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Bacteria

Bacteria form much of the world’s biomass

I 40 · 106 bacterial cells in 1 g of soil and 106 bacterial cells in 1 mL of fresh water

I 10 times as many bacterial cells as human cells in human body

I Wide range of shapes (spheres, rods, spirals, ...), typically 0.5 - 5.0 µm in length

Impact of bacteria on humans

I Causative agents of infective diseases: cholera, syphilis, anthrax, leprosy, ...

I Beneficial bacteria: gut flora, probiotics, ...

I Bacteria in technology and industry: food industry, waste treatment,
biotechnology, ...
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Bacterial adaptation to a variety of environments

Adaptation is achieved by regulation of cellular functions

I machine functions: metabolism, involving production of energy and precursors of
macromolecules

I coding functions: replication, transcription, translation

Madigan et al. (2003), Brock Biology of Microorganisms, Prentice Hall, 10th ed.
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Bacterial adaptation to a variety of environments
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Bacterial adaptation to a variety of environments

Adaptation is achieved by regulation of cellular functions

I machine functions: metabolism, involving production of energy and precursors of
macromolecules

I coding functions: replication, transcription, translation

Major biochemical mechanisms of regulation

Biochemical species and reactions form biochemical reaction networks
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Complexity of biochemical reaction networks

Most networks of interest are large and complex
For instance, E. coli has:

I ∼4500 genes, with 330 genes coding for 170 transcription factors

I 194 metabolic pathways, involving 900 enzymes and ∼1000 biochemical reactions

Karp et al. (2007), Nucleic Acids Res., 35(22): 7577-90
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Heterogeneity of biochemical reaction networks

Most networks involve variety of biochemical reaction mechanisms,
operating on different time-scales
For instance, E. coli carbon assimilation involves:

I signal transduction (milliseconds)

I enzymatic reactions (seconds)

I gene expression (minutes)
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Baldazzi et al. (2010), PLoS Comput. Biol., 6(6):e1000812
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Types of biochemical reaction networks:

Different types of networks distinguished by focusing on particular types
of interactions and time-scales:

I metabolic networks: metabolites and enzymatic reactions
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Types of biochemical reaction networks:

Different types of networks distinguished by focusing on particular types
of interactions and time-scales:

I metabolic networks: metabolites and enzymatic reactions

I gene regulatory networks: genes, RNAs, proteins, and direct and indirect
regulation of gene expression
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Analysis of network functioning: from structure to dynamics

Wealth of knowledge on network structure in many bacteria

I Scientific databases and repositories

I Primary experimental literature

Comprehension of network functioning requires structure of network to be
related to dynamics
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Analysis of network functioning: from structure to dynamics

Wealth of knowledge on network structure in many bacteria

I Scientific databases and repositories

I Primary experimental literature

Comprehension of network functioning requires structure of network to be
related to dynamics

Mathematical modeling and computer simulation indispensable for
dynamic analysis of biochemical reaction networks

Analysis of network functioning has a central place in emerging field of
systems biology

Kitano (2002), Science, 295(5560):564
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Historical note

Systems biology, and more particularly the mathematical modeling and
computer simulation of biochemical reaction networks, have a long history

Westerhoff and Palsson, Nat. Biotechnol.,22(10):1249-52

Simulation of metabolic pathways (glycolysis)

Garfinkel et al. (1970), Ann. Rev. Biochem., 39:473-98
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Simulation of metabolic pathways (glycolysis)

Garfinkel et al. (1970), Ann. Rev. Biochem., 39:473-98

Modeling of gene regulatory networks

Goodwin (1963), Temporal Organization in Cells, Academic Press
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Mathematical modeling of biochemical reaction networks

Well-established framework for modeling of biochemical reaction
networks using ordinary differential equation (ODE) models

Heinrich and Schuster, The Regulation of Cellular Systems, Chapman & Hall, 1996

General form of ODE models of biochemical reaction networks

ẋ = N · v(x)

I x : vector of concentrations of biochemical species

I N: stoichiometric matrix

I v : rate vector describing synthesis and degradation of proteins, metabolites, and
biochemical complexes
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Mathematical modeling of biochemical reaction networks

ODE model of enzymatic reactions

I Long tradition in kinetic theory: precise description of catalytic mechanisms
Segel (1993), Enzyme kinetics, Wiley & Sons

I Detailed description of enzyme kinetics (and complex formation): mass-action
law

+

E S E PES

+
k2k1

k−1

vE = (k−1 + k2) xES − k1 xE

vES = k1 xE − (k−1 + k2) xES

vS = k−1 xES + k1 xS

vP = k2 xES
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E S E PES

+
k2k1

k−1

vE = (k−1 + k2) xES − k1 xE

vES = k1 xE − (k−1 + k2) xES

vS = k−1 xES + k1 xS

vP = k2 xES

I Michaelis-Menten kinetics, based on two approximations

- Quasi-steady-state approximation: the concentration of ES changes more
slowly than those of S and P: vES ' 0

- The total enzyme concentration (x0
E ) does not change over time:

x0
E = xE + xES ' const.

22 / 36



Mathematical modeling of biochemical reaction networks

ODE model of enzymatic reactions

I Long tradition in kinetic theory: precise description of catalytic mechanisms
Segel (1993), Enzyme kinetics, Wiley & Sons

I Detailed description of enzyme kinetics (and complex formation): mass-action
law

+

E S E PES

+
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vE = (k−1 + k2) xES − k1 xE

vES = k1 xE − (k−1 + k2) xES

vS = k−1 xES + k1 xS

vP = k2 xES

I Michaelis-Menten kinetics, based on two approximations

vP = Vm
xS

Km + xS
with:

Vm = k2 x0
E

Km =
k−1 + k2

k1
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Mathematical modeling of biochemical reaction networks

ODE models of enzymatic reactions, taking into account regulation of
enzymatic activity

I Michaelis-Menten kinetics with competitive inhibition

E S E PES

++

+

I

EI
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k−1
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vP = Vm
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Km (1 + xI
KI

) + xS
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Mathematical modeling of biochemical reaction networks
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ODE models of enzymatic reactions with allostery

I Cooperative binding: the sigmoidal Hill equation
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Mathematical modeling of biochemical reaction networks

ODE model of gene expression, taking into account regulation on
transcriptional level

xj : transcription factor concentration

Gene a

mRNA a

P

Enzyme ATranscription factor J

κm

γm

γp

κp

vtr = κm f (xj )

vtl = κp xm

vdm = γm xm

vdp = γp xp

Regulation function f (xj) often has sigmoidal form, accounting for
cooperative nature of regulation
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A detailed model of carbohydrate metabolism in E. coli

Diauxic growth of the bacterium Escherichia coli

I When several carbon sources are available, E. coli bacteria choose the nutrient
sustaining fastest growth, i.e. glucose is preferred over lactose

I Glucose depletion is followed by a growth arrest, when the bacteria modify their
pattern of gene expression so as to produce the enzymes necessary for the uptake
and metabolism of lactose.

Diauxic growth controlled by a complex biochemical regulatory network

Bettenbrock et al. (2006), J. Biol. Chem., 281:2578-84
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A detailed model of carbohydrate metabolism in E. coli

Detailed description of diauxic growth: kinetic model with 50 ODEs and
14 algebraic equations

I Parameter values reported in the literature could not all be included in the
model: obtained in different experimental conditions and with different strains

I Bettenbrock et al. carried out their own experiments: measurement of
metabolite concentrations over time

I Parameter estimation from experimental data

Confrontation of model predictions with experimental data

I Diauxic growth on glucose and lactose

Bettenbrock et al. (2006), J. Biol. Chem., 281:2578-84
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A detailed model of carbohydrate metabolism in E. coli

Detailed description of diauxic growth: kinetic model with 50 ODEs and
14 algebraic equations

I Parameter values reported in the literature could not all be included in the
model: obtained in different experimental conditions and with different strains

I Bettenbrock et al. carried out their own experiments: measurement of
metabolite concentrations over time

I Parameter estimation from experimental data

Confrontation of model predictions with experimental data
I Diauxic growth on glucose and lactose
I Disturbed batch experiment with application of a pulse of glucose on bacteria

growing on glycerol

Bettenbrock et al. (2006), J. Biol. Chem., 281:2578-84
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Issues in mathematical modeling

Mathematical models are used for explanation, prediction, and control

Modeler confronted with several practical problems

I Models of actual networks are large systems of nonlinear ODEs

I Parameter values are generally unknown and difficult to measure directly

I Reaction mechanisms often unknown

I Experimental measurements of variables are scarce, noisy, and indirect

This raises issues in model reduction and approximation, parameter
estimation, network inference, data analysis, ...
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Experimental data

Availability and quality of experimental data is critical for model
identification and validation

Measurements of fluxes and metabolite concentrations

Oh et al. (2002), J. Biol. Chem., 277(15), 13175-83 Ishii et al. (2007), Science, 316(5824):593-7
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Experimental data

Availability and quality of experimental data is critical for model
identification and validation

Reporter gene measurements to follow promoter activity over time, both
in populations and individual cells

Kobiler et al. (2005), Proc. Natl. Acad. Sci. USA, Amir et al. (2007), Mol. Syst. Biol., 3:71

102(12):4470-5
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Objective of course ”Modeling of biological networks”

The objective is to master kinetic modelling as applied to metabolic and
gene regulatory networks

I Both the theoretical foundations and concrete applications to diverse systems of
biological regulation

I Applications will rely on the practical use of computer tools for the modelling,
analysis and simulation of biological networks
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Program and teachers

Part 1. Systems biology and kinetic modeling (courses 10 h)

I Reminders on dynamical systems (Hidde de Jong)

I Introduction to regulatory systems (Hans Geiselmann)

I Reminders on kinetic modeling (Daniel Kahn)

I Reminders on enzymology (Daniel Kahn)

Part 2. Metabolic network modeling (courses 8 h, and practicals 9 h)

I Introduction to metabolomics (Daniel Kahn)

I Metabolic Control Theory (Daniel Kahn)

I Practical on the modeling of a metabolic system using COPASI (Daniel Kahn)
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Program and teachers

Part 3. Gene regulatory network modeling (courses 12 h, and practicals
6 h)

I Introduction to recent techniques for measuring gene expression (Hidde de Jong)

I Kinetic models of gene expression and dynamics of gene regulatory networks
(Hidde de Jong)

I Identification and inference of gene network models (Eugenio Cinquemani)

I Practical on the qualitative modeling of E. coli regulatory networks, using GNA
(Hidde de Jong)

Part 4. Towards integrated models of regulatory networks (courses 2 h)

I MetaGenoReg project (Daniel Kahn and Hidde de Jong)
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Evaluation

Metabolic network modeling:

I Exercises handed out during course

Gene regulatory network modeling:

I Synthesis of articles, guided by specific questions on articles handed out during
course
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