 
Kaufman et al. addressed this issue by examining the 
heritability of such gene expression states32 using mov-
ies to track yeast cells over 15 hours through ~6 divisions 
(FIG. 3b–d). Remarkably, mother and daughter cells switch 
on the galactose pathway synchronously after division, 
indicating that the timing of these apparently random 
decisions is heritable. The authors explain this behaviour 
in terms of a model based on a single fluctuating regula-
tory protein that is synthesized in large bursts. Clearly, the 
interplay between stochastic switches and heritable states 
can be complex.

Cell cycle variability. As an unsynchronized, dynamic 
oscillatory process that is continuously operating in indi-
vidual cells, the cell cycle represents a key potential source 
of variability. But how variable is the cell cycle itself? And 
where does that variability originate? When examined at 
the single-cell level, cell cycle progression can be strikingly 
variable. Movies have been used to quantify variability in 
the timing of specific cell cycle stages in yeast33,34. This 
work broke overall variability in timing into steps that 
were either dependent or independent of cell size. The first 
step is responsible for controlling cell size before division. 
Interestingly, variability in the cell-size-independent time 
interval was reduced by increasing ploidy in a manner that 
was consistent with stochastic variation in expression of 
certain genes, such as those that encode G1 cyclins.

In a complementary study, Ramanathan and co-workers  
dissected the timing variability that leads to the cell-fate 
decision in yeast to initiate meiotic sporulation35. This 
study showed that the timing of sporulation varies consid-
erably among cells, even though all cells activate expres-
sion of the master regulator of sporulation at roughly the 
same time. variability in the decision to initiate sporula-
tion results in part from slow and variable accumulation 
of the master regulator Ime1p.

These studies, together with another study36, have 
begun to examine molecular mechanisms by which cell 
cycle progression can be intrinsically noisy. It will be 
interesting to see how this variability affects other cellular 
processes and to what extent this variability is adaptive.

Movies of clocks. In contrast to the inherently variable oscil-
lations of the cell cycle, circadian clocks possess remark-
able temporal precision. Cyanobacteria possess a 24-hour 
circadian clock, the molecular components of which 

 Box 1 | movie acquisition and analysis techniques

Movie acquisition
A minimal system for time-lapse microscopy consists of an automated fluorescence 
microscope, software to automate acquisition and software to assist in tracking and 
quantifying fluorescence in the resulting movies. The development of microscopes 
equipped with computer-controllable stages, filter wheels and shutters allows for the 
acquisition of movies of cell growth over several days. Diverse variants of GFP86 now 
offer three or more distinguishable channels of information in the same cell80. The use 
of distinct localization signals can expand this repertoire81. Recently, software that 
automates time-lapse acquisition of images in various stage positions has become 
available both commercially and as a free open-source software package (µManager).

Movie analysis
Analysis of even the most breath-taking movies can require yawn- and repetitive-
strain-injury-inducing amounts of time and mouse clicking. In many systems, the first 
stage of analysis is segmentation, which identifies the set of pixels belonging to each 
individual cell on each frame of each movie (FIG. 2). Segmentation has been performed 
successfully on both phase and fluorescent image data using various tactics, including: 
edge detection, thresholding and template-matching techniques, such as the Hough 
transform87. Once cells have been identified, tracking algorithms, such as those 
described in reF. 88, are necessary to infer cell lineages. Tracking can be a complex 
problem, as cells divide, grow, rotate, die and move irregularly. Most often, individual 
groups have developed in-house software to automate these processes for their 
particular imaging conditions23,27,89. However, it has been difficult to generalize these 
problem-, cell- and equipment-specific packages so that they can be used and adapted 
more broadly. Wang, West, You and colleagues have developed and distributed a 
package called CellTracer, which can be used with diverse organisms90. In addition, 
several other software packages are being developed and distributed to assist with this 
problem in yeast and mammalian cells91,92, although these are not optimized for 
bacteria. Clearly, an organized community effort towards the common goal of 
developing a more general-purpose, user-friendly and open-source solution to this 
problem would be worthwhile.
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Repressilator
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have been identified and shown to reconstitute oscilla-
tions in vitro37,38. Although colonies and cultures exhibit 
robust rhythms, it was unclear how accurately the clock 
performed at the single-cell level, given the possibility 
of substantial noise in the levels of its molecular compo-
nents39–41.The possibility that the circadian clock might 
be inherently noisy was also suggested by studies of an 
unrelated synthetic genetic clock, termed the repressilator.  
In movies, the repressilator spontaneously generates self-
sustaining (limit cycle) oscillations in E. coli cells with-
out external perturbations (that is, oscillations do not 
‘damp out’)42. However, the clock is erratic and its state 
quickly becomes desynchronized between cells within the 
population.

This work raised some questions. What are the limits 
of accuracy for simple synthetic clock circuits in indi-
vidual cells? Do natural biological clocks function more 
accurately than synthetic clocks? And, if so, how? new 
work from stricker and colleagues addresses the first 
question43. The authors analysed a synthetic clock design 
that was based on the activator AraC and the repressor 
lacI. AraC activates its own expression as well as that 
of lacI. similarly, lacI represses itself and the activator. 
Resembling a ‘relaxation’ oscillator, and as predicted com-
putationally, this design produced more-accurate oscilla-
tions in individual cells than did the repressilator44,45. Also, 

the period of these oscillations could be tuned using arab-
inose and  isopropyl-β-d-thiogalactopyranoside. Another 
feature of this work was that the authors acquired movies 
of these circuits using a special microfluidic device that 
permitted chemostatic conditions but maintained flat cell 
growth, which enabled quantitation of fluorescence.

In contrast to the variability that is generally 
observed with synthetic clocks, when Mihalcescu et al. 
used a sensitive luciferase reporter system to image 
cyanobacterial clock dynamics in individual cells of 
growing micro-colonies over time46, they found that 
all individual cells oscillated with a robust 24-hour 
rhythm. Furthermore, when two micro-colonies pre-
viously entrained to different clock phases were placed 
next to each other on the same pad, they did not influ-
ence each other’s phase. These results suggested that 
the clock behaves accurately in each individual cell and 
does not require intercellular communication for syn-
chronization46,47. This accuracy occurs despite noise in 
the gene expression from clock-controlled promoters, 
which was also recently analysed using movies48.

How, then, does the cyanobacterial clock function so 
reliably? Recently, Rust et al. established a clock mecha-
nism based on phosphorylation interactions among the 
three key proteins KaiA, KaiB and KaiC38,49. The post-
translational nature of this clock circuit mechanism may 
help to explain its apparent robustness to noise. Ironically, 
the high intrinsic accuracy of the clock, which has been 
established using movies, may enable researchers to study 
many aspects of this system without movies — that is, at 
the population average level.

Together these studies represent a range of examples 
in which variability is generated or suppressed in differ-
ent circuits. They therefore raise the question of how such 
circuit-level variability emerges from specific biochemical 
interactions in the cell.

In vivo biochemistry
surprisingly, movies can provide the type of detailed and 
quantitative analyses of biochemical interactions that are 
traditionally associated with gels, blots and other bio-
chemical assays. several recent studies push the limit on 
quantitative analysis of movie data.

The gene regulation function. One of the most basic char-
acteristics of a genetic circuit is the interaction between a 
transcription factor and its target genes. This interaction 
can be summarized by the effective gene regulation func-
tion (GRF): the relationship between the concentration of 
one or more transcription factor in a cell and the rate of 
production of its target gene. The shape of the GRF is cru-
cial for the function of gene circuits. However, population-
average measurements can ‘smear out’ even a well-defined 
continuous response function, and in vitro measurements 
may not reflect the many effects of the intracellular envi-
ronment. These considerations motivated an effort to 
measure GRFs in individual living cells.

To measure a typical GRF, Rosenfeld et al.89 engi-
neered a strain of E. coli in which a lambda repressor–
yellow fluorescent protein (yFP) fusion protein repressed 
the expression of cyan fluorescent protein (CFP), which 

Figure 2 | Tracking and segmenting single cells. a | Schematic of data flow for a cell 
tracking and segmentation system. During tracking, cell shapes must first be identified in 
images (segmentation) and then tracked over time. Finally, the fluorescence values must 
be extracted. b–e | Segmentation and tracking input and output. b | Phase contrast 
images over time. c | Fluorescence images of the micro-colony. In this example, filters for 
yellow and cyan fluorescent proteins were used (shown in red and green, respectively).  
d | Segmentation was performed on the phase contrast images to determine the 
locations of each cell. Arbitrary colours were used for labelling. e | Shows the 
descendents of cell 4. The panel on the far right shows the descendants of each of the 
four initial cells after approximately four generations. Figure is courtesy of J. Young, 
California Institute of Technology, California, USA, and N. Rosenfeld, Rosetta Genomics, 
Rehovot, Israel.
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was expressed from a lambda-regulated promoter. They 
allowed the tagged repressor to dilute out as the cells 
grew into micro-colonies, while simultaneously moni-
toring the rate of increase of CFP fluorescence (FIG. 4a,b; 
supplementary information s1 (movie)). These data 
give the GRF for the lambda repressor–promoter inter-
action. Crucially, they showed that the GRF was not a 
well-defined function. Rather, CFP expression fluctuates 
slowly, with a typical timescale of one cell cycle. Thus, 
the output of the repressor–promoter system is not solely 
determined by the concentration of repressor in the cell. 
Because these fluctuations are slow, the cell would require 
several generations to ‘average them out’. In this way, GRF 
fluctuations fundamentally limit the accuracy of tran-
scriptional regulation. single-cell movies therefore permit 
a more complete understanding of both the mean GRF, 
which is useful for approximately analysing gene circuit 
models, and the characteristics of its fluctuations, which 
are necessary for modelling stochastic effects.

The measured GRF had a remarkably accurate pre-
dictive value: when synthetic negative-feedback circuits 
were constructed using only the measured promoter, they 
exhibited the mean expression levels and noise expected 
from a simple genetic circuit model, with no free param-
eters50. In related work, Austin et al. used movies to meas-
ure the timescale of noise in simple synthetic gene circuits 

in growing E. coli51. They showed that negative autoregu-
lation shifts noise to higher frequencies, which are easily 
filtered out by genetic networks. This represents an addi-
tional functional role for negative autoregulation, a com-
mon motif in natural circuits. This integrated analysis of 
regulatory components and noise will probably facilitate 
quantitative synthetic biology approaches52–54.

A similar example in which movies were used to char-
acterize biochemical systems that are useful for synthetic 
biology was recently undertaken by Grilly and co-workers55,  
who characterized a prokaryotic protein degradation sys-
tem in yeast. To determine the protein degradation rates, 
they simply tracked the fluorescence of a GFP construct  
tagged for degradation in single cells55.

Single molecules: the final biochemical frontier. Perhaps 
the ultimate limit to in vivo analysis of biochemical inter-
actions is being able to resolve circuit dynamics at the 
level of individual molecules in a cell. This milestone was 
recently reached in several pioneering studies of E. coli, all 
of which used movies to quantitatively analyse the pro-
duction and degradation of individual mRnA or protein 
molecules56–58. First, Golding et al.56 examined the pro-
duction of mRnAs over time using a fluorescent protein 
fusion to the sequence-specific RnA-binding protein 
Ms2. Cells were engineered to co-express target mRnAs 
that contained an array of Ms2 binding sites. When 
present, these target mRnA molecules concentrated the 
fluorescent Ms2 protein into ‘dots’ that could be imaged 
and counted inside cells over time. At the protein level, 
one might simply try to detect individual fluorescent pro-
tein fusions. However, if they diffuse freely in the cyto-
plasm, the signal they produce before photobleaching is 
effectively dispersed over the area of the whole cell. As 
a result, the fluorescence per camera pixel is well below 
the background autofluorescence of the cell itself, and 
an individual fluorescent protein molecule is practically 
undetectable. To circumvent this problem, yu et al.57 fused 
yFP to a membrane protein to reduce its mobility in the 
cell, which caused the time-averaged fluorescence from 
each molecule to be detectable57 (FIG. 4c). This strategy can 
be generalized, as various different proteins can be fused 
to immobilizing domains. In a complementary study, Cai 
et al.58 also measured the activity of individual molecules 
of the well-characterized enzyme b-galactosidase by mon-
itoring the rate of enzymatic cleavage of a substrate to a 
fluorescent product. Because cells were confined to micro-
fluidic chambers, the rate of accumulation of fluorescence 
could be monitored in movies for individual cells58.

Together, these studies showed that researchers can 
track the production and degradation of individual 
mRnA and protein molecules over time using movies. 
In addition, the results obtained with these methods have 
enabled the development of predictive models for gene 
expression. These experiments show that both mRnA 
production and translation occur in exponentially dis-
tributed bursts59. The variability in expression caused by 
both types of bursts can be approximated by a gamma 
distribution, which is characterized by two effective para-
meters: the frequency of transcriptional bursts and the 
mean number of proteins produced per burst56,59,60.

 Box 2 | issues that impact time-lapse analysis of individual cells

reporter type
To directly monitor protein levels, fluorescent protein genes can be fused to proteins of 
interest (protein fusion). Alternatively, such genes can be inserted downstream of an 
additional copy of a natural promoter (promoter fusion), which is less likely to disturb 
the function of the cell but does not permit analysis of post-translational dynamics, 
including localization and degradation.

Protein stability
If promoter fusions express stable reporter proteins (GFP and its derivatives are 
generally stable in bacteria), then it may be difficult to visualize a rapid turn-off in 
expression owing to lingering previously expressed proteins. In such cases, one can 
analyse the rate of protein accumulation (time derivative of fluorescence), rather than 
the amount of protein93. On the one hand, protein stability can be an advantage, as it 
removes uncertainty in the degradation rate. On the other hand, time derivatives 
amplify measurement noise in image data. Another strategy is to destabilize the 
reporter protein using genetic tags, such as those derived from ssrA in bacteria94.  
This increases time resolution at the expense of reduced fluorescence levels.

Maturation time
Fluorescent proteins require widely varying times (minutes to hours) to become 
fluorescent, and therefore fluorescence must be directly measured in the strain of 
interest. Slow maturation can ‘smear out’ otherwise rapid events in individual cells.

other issues
Fluorescent reporter genes may be subject to unknown interactions with endogenous 
cellular components, and in some cases, may depend on ionic conditions95. Controls, 
for example with constitutive or inducible promoters, should therefore be performed 
to make sure that the reporter proteins are behaving as expected.

growth considerations
Growth of cells on a two-dimensional surface permits use of simple, rapid and 
light-efficient wide-field fluorescence microscopy. However, cells eventually ‘pile up’, 
limiting the length of time of observation. Microfluidic chambers have been introduced 
to maintain chemostatic conditions26,83. In our work, we find that imaging cells between 
the coverslip and an agarose pad of a few millimetres provides a relatively simple 
means of sustaining two-dimensional growth for many cell generations. Although this 
system is imperfect, it is sufficient for many applications.
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Together, these studies, and others like them61,62, will 
help bridge the gap between the biochemical interactions 
between individual molecules, as they occur in cells, and 
the behaviour of more complex circuits that consist of 
multiple components and interactions.

movies reveal circuit dynamics
various techniques have begun to reveal the struc-
ture of genetic circuits: what regulates what, and how. 
However, despite this information it remains difficult 
to predict the cellular dynamics that a particular cir-
cuit will generate. This is especially true for circuits 
that are only active in a subpopulation of cells and 
for circuits that have highly variable behaviours.  
In B. subtilis under stress, a small percentage of cells 
(5–10%) enter a state of competence, during which 
they can readily take up exogenous DnA63,64. similarly, 
B. subtilis undergoes a dramatic differentiation proc-
ess in which a cell transforms into a dormant spore. 
Individual cells vary significantly in when, and in 

some cases whether, they initiate sporulation. What 
accounts for this variability in cell-fate decision mak-
ing? Recently, movies have enabled researchers to 
connect the decision-making behaviours of individual 
cells to the architecture of underlying genetic circuits 
in both competence65,66 and sporulation67.

Transient, probabilistic differentiation. Pioneering 
work by Dubnau, Zuber, Grossman and others estab-
lished the key molecular interactions that are necessary 
for competence (reviewed in reF. 68). The transcription 
factor ComK is both necessary and sufficient to induce 
B. subtilis cells into the competent state, and positively 
autoregulates its own expression. expression of Coms is 
necessary, but not sufficient, for inducing competence. In 
movies, cells appear to spontaneously activate ComK and, 
after some time, revert back to vegetative growth. What 
accounts for the probabilistic, unsynchronized activation 
of competence in only a fraction of cells? And, how do 
cells ensure a timely exit from the competent state?

Figure 3 | Automated lineage analysis reveals epigenetic states. a | The ageing of Escherichia coli. This lineage tree 
depicts 9 generations of E. coli from 94 movies. The lengths of the lines joining cells to their progeny are proportional to the 
average growth rate of that cell, so a shorter line represents a slower growth rate. At each division event, the cell that 
inherits the old pole is shown in red and placed on the right side of the division pair, whereas new poles are shown in blue 
and placed on the left side of the division pair. Horizontal green lines mark the point of the first cell division for the last four 
generations. This lineage tree clearly shows that cells with older poles have systematically reduced growth rates compared 
with cells with younger poles. b–d | Genealogical switching history in the yeast galactose system. In each movie, the first cell 
is designated cell number 1 and sequential daughters of that cell are designated 1-1, 1-2, 1-3 and so on. These daughter 
cells bud in turn, giving rise to cells 1-1-1, 1-1-2, 1-2-1 and so on. b | Yeast cells that express a reporter for the galactose 
(GAL) system, P

GAL1
– yellow fluorescent protein (YFP), in a mutant background in which a negative-feedback loop has been 

disrupted. Purple shading represents YFP expression. An initially ‘off’ (non-expressing) cell grows into a variegated 
micro-colony. Beginning at 600 min of age, or after 4 generations, several cells fluoresce almost simultaneously. This 
includes the mother–daughter pairs (1,1-2 and 1-1-1,1-1-1-1). c | The family tree for the colony shown in part b. Off cells are 
marked with a black line, whereas pink lines represent cells that express the GAL system. d | Fluorescent time courses for 
mother cell 1 and her daughter 1-2, showing each as they switch into the ‘on’ state. Mother and daughter cells switch on the 
GAL pathway synchronously after division, indicating that the timing of these apparently random decisions is heritable. 
Panel a is reproduced from reF. 23. Panels b–d are reproduced from reF. 32. 
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Movies of B. subtilis cells containing reporters for 
pairs of genes during entry and exit from competence 
provided clues to address these questions. For exam-
ple, cells exhibited a strong anti-correlation between 
ComK and Coms: as soon as ComK levels switched 
‘on’, Coms expression switched ‘off ’, and vice versa 
(FIG. 5a–c; supplementary information s2 (movie)). 
This is consistent with the idea that ComK directly 
or indirectly represses the expression of Coms to 
form a negative-feedback loop. When combined with 
positive autoregulation of ComK, the two feedback 

loops together explain the probabilistic and transient 
nature of competence in terms of excitable dynamics 
that are mathematically similar to action potentials 
in neurons69. But what is the ‘trigger’ for differentia-
tion? In the mathematical model of competence that 
was based on excitability, noise — that is, fluctuations 
in molecular components, such as ComK — triggers 
differentiation. To test this idea, cells that were mutant 
for the septation gene ftsW were used. These cells 
displayed normal physiology, but lacked the ability 
to septate, and therefore grew into long filaments. 
Because of their increased size, they exhibited reduced 
noise (fluctuations in gene expression averaged out 
more in the larger cells) but had similar mean levels of 
gene expression. They also exhibited a progressively 
reduced propensity to differentiate at longer lengths, 
supporting the idea that fluctuations are necessary for 
differentiation in this system66.

Dubnau and colleagues70 approached the question of 
whether noise is required for differentiation from a com-
plementary and more direct point of view: they tested the 
hypothesis that fluctuations in ComK expression were 
responsible for initiating differentiation. They generated 
strains that differed in the noisiness, but not the mean 
rate, of ComK expression. By reducing the rate of ComK 
translation while increasing its rate of transcription, the 
expression of ComK was made less ‘bursty’. strikingly, the 
frequency of differentiation was reduced70. These experi-
ments established that ComK noise affects differentiation 
propensity. This approach could be extended to test the 
role of noise in other factors, as well as in competence and 
in other systems64,70.

Sporulation: terminal differentiation. In B. subtilis, 
entry into the sporulation pathway is controlled by 
the master transcription regulator Spo0A, the expres-
sion of which is heterogeneous71,72. veening et al.67  used 
time-lapse movies of a strain with a fluorescent spo0A 
reporter gene to analyse the decision of individual cells 
to sporulate (or not sporulate) (FIG. 5d). Their movies 
revealed that B. subtilis implements a ‘bet hedging’ strat-
egy, whereby some cells sporulate (high spo0A activity),  
while others use alternative metabolites to continue 
growing (low spo0A activity). By analysing cell line-
ages, they showed that variations in the propensity to 
sporulate persist for up to two generations. Interestingly, 
these results are similar to those seen for the inheritance 
of states in a bistable switch in yeast32.

spo0A becomes transcriptionally active upon phospho-
rylation by a multi-component phosphorelay73. Multiple 
feedback loops influence spo0A activity, including direct 
autoregulation of spo0A. By replacing the Pspo0A promoter 
with a constitutive inducible promoter, veening et al. 
showed that the autoregulation of spo0A is not responsible 
for bistability of spo0A activity or for epigenetic inherit-
ance67. In addition, when they replaced spo0A with a mutant 
that phenocopies the phosphorylated form, effectively 
removing the influence of the phosphorelay, they found 
that all cells increase expression of spo0A similarly. Thus, 
movies enabled the authors to determine which circuit 
interactions are required for heterogeneous differentiation.  

Figure 4 | In vivo biochemistry. a,b | Measuring the gene regulation function (GRF) of a 
repressor–promoter interaction in individual Escherichia coli cell lineages. Here, CI–YFP 
(lambda repressor fused to yellow fluorescent protein) represses expression of cyan 
fluorescent protein (CFP). In the regulator dilution experiment, cells are transiently 
induced to express CI–YFP and are then observed using time-lapse microscopy as this 
repressor dilutes out during cell growth. Part a shows a filmstrip of a typical experiment. 
CI–YFP is shown in red and CFP is shown in green. Part b shows quantitation of the movie. 
CI–YFP levels decrease by dilution (red lines), eventually permitting expression of the cfp 
target gene (green lines). The darker lines correspond to the cell lineage shown in the 
insets to part a. c | Monitoring transcriptional bursts in single cells. Frames from film 
footage of the expression of Tsr–Venus under the control of a repressed lac promoter. 
Tsr–Venus expression is shown in yellow and is overlaid with simultaneous DIC 
(differential interference contrast) images (grey). Note the burst-like expression pattern. 
Parts a,b are modified, with permission, from reF. 89  (2005) American Association for 
the Advancement of Science. Part c is reproduced, with permission, from reF. 57 (2006) 
American Association for the Advancement of Science. 

Spo0A
The master transcriptional 
regulator for sporulation in 
Bacillus subtilis. Spo0A is 
controlled by phosphorylation 
and transcriptional regulation.
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These results provide a starting point for further analysis of 
the role of specific circuit interactions in the heterogeneous 
process of differentiation.

Coordinating gene expression. Cellular responses to 
external signals involve two steps. First, the external sig-
nal must be represented in the cell in the concentrations, 
states and dynamics of transcription factors. second, these 
active transcription factors in turn regulate the expres-
sion of genes. By enabling researchers to follow changes in 
localization of transcription factors, movies have revealed 
a dynamic encoding scheme used in the response of yeast 
to calcium stress.

Cai et al. acquired movies of individual yeast cells in 
which the calcineurin-responsive zinc finger transcription 
factor Crz1 was fused to a fluorescent protein74. Crz1 is 
dephosphorylated by calcineurin in response to calcium. 
When dephosphorylated, it transits to the nucleus, where 
it can activate target genes. Movies of Crz1 revealed that 
a step change in extracellular calcium levels caused rapid 
stochastic bursts of Crz1 nuclear localization, rather than 
a steady shift in the otherwise static fraction of Crz1 mol-
ecules in the nucleus. These bursts continued throughout 
the movie, typically for about 10 hours. Careful analysis 

of these bursts at different levels of calcium showed that 
calcium controls the frequency, but not the duration, of 
these bursts. Thus, the cell encodes calcium levels using a 
frequency modulation system.

What advantage does frequency modulation encoding 
provide the cell? A basic problem for cells is how to coor-
dinate multiple target genes so that they are expressed in 
fixed proportions across a wide range of expression levels. 
In bacteria, operons can perform a similar function for 
small groups of genes. How might eukaryotic cells, which 
lack operons, achieve coordination? Frequency modula-
tion regulation enables Crz1 to coordinate the expres-
sion of its many target genes in fixed proportions across 
many levels of activity. This is because calcium effectively 
regulates the fraction of time Crz1 is active (nuclear local-
ized) rather than the fraction of Crz1 molecules in the 
nucleus. Consequently, all target genes are expressed in 
proportion to nuclear localization burst frequency. As the 
frequency increases (at higher calcium), all target genes 
increase their expression by the same factor.

This general mechanism coordinates target genes 
even when their individual GRFs differ for factors such 
as affinity and cooperativity. Because nuclear localization 
dynamics are unsynchronized, and appear stochastic, this 

Figure 5 | circuit-level dynamics. a–c | Analysis of Bacillus subtilis competence circuit dynamics in individual cells. Part a 
shows a snapshot from a movie. P

comS
 expression is shown in green and P

comG
 expression is shown in red. The red cell is in the 

competent state (high ComK levels). White depicts spores or sporulating cells. Part b shows a quantitative time series of 
P

comS
–yellow fluorescent protein (yfp) (green lines) and P

comG
–cyan fluorescent protein (cfp) (red lines) for the competence 

event shown in part a. Note the anti-correlation in expression between the two promoters, which can be explained by the 
circuit diagram in part c. P

comS 
and P

comG
 activities obtained from the non-competent sister cell are shown in light green and 

light red, respectively. Part c shows a map of the effective regulatory interactions in the core competence circuit in 
B. subtilis. The dashed inhibitory arrow depicts indirect repression. ComS competes with ComK for degradation by the 
MecA–ClpP–ClpC complex, effectively stabilizing ComK. d | The B. subtilis phosphorelay is required to generate variability 
in sporulation in B. subtilis. Time-lapse microscopy shows that heterogeneity in this system does not require the 
positive-feedback loop of Spo0A on itself (top row), but does require the activity of the phosphorelay (bottom row). 
Membranes are stained with FM5–95 (red), and expression of the sporulation reporter P

spoIIA
 is shown in green. The insets 

show a close-up of the cells. Panels a–c are modified, with permission, from Nature reF. 65  (2006) Macmillan Publishers Ltd.  
All rights reserved. Panel d is reproduced, with permission, from reF. 67  (2008) National Academy of Sciences.

Frequency modulation
A way to encode information 
about the frequency of events 
or oscillations. Frequency 
modulation is often contrasted 
with amplitude modulation, in 
which signals are encoded by 
varying the magnitude of a 
signal. In engineering 
applications, such as 
broadcasting, the frequency-
modulated signal is typically 
periodic (oscillatory). In the 
example of Crz1 it is the 
frequency of discrete 
stochastically timed bursts that 
is varied.
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basic principle of gene regulation could only be identi-
fied using movies. It will be interesting to see what role 
the strategy of frequency modulation regulation plays in 
regulation in other biological systems, from bacteria to 
multicellular organisms, as similar activity dynamics have 
been observed in diverse systems75–78.

Conclusions and future directions
As the examples described above make clear, movies are 
revealing an unexplored world of interesting regulatory 
strategies, mechanisms and behaviours. As more systems 
are imaged in more ways, we anticipate many more inter-
esting discoveries. In model organisms, circuits can be 
studied more systematically and with greater throughput 
to analyse interactions among many pathways or genes 
simultaneously. Microscopy systems with improved auto-
mation can facilitate this transition79. Most genetic circuits 
studied so far involve the stress response or differentiation 
in model organisms, but many other cellular processes, 
such as metabolism, are amenable as well. It will also be 
interesting to see whether movies can be used to study 
circuit behaviours in natural strains or species, in environ-
ments that more closely resemble natural conditions. For 
all of these techniques, an outstanding question is to what 
extent correlations, and even dynamic correlations, can 
provide sufficient information to infer regulatory inter-
actions or distinguish between possible modes in which 
circuits could operate96.

synthetic genetic circuits that are engineered to imple-
ment novel biological functions52,53 provide unique oppor-
tunities to study potential genetic circuit designs. Can 
such circuits be engineered to operate consistently in all 
cells? Conversely, can they be designed to mimic biologi-
cal strategies that take advantage of heterogeneity? Movies 
provide a powerful means to address these questions.

some limitations remain. First, despite spectacular 
work in diversifying the palette of fluorescent protein 

reporters80,81, few distinguishable colours can be used 
routinely to tag multiple genes. second, quantitation 
and tracking of gene expression in individual cells in 
movie data remains a time-consuming process that is 
usually optimized differently in each laboratory. This 
is often the rate-limiting step for using movies to ana-
lyse circuits. More general software tools are needed to 
expand the usefulness of these techniques. Third, the 
effects of cell–cell interactions remain difficult to study. 
Proximity of cells in movies can provide clues, but the 
multitude of potential communication mechanisms and 
channels that exist ensure that many possible interac-
tions can influence cell behaviour. Chemostatic micro-
fluidic systems are beginning to address some of these 
concerns82,83. similarly, many systems grow in three 
dimensions (for example, biofilms), making quantitation  
challenging84.

Despite these challenges, movies are providing unique 
insights into how individual cell behaviour results from 
specific genetic circuit architectures. Only movies can 
provide a direct view of genetic activities in individual 
cells — the quantities that we use in mathematical models 
— that are at best approximated and at worst completely 
misrepresented by population averages. Moving forwards, 
one can also anticipate the broader use of time-lapse 
microscopy to compare the dynamics of related circuits 
across species85.

The examples described above provide a tantalizing 
glimpse of the kind of direct insights movies will provide 
into circuit behaviour. In particular, movie analysis of 
circuits has already begun to resolve the two seemingly 
contradictory views of cellular function that were intro-
duced at the beginning of this Review: variability can 
be generated from certain circuit designs, such as those 
incorporating positive feedback, but circuit functions, 
such as differentiation, require variability in the form of 
stochastic noise.
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	Figure 1 | Circuit-driven versus noisy cells. a | Circuit-level view: genes and gene products interact to generate an ordered behavioural programme. b | Noisy view: isogenic populations exhibit large levels of heterogeneity, both in terms of gene expression and differentiated states. As an example, we show an image of a Bacillus subtilis strain with two sporulation reporter constructs (PspoIIQ–cfp, which is shown in yellow, and PspoIID–yfp, which is shown in red), superimposed on a phase contrast image (shown in grey). Cells were grown in sporulation medium. However, they initiate sporulation at different times, which causes vegetative cells (dark rods) to coexist with cells at various stages of sporulation (coloured cells). c | Movies allow us to analyse the effects of interactions on the relative timing of gene expression in variable and dynamic circuits. Here, two schematic gene expression traces are shown in red and green for a simple activating interaction (x activates z). The movie enables us to observe delayed correlations that would not be evident in snapshots. t indicates a typical delay before the regulatory effects of x are visible in z.
	The origins of variability
	Box 1 | Movie acquisition and analysis techniques
	Figure 2 | Tracking and segmenting single cells. a | Schematic of data flow for a cell tracking and segmentation system. During tracking, cell shapes must first be identified in images (segmentation) and then tracked over time. Finally, the fluorescence values must be extracted. b–e | Segmentation and tracking input and output. b | Phase contrast images over time. c | Fluorescence images of the micro-colony. In this example, filters for yellow and cyan fluorescent proteins were used (shown in red and green, respectively). d | Segmentation was performed on the phase contrast images to determine the locations of each cell. Arbitrary colours were used for labelling. e | Shows the descendents of cell 4. The panel on the far right shows the descendants of each of the four initial cells after approximately four generations. Figure is courtesy of J. Young, California Institute of Technology, California, USA, and N. Rosenfeld, Rosetta Genomics, Rehovot, Israel.
	In vivo biochemistry
	Box 2 | Issues that impact time-lapse analysis of individual cells
	Figure 3 | Automated lineage analysis reveals epigenetic states. a | The ageing of Escherichia coli. This lineage tree depicts 9 generations of E. coli from 94 movies. The lengths of the lines joining cells to their progeny are proportional to the average growth rate of that cell, so a shorter line represents a slower growth rate. At each division event, the cell that inherits the old pole is shown in red and placed on the right side of the division pair, whereas new poles are shown in blue and placed on the left side of the division pair. Horizontal green lines mark the point of the first cell division for the last four generations. This lineage tree clearly shows that cells with older poles have systematically reduced growth rates compared with cells with younger poles. b–d | Genealogical switching history in the yeast galactose system. In each movie, the first cell is designated cell number 1 and sequential daughters of that cell are designated 1-1, 1-2, 1-3 and so on. These daughter cells bud in turn, giving rise to cells 1‑1‑1, 1‑1‑2, 1‑2‑1 and so on. b | Yeast cells that express a reporter for the galactose (GAL) system, PGAL1– yellow fluorescent protein (YFP), in a mutant background in which a negative-feedback loop has been disrupted. Purple shading represents YFP expression. An initially ‘off’ (non-expressing) cell grows into a variegated micro-colony. Beginning at 600 min of age, or after 4 generations, several cells fluoresce almost simultaneously. This includes the mother–daughter pairs (1,1-2 and 1‑1-1,1‑1-1-1). c | The family tree for the colony shown in part b. Off cells are marked with a black line, whereas pink lines represent cells that express the GAL system. d | Fluorescent time courses for mother cell 1 and her daughter 1-2, showing each as they switch into the ‘on’ state. Mother and daughter cells switch on the GAL pathway synchronously after division, indicating that the timing of these apparently random decisions is heritable. Panel a is reproduced from REF. 23. Panels b–d are reproduced from REF. 32. 
	Movies reveal circuit dynamics
	Figure 4 | In vivo biochemistry. a,b | Measuring the gene regulation function (GRF) of a repressor–promoter interaction in individual Escherichia coli cell lineages. Here, CI–YFP (lambda repressor fused to yellow fluorescent protein) represses expression of cyan fluorescent protein (CFP). In the regulator dilution experiment, cells are transiently induced to express CI–YFP and are then observed using time-lapse microscopy as this repressor dilutes out during cell growth. Part a shows a filmstrip of a typical experiment. CI–YFP is shown in red and CFP is shown in green. Part b shows quantitation of the movie. CI–YFP levels decrease by dilution (red lines), eventually permitting expression of the cfp target gene (green lines). The darker lines correspond to the cell lineage shown in the insets to part a. c | Monitoring transcriptional bursts in single cells. Frames from film footage of the expression of Tsr–Venus under the control of a repressed lac promoter. Tsr–Venus expression is shown in yellow and is overlaid with simultaneous DIC (differential interference contrast) images (grey). Note the burst-like expression pattern. Parts a,b are modified, with permission, from REF. 89  (2005) American Association for the Advancement of Science. Part c is reproduced, with permission, from REF. 57 (2006) American Association for the Advancement of Science. 
	Figure 5 | Circuit-level dynamics. a–c | Analysis of Bacillus subtilis competence circuit dynamics in individual cells. Part a shows a snapshot from a movie. PcomS expression is shown in green and PcomG expression is shown in red. The red cell is in the competent state (high ComK levels). White depicts spores or sporulating cells. Part b shows a quantitative time series of PcomS–yellow fluorescent protein (yfp) (green lines) and PcomG–cyan fluorescent protein (cfp) (red lines) for the competence event shown in part a. Note the anti-correlation in expression between the two promoters, which can be explained by the circuit diagram in part c. PcomS and PcomG activities obtained from the non-competent sister cell are shown in light green and light red, respectively. Part c shows a map of the effective regulatory interactions in the core competence circuit in B. subtilis. The dashed inhibitory arrow depicts indirect repression. ComS competes with ComK for degradation by the MecA–ClpP–ClpC complex, effectively stabilizing ComK. d | The B. subtilis phosphorelay is required to generate variability in sporulation in B. subtilis. Time-lapse microscopy shows that heterogeneity in this system does not require the positive-feedback loop of Spo0A on itself (top row), but does require the activity of the phosphorelay (bottom row). Membranes are stained with FM5–95 (red), and expression of the sporulation reporter PspoIIA is shown in green. The insets show a close-up of the cells. Panels a–c are modified, with permission, from Nature REF. 65  (2006) Macmillan Publishers Ltd. All rights reserved. Panel d is reproduced, with permission, from REF. 67  (2008) National Academy of Sciences.
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	S1 | Analysis of gene regulation in Escherichia coli. This movie shows the dilution of a fusion protein composed of lambda repressor and yellow fluorescence protein (YFP) domains (red) in cells that also express cyan fluorescent protein (CFP; green) from a lambda-regulated promoter. As the cell grows into a micro-colony, the repressor is diluted and CFP expression increases.
	S2 | Analysis of the competence differentiation circuit in Bacillus subtilis. This movie shows a micro-colony of B. subtilis cells growing vegetatively (green cells), sporulating (to produce white phase-bright spores) and occasionally switching to the competent state (red cell). Here, one fluorescent protein, labelled green, reports expression of comS, a gene necessary, but not sufficient, for competence. The other fluorescent protein, labelled red, is activated by ComK during competence.



