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Overview 

1. Gene regulatory networks in bacteria 

2. Novel methods for measuring gene expression 

3. Quantitative modeling of gene regulatory networks 

 Ordinary differential equations 

 Stochastic master equations 

4. Qualitative modeling of gene regulatory networks  

 Piecewise-linear differential equations 

5. Conclusions and perspectives 



Gene regulatory networks 

 Gene regulatory networks control changes in gene 

expression levels in response to environmental perturbations 
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Kotte et al. (2010), Mol. Syst. Biol., 6: 355 

 Gene regulatory networks 

consist of genes, gene 

products, signalling 

metabolites, and their mutual 

regulatory interactions  

 Global regulators of transcription 

involved in glucose-acetate 

diauxie in E. coli 



Gene expression 
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 Typically, and simplifying quite a bit, gene expression in 

bacteria involves:  

 Transcription by RNAP (mRNA) 

 Translation by ribosomes (proteins) 

 Degradation of mRNA and protein 



Regulation of gene expression 

6 

 

 

 

 Typically, and simplifying quite a bit, regulation of gene 

expression in bacteria involves:  

 Transcription regulation by transcription factors 

 Translational regulation by small RNAs 

 Regulation of degradation by proteases 



Modeling of gene regulatory networks 

 Different modeling formalisms exist, describing gene 

expression on different levels of detail 
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Ordinary differential 

equations (ODEs) 

Stochastic master 

equations 
Boolean 

networks 

coarse-grained detailed 

Smolen et al. (2000), Bull. Math. Biol., 62(2):247-292 

Hasty et al. (2001), Nat. Rev. Genet., 2(4):268-279 

de Jong (2002), J. Comput. Biol., 9(1): 69-105 

Szallassi et al. (2006), System Modeling in Cellular Biology, MIT Press 

Bolouri (2008), Computational Modeling of Gene Regulatory Networks, 

Imperial College Press 

Karleback and Shamir (2008), Nat. Rev. Mol. Cell Biol., 9(10):770-80  
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Ordinary differential equation models 

 Cellular concentration of proteins, mRNAs, and other molecules 

at time-point t represented by continuous variable xi(t)  R0 

 Regulatory interactions, controlling synthesis and degradation, 

modeled by ordinary differential equations 

 where x  [x1,…, xn]´and f (x) is rate law 

 Kinetic theory of biochemical reactions provides well-

established framework for specification of rate laws 

 

  x  f (x),   
. dx 

dt 

Cornish-Bowden (1995), Fundamentals of Enzyme Kinetics 

Heinrich and Schuster (1996), The Regulation of Cellular Systems 
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 ODE model of gene expression, distinguishing transcription 

and translation 

 

 

 

 

 

 

 

Modeling of gene regulatory networks 

m  m – (m+µ) m  

. 

p  p m – (p+µ) p  

. 

m(t) ≥ 0, concentration mRNA  

p(t) ≥ 0, concentration protein  

m, p > 0, synthesis rate constants  

m, p > 0, degradation rate constants  

µ(t) ≥ 0, growth rate 
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 ODE model of gene expression, collapsing transcription and 

translation 

 

 

 

 

 

 

 

Modeling of gene regulatory networks 

p > 0, synthesis rate constants  

p > 0, degradation rate constants  

µ(t) ≥ 0, growth rate 

p  p – (p+µ) p  

. 

p(t) ≥ 0, concentration protein  
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Modeling of gene regulatory networks 

 ODE model of gene expression, taking into account regulation 

of transcription 

 

 

 

 Regulation function f (p) describes modulation of synthesis rate 

by transcription factor 

Generalization to regulation on translational and proteolytic level 

 

 

m  m  f (p) – (m+µ) m  

. 

p  p m – (p+µ) p  

. 
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Modeling of gene regulatory networks 

 ODE model of gene expression, taking into account regulation 

of transcription 

 

 

 

 Regulation function f (p) typically has sigmoidal form, 

accounting for cooperative nature of regulation 

 

m  m  f (p) – (m+µ) m  

. 

p  p m – (p+µ) p  

. 

f (p) =               ,    > 0 threshold,  
 

n 

 
n
 + p 

n 

p 

f (p ) 

 
0 

1 

n  > 1 cooperativity  
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Modeling of gene regulatory networks 

 ODE model of gene expression, taking into account regulation 

of transcription 

 

 

 

 Regulation function f (p) typically has sigmoidal form, 

accounting for cooperative nature of regulation 

 Implicit modeling assumptions: 

 Ignore gene expression machinery (RNA polymerase, ribosome) 

 Simplification of complex interactions of regulators with DNA to single 

response function 

 

 

m  m  f (p) – (m+µ) m  

. 

p  p m – (p+µ) p  

. 



Modeling of gene regulatory networks 

 ODE model of gene expression, taking into account regulation 

of transcription 

 

 

 

 Gene regulatory network has many genes with mutual 

regulatory interactions: model of coupled ODEs 

 

 

 

 

m  m  f (p) – (m+µ) m  

. 

p  p m – (p+µ) p  

. 
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Analysis and numerical simulation 

 No analytical solution for most nonlinear differential equations 

 Dynamic systems theory provides techniques for analysis of 

nonlinear differential equations, but usually not scalable 

 Phase portrait 

 Bifurcation analysis 

 Approximation of solution obtained by numerical simulation, 

given parameter values and initial conditions x(0)  x0 

       Kaplan and Glass (1995),  

Understanding Nonlinear Dynamics 

Lambert (1991), Numerical Methods  

for Ordinary Differential Equations t 

x 

0 

f (x) dt 

t 

t + t 

x (t + t )  x (t)   x (t)   f (x) t  
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 Cross-inhibition network consists of two genes, each coding 

for transcription regulator inhibiting expression of other gene 

 

 

 

 

 

 Cross-inhibition network is example of positive feedback, 

important for phenotypic differentiation (multi-stability)  

Cross-inhibition network 

Thomas and d’Ari (1990), Biological Feedback 

gene 

protein 

promoter gene promoter 

protein 
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ODE model of cross-inhibition network 

 

 

 

 

xa ≥ 0, concentration protein A  

xb ≥ 0, concentration protein B  

xa = a f (xb)  a xa 

xb = b f (xa)  b xb 

a, b > 0, production rate constants  

a, b > 0, degradation rate constants  

. 

. 

f (x) =               ,    > 0 threshold, 
 

n 

 
n
 + x 

n 

x 

f (x ) 

 
0 

1 

n  > 1 cooperativity  
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ODE model of cross-inhibition network 

 

 Implicit modeling assumptions: 

 Ignore intermediate gene products (mRNA) 

 Ignore gene expression machinery (RNA polymerase, ribosome) 

 Simplification of complex interactions of regulators with DNA to single 

response function 

xa = a f (xb)  a xa 

xb = b f (xa)  b xb 

a, b > 0, production rate constants  

a, b > 0, degradation rate constants  

. 

. 

xa ≥ 0, concentration protein A  

xb ≥ 0, concentration protein B  
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ODE model of cross-inhibition network 

 

 Additional implicit modeling assumption: 

 Assume constant growth rate (and collapse with degradation) 

xa = a f (xb)  a xa 

xb = b f (xa)  b xb 

a, b > 0, production rate constants  

a, b > 0, degradation rate constants  

. 

. 

xa ≥ 0, concentration protein A  

xb ≥ 0, concentration protein B  
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Bistability of cross-inhibition network 

 Analysis of steady states in phase plane   

 

 

 

 

 

 System is bistable: two stable and one unstable steady state. 

 For almost all initial conditions, system will converge to one of 

two stable steady states (differentiation) 

 System returns to steady state after small perturbation 

xb 

xa 

0 

xb = 0  
. 

xa = 0  
. 

xa = 0 :  xa =           f (xb) 
a 

a 

xb = 0 :  xb =           f (xa) 
b 

b 

. 

. 



21 

Switching in cross-inhibition network 
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Switching in cross-inhibition network 
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Switching in cross-inhibition network 
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Switching in cross-inhibition network 
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Bifurcation in cross-inhibition network 
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Construction of cross inhibition network 

 Construction of cross inhibition network in vivo 

 

 

 

 

 

 

 Differential equation model of network 

 

u =                      – u 
1 + v β 

α1 v =                      – v 
1 + u  

α2 . . 

Gardner et al. (2000), Nature, 403(6786): 339-342 
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Experimental test of model 

 Experimental test of mathematical model (bistability and 

hysteresis) 

 

 

 

 

 

Gardner et al. (2000), Nature, 403(6786): 339-342 
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Bacteriophage  infection of E. coli 

 Response of E. coli to phage  

infection involves decision between 

alternative developmental pathways:   

lysis and lysogeny 

Ptashne, A Genetic Switch, Cell Press,1992 
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Bistability in phage  
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Control of phage  fate decision 

 Cross-inhibition feedback plays key role in establishment of 

lysis or lysogeny, as well as in induction of lysis after DNA 

damage 

Santillán, Mackey (2004), Biophys. J., 86(1): 75-84 
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Simple model of phage  fate decision  

 Differential equation model of cross-inhibition feedback network 

involved in phage  fate decision 

mRNA and protein, delays, thermodynamic description of gene regulation 

Santillán, Mackey (2004), Biophys. J., 86(1): 75-84 
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Analysis of phage  model 

 Bistability (lysis and lysogeny) only occurs for certain parameter 

values 

 Switch from lysogeny to lysis involves bifurcation from one 

monostable regime to another, due to change in degradation 

constant 

 

  

 

Santillán, Mackey (2004), Biophys. J., 86(1): 75-84 
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Extended model of phage  infection 

 ODE model of the extended network underlying decision 

between lysis and lysogeny 

Role of other regulatory proteins (CII, N, Q, …) 

McAdams and Shapiro (1995), 

Science, 269(5524): 650-656 

 Recent experimental 

work downplays 

importance of mutual 

inhibition of CI and Cro 

in lysis-lysogeny 

decision 
Oppenheim et al. (2005), Annu. Rev. 

Genet., 39:409–29 
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Simulation of phage  infection 

 Numerical simulation of promoter activity and protein 

concentrations in (a) lysogenic and (b) lytic pathways 

 

 

 

 

 

 

 

 Cell follows one of two pathways for different initial conditions 



Real-time monitoring of phage  infection  

 New measurement techniques allow real-time and in-vivo 

monitoring of the execution of lytic and lysogenic pathways  

 Use of fluorescent reporter genes in combination with automated plate 

readers 
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Q 

CII 

Kobiler et al. (2005), Proc. Natl. 

Acad. Sci. USA, 102(12): 4470-5 
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Other examples of bistability 

Many other examples of bistability exist in bacteria 

 Lactose utilization in E. coli 

 Persister cells and antibiotic resistance in E. coli 

 Genetic competence in B. subtilis 

 … 

 Can we find general design principles, relating network 

structure to bistability and other properties of network 

dynamics? 

 

 

 

 

Dubnau and Losick (2006), Mol. Microbiol., 61 (3):564–72 

Alon (2007), An Introduction to Systems Biology, Chapmann&Hall/CRC 
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Necessary condition for bistability 

 Necessary condition for bistability, or multistability, is the 

occurrence of positive feedback loops in the regulatory 

network 

 

 

 Increasingly general mathematical proofs of necessary 

condition for bistability, or multistability, in regulatory networks 

 Regulatory interactions (activation/inhibition) lead to non-zero signs (+/-) 

in Jacobian matrix 

 Condition is not sufficient, as the actual occurrence of 

bistability depends on parameter values 

 

Thomas and d’Ari (1990), Biological Feedback, CRC Press 

+ 

+ 

+ 

− 

− 

Soulé(2003), ComPlexUs, 1:123-133 
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Other ODE models 

 Circadian clock in mammals 

 

 Cell cycle in yeast 

 

 Carbon starvation in bacteria 

 

 Signal transduction cascades and developmental decisions 

 

 Pattern formation in fruit fly embryon 

Leloup and Goldbeter (2003), Proc. Natl. Acad. Sci. USA, 100(12):7051-7056 

Chen et al. (2004), Mol. Biol. Cell, 15(8):3841-3862 

Bettenbrock (2005), J. Biol. Chem., 281(5):2578-2584 

Jaeger et al. (2004), Nature, 430(6997):368-371 

Ferrell and Machleder (1998), Science, 280(5365):852-853 
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Evaluation of differential equations 

 Pro: general formalism for which powerful analysis and 

simulation techniques exist 

 Pro: well-developed theoretical framework for application to 

genetic regulatory networks 

 Contra: numerical techniques are often not appropriate due to 

lack of quantitative data on model parameters  

 Contra: assumptions of continuous and deterministic change of 

concentrations may not be valid on molecular level 
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Lack of quantitative information: strategies 

 Three main strategies to deal with lack of quantitative data: 

 Parameter sensitivity and robustness 

 P arameter estimation from time-series data 

 Model reduction 

De Jong and Ropers (2006), Brief. Bioinform., 7(4):354-363 
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Lack of quantitative data: robustness 

 Important dynamic properties are expected to be robust over 

large ranges of parameter values 

 Important dynamic properties should be insensitive to moderate 

variations in parameter values 

 

xb 

xa 

0 

xb = 0  
. 

xa = 0  
. 

bistability 

xb 

xa 

0 

xb = 0  
. 

xa = 0  
. 

bistability 

Stelling et al. (2004), Cell, 118(6):675-685 
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Robustness in E. coli chemotaxis 

 Chemotaxis in bacteria is ability to sense gradient of chemical 

ligands in environment 

 Adjustment of tumbling frequency of molecular motor  

 

McAdams et al. (2004), Nat. Rev. Genet., 5:169-178 
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Robustness in E. coli chemotaxis 

Barkai and Leibler (1997), Nature, 387(6636):913-917 

 Differential equation model of signal transduction network 

underlying bacterial chemotaxis 
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Robustness in E. coli chemotaxis 

 Adaptation property is insensitivity of steady-state tumbling 

frequency to ligand concentration  

 Robustness of adaptation property over wide range of 

parameter values (model and experiments) 

Barkai and Leibler (1997), Nature, 387:913-917 Alon et al. (1999), Nature, 397:168-171 
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Lack of quantitative information: strategies 

 Three main strategies to deal with lack of quantitative data: 

 Parameter sensitivity and robustness 

 P arameter estimation from time-series data 

 Model reduction 

De Jong and Ropers (2006), Brief. Bioinform., 7(4):354-363 
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Lack of quantitative data: estimation 

 Estimate parameter values from experimental time-series data 

 Systems identification in control and engineering 

 Given model structure, search parameter values for which 

model predictions best fit experimental data 

 

 

 Minimization of objective function, for instance sum of squared 

errors:  

 Possibility to add constraint or penalty terms to restrict parameter space 

Ljung (1999), System Identification: Theory for the User 

t 

xb 

0 

∑ t (x(t,θ) – y(t))2 

yb 
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Estimation of parameter values 

 Nonlinear differential equation model of uptake of carbon 

sources (glucose, lactose, glycerol, …) by E. coli 

 Several dozens of equations and more than a hundred parameters, 

many of them unknown or unreliable 

Bettenbrock et al. (2005), J. Biol. Chem., 281(5): 2578-2584 
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Estimation of parameter values 

 Estimation of parameter values from time-series measurements 

of metabolite concentrations on wild-type and mutant strains 

Bettenbrock et al. (2005), J. Biol. Chem.,  

281(5): 2578-2584 
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Limitations of system identification 

 No algorithms that guarantee globally optimal solution for 

parameter estimation in nonlinear models 

 Evolutionary algorithms, simulated annealing, genetic algorithms, … 

Model identifiability demands experimental data of sufficient 

quantity and quality 

 Common problems: noise, sampling density, unobserved variables, … 

 

 However, models of cellular regulatory networks may be non-

identifiable by principle, and … 

 … even partially identifiable models may yield interesting 

results 

 

Van Riel (2006), Brief. Bioinform., 7(4):364-374 
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Lack of quantitative data: reduction 

xa = a f (xb)  a xa 

. 

xb = b f (xa)  b xb 

. 

x 

f (x ) 

 
0 

1 

xa 

xb 0 

xb = 0  
. 

xa = 0  
. 

bistability 

a 

b 

 Use model reduction to obtain simpler models that can be 

analyzed with less information on parameter values 

Piecewise-linear instead of nonlinear models 

 

 

 

 

 

 

 Other example of model reduction: quasi-steady state 

assumption 

de Jong et al. (2004), Bull. Math. Biol., 66(2):301-340 

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29 

Heinrich and Schuster (1996), The Regulation of Cellular Systems 



Stochasticity in gene expression 

 ODE models make abstraction of underlying biochemical 

reaction processes involved in gene expression that may not be 

warranted 

 Gene expression is stochastic instead of deterministic 

process 
 Stochasticity gives rise to fluctuations in gene products (noise) 

 

 

 

 Discrete number of molecules of reaction species, instead of 

continuous concentrations 
Noise amplified by low number of molecules of each species 
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Kaern et al. (2005), Nat. Rev. Genet.,  6(6):451-464 



Major question is how cells both tolerate and exploit noise. 

 

Most cellular processes are robust to noise, despite 

stochasticity of underlying system of biochemical reactions 

 

 

 

 

 

 

Stochasticity in gene expression 
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 Sometimes, intracellular noise 

drives population heterogeneity 

that may be beneficial for a species 

After infection, only fraction of cells lyse 

 ODE models are not suitable for 

studying origin and effects of noise  

 

 

 

Rao et al. (2002), Nature,  420(6912):231-237 

Raj and van Oudenaarden (2008), Cell, 135(2):216-26 
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Stochastic models 

 Stochastic models of gene regulation are more realistic 

 Number of molecules of each species i at time-point t 
represented by discrete variable Xi(t)  N  

 Reactions between molecular species lead to change in state of 

system from X (t)  to X (t+t ) over time-interval t, where X  
[X1,…, Xn]´  

 Probability distribution p[Xi(t)=Vi] describes probability that at 

time-point t there are Vi molecules of species i 

 

 

 
Rao et al. (2002), Nature,  420(6912): 231-237 

p[Xi(t)= Vi] 

Vi 0 
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Stochastic master equation 

 Equation describes evolution of state X of regulatory system 

 

 

 

 m is the number of reactions that can occur in the system 

 j t is the probability that reaction j will occur in [t, t +t] given that 

X(t)=V 

 k t is the probability that reaction k will bring the system from       

X(t)= V k to X(t +t)=V in [t, t +t] 

p[X (t +t) =V ] =  p[X (t ) = V ] (1 -  j t ) +  
j = 1 

m 

 p[X (t ) = V k] k t  
k = 1 

m 

       Van Kampen (1997), Stochastic Processes 

                    in Physics and Chemistry 
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Stochastic master equation 

 For t  0 we obtain stochastic master equation 

 

 

 Probabilities j, j  are defined in terms of kinetic constants of 

reactions 

 Analytical solution of master equation is not possible in most 

situations of practical interest 

p[X(t)=V] / t =  p[X(t)=V j] j   p[X(t)=V] j  
j = 1 

m 

       Van Kampen (1997), Stochastic Processes 

                    in Physics and Chemistry 



Interpretation of stochastic master equation 

 Each state of reaction system corresponds to state of Markov 

chain with value V for species vector X 
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X = V 



Interpretation of stochastic master equation 

 Each reaction j corresponds to change of state in Markov chain, 

with state update V =V’ j  
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X = V 

X = V’ 

 j  



Interpretation of stochastic master equation 

 p[X(t)=V] describes probability of state X=V at time t in Markov 

chain 
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p[X(t)=V]  



Interpretation of stochastic master equation 

 p[X(t)=V] describes probability of state X=V at time t in Markov 

chain 
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p[X(t)=V]  



Interpretation of stochastic master equation 

 p[X(t)=V] describes probability of state X=V at time t in Markov 

chain 
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p[X(t)=V]  



Interpretation of stochastic master equation 

 Stochastic master equations for all states V together describe 

dynamics of system over time 
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Time t0 



Interpretation of stochastic master equation 

 Stochastic master equations for all states together describe 

dynamics of system over time 
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Time t1 



Interpretation of stochastic master equation 

 Stochastic master equations for all states together describe 

dynamics of system over time 
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Time t2 



       Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55 
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Stochastic simulation 

 Analytical solution of master equations is not possible in most 

situations of practical interest 

 Stochastic simulation predicts sequences of reactions that 

change state of system, starting from initial state X(0) = V0  

Stochastic simulation samples joint probability density function  

p[, j|X(t) = V] 

 = time interval until occurrence of next reaction 

j = index of next reaction 

Probability density function defined in terms of j, k (reaction constants)  

Gillespie (2002), J. Phys. Chem.,  81(25): 2340-61 



Stochastic simulation 

 Analytical solution of master equations is not possible in most 

situations of practical interest 

 Stochastic simulation predicts sequences of reactions that 

change state of system, starting from initial state X(0) = V0  

 Repeating stochastic simulation many times yields 

approximation of probability distribution p(X (t )=V), and thus 

solution of stochastic master equation 
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       Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55 

Gillespie (2002), J. Phys. Chem.,  81(25): 2340-61 
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Stochastic simulation 

 Stochastic simulation generates sequences of reactions and 

time intervals between reactions, starting from initial state X(0)  

 

 

 

 

 

 

 Stochastic simulation may lead to different dynamical behaviors 

starting from identical initial conditions 

X(0) = V0 

1 

2 

3 

4 

5 

6 

3’ 

1’ 2’ 4’ 

5’ 6’ 
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Auto-inhibition network 

 Auto-inhibition network consists of a single gene, coding for 

transcription regulator inhibiting expression of its own gene 

 

 

 

 

 Auto-inhibition is example of negative feedback, and 

frequently occurs in bacterial regulatory networks 

 

 Development of stochastic model requires list of species, 

reactions, and kinetic constants 

 

gene a 

protein A 

promoter a 

Thieffry et al. (1998), BioEssays,  20(5):433-440 
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Reactions and species 

Pa 

+ 
RNAP·Pa RNAP 

RNAP·Pa 

+ 
RNAP 

RBSa 

+ 
Pa 

RBSa 

+ 

Ribosome Ribosome·RBSa 

 

Ribosome·RBSa 

 

A 

+ 
A A2 

A2·Pa A2 

Pa 

+ 

A 
RBSa 

Ribosome 
A 

+ 
RBSa 

+ 
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Stochastic simulation of auto-inhibition 

 Occurrence of fluctuations and bursts in gene expression 
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Auto-inhibition and noise reduction 

 Auto-inhibition reduces fluctuations in gene expression level 

Becskei and Serrano (2000), Nature,  405(6785):590-591 
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Bacteriophage  infection of E. coli 

 Response of E. coli to phage  

infection involves decision 

between alternative 

developmental pathways:   

lytic cycle and lysogeny 

  Ptashne (1997), A Genetic Switch:  

   Phage λ and Higher Organisms 
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Stochastic analysis of phage λ infection 

 Stochastic model of λ 

lysis-lysogeny 

decision network 

Arkin et al. (1998), Genetics, 149(4): 1633-1648 
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Stochastic analysis of phage λ infection 

 Time evolution of Cro and CI 

dimer concentrations 

 

 Due to stochastic fluctuations, 

under identical conditions cells 

follow one or other pathway (with 

some probability) 

Arkin et al. (1998), Genetics, 149(4): 1633-1648 
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Comparison with deterministic approach 

 Deterministic models can be seen 

as predicting average behavior of 

cell population 

 

 Analysis of average behavior may 

obscure that one part of population 

chooses one pathway rather than 

another 

 

 However, under some conditions 

deterministic models yield good 

approximation 

Arkin et al. (1998), Genetics, 149(4): 1633-1648 

Gillespie. (2000), J. Chem. Phys., 113(1): 297-306 
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Measurements of phage  infection 

 New measurement techniques allow real-time and in-vivo 

monitoring of the execution of lytic and lysogenic pathways in 

individual cells  

 Use of reporter genes in combination with fluorescence microscopy 

Amir et al. (2007), Mol. Syst. Biol., 3:71 



Stochasticity and hidden variables 

 Is observed population heterogeneity entirely due to stochastic 

dynamics of biochemical reactions? 
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Zeng et al. (2010), Cell, 141(4):682-91 

 Hidden variables that 

deterministically set outcome of 

what seems noisy decision process 

 Deterministic voting of stochastic 

decision in single phages 
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Other stochastic models 

 Effect of noise on carbon assimilation in E. coli 

 

 Regulation of expression of virulence factor in pathogenic E. 

coli 

Puchalka and Kierzek (2004), Biophys. J., 86(3):1357-1372 

Jarboe et al. (2004), Biotechnol. Bioengin., 88(2):189-203 
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Evaluation of stochastic equations 

 Pro: more realistic models of gene regulation 

 Contra: required information on regulatory mechanisms on 

molecular level usually not available 

 Reaction schemas and kinetic constants, necessary for generating 

values of parameters  and , are not or incompletely known 

 Contra: stochastic simulation is computationally expensive 

 Large networks cannot currently be handled, but a host of extensions 

and approximations have been developed 
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Conclusions 

Mathematical methods and computer tools for modeling and 

simulation necessary to understand genetic regulatory 

processes 

 Variety of approaches available, representing genetic 

regulatory systems on different levels of abstraction 

 Choice of approach depends on biological problem and on 

available information: 

 knowledge on reaction mechanisms 

 quantitative data on model parameters and gene expression levels 

 Lots of applications on bacteria and higher organisms 


