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 IBIS: systems biology group of INRIA and Université Joseph Fourier/CNRS 

 Analysis of bacterial regulatory networks by means of models and experiments 

 Biologists, computer scientists, mathematicians, physicists, … 
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Overview 

1. Gene regulatory networks in bacteria 

2. Novel methods for measuring gene expression 

3. Quantitative modeling of gene regulatory networks 

 Ordinary differential equations 

 Stochastic master equations 

4. Qualitative modeling of gene regulatory networks  

 Piecewise-linear differential equations 

5. Conclusions and perspectives 



 

 

Gene regulatory networks 

 Gene regulatory networks control changes in gene 

expression levels in response to environmental perturbations 

4 

Kotte et al. (2010), Mol. Syst. Biol., 6: 355 

 Gene regulatory networks 

consist of genes, gene 

products, signalling 

metabolites, and their mutual 

regulatory interactions  

 Global regulators of transcription 

involved in glucose-acetate 

diauxie in E. coli 



 

 

Gene expression 
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 Typically, and simplifying quite a bit, gene expression in 

bacteria involves:  

 Transcription by RNAP (mRNA) 

 Translation by ribosomes (proteins) 

 Degradation of mRNA and protein 



 

 

Regulation of gene expression 
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 Typically, and simplifying quite a bit, regulation of gene 

expression in bacteria involves:  

 Transcription regulation by transcription factors 

 Translational regulation by small RNAs 

 Regulation of degradation by proteases 



 

 

Modeling of gene regulatory networks 

 Different modeling formalisms exist, describing gene 

expression on different levels of detail 
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Ordinary differential 

equations (ODEs) 

Stochastic master 

equations 
Boolean 

networks 

coarse-grained detailed 

Smolen et al. (2000), Bull. Math. Biol., 62(2):247-292 

Hasty et al. (2001), Nat. Rev. Genet., 2(4):268-279 

de Jong (2002), J. Comput. Biol., 9(1): 69-105 

Szallassi et al. (2006), System Modeling in Cellular Biology, MIT Press 

Bolouri (2008), Computational Modeling of Gene Regulatory Networks, 

Imperial College Press 

Karleback and Shamir (2008), Nat. Rev. Mol. Cell Biol., 9(10):770-80  
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Modeling of gene regulatory networks 

Well-established theory for modeling of genetic regulatory 

networks using ordinary differential equation (ODE) models 

 

 

 Practical problems encountered by modelers: 

 Knowledge on molecular mechanisms rare 

 Quantitative information on kinetic parameters and molecular 

concentrations absent 

 Large models 

 Even in the case of well-studied E. coli network! 

Polynikis et al. (2009), J. Theor. Biol., 261(4):511-30 

Bolouri (2008), Computational Modeling of Gene Regulatory Networks, Imperial College Press 
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Qualitative modeling and simulation 

 Possible strategies to overcome problems 

 Parameter estimation from experimental data  

 Parameter sensitivity analysis 

 Model simplifications 

 Intuition: essential properties of network dynamics robust 

against reasonable model simplifications 

 Qualitative modeling and simulation of large and complex 

genetic regulatory networks using simplified models 

 

 Relation with discrete, logical models of gene regulation 
Thomas and d’Ari (1990), Biological Feedback, CRC Press 

de Jong, Gouzé et al. (2004), Bull. Math. Biol., 66(2):301-40 

 

Kauffman (1993), The Origins of Order, Oxford University Press 
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Ordinary differential equation models 

 Genetic regulatory networks modeled by ODE models using 

sigmoid functions to describe regulatory interactions 

 

 

 

 

 

 

 Expressions of sigmoid functions account for combinatorial 

control of gene expression (AND, OR, NOR, …) 

xa  a h
-(xa , a2 , n) h-(xb , b , n) – a xa  

. 

xb  b h
-(xa , a1 , n) – b xb  

. 

x : protein concentration 

 ,  : rate constants 

  : threshold concentration 

x 

h-(x, θ, n) 

 
0 

1 

n : steepness parameter 
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PL differential equation models 

 ODE models approximated by means of step functions to 

describe regulatory interactions 

 

 

 

 

xa  a s
-(xa , a2) s

-(xb , b ) – a xa  

. 

xb  b s
-(xa , a1) – b xb  

. 

x : protein concentration 

 ,  : rate constants 

  : threshold concentration 

x 

s-(x, θ) 

 
0 

1 

 Piecewise-linear (PL) DE models of genetic regulatory 

networks Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29 
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 Analysis of local dynamics of PL models 

 Monotone convergence towards focal point in regions separated by 

thresholds 

 

 

 

 

 

 

a1 
0 

maxb 

a2 

b 

maxa 

Mathematical analysis of PL models 

xa  a s
-(xa , a2) s

-(xb , b ) – a xa 

. 

xb  b s
-(xa , a1) – b xb  

. 

a1 
0 

maxb 

a2 

b 

maxa a/a 

b/b xa  a – a xa  

. 

xb  b – b xb  

. 

D1   

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29 
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 Analysis of local dynamics of PL models 

 Monotone convergence towards focal point in regions separated by 

thresholds 

 

 

 

 

 

 

 

a1 
0 

maxb 

a2 

b 

maxa 

Mathematical analysis of PL models 

xa  a s
-(xa , a2) s

-(xb , b ) – a xa 

. 

xb  b s
-(xa , a1) – b xb  

. 

xa  a – a xa  

. 

xb  – b xb  

. 

a1 
0 

maxb 

a2 

b 

maxa a/a 

D5   

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29 
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 Analysis of local dynamics of PL models 

Instantaneous crossing of regions located on thresholds, or … 

 

 

 

 

 

 

 

a1 
0 

maxb 

a2 

b 

maxa 

Mathematical analysis of PL models 

xa  a s
-(xa , a2) s

-(xb , b ) – a xa 

. 

xb  b s
-(xa , a1) – b xb  

. 

a1 
0 

maxb 

a2 

b 

maxa 

D3   



 

 

15 

 Analysis of local dynamics of PL models 

… quasi-monotone convergence towards focal sets located on threshold 

hyperplanes 

 

 

 

 

 

 

 Extension of PL differential equations to differential inclusions 

using Filippov approach 

a1 
0 

maxb 

a2 

b 

maxa 

Mathematical analysis of PL models 

xa  a s
-(xa , a2) s

-(xb , b ) – a xa 

. 

xb  b s
-(xa , a1) – b xb  

. 

a1 
0 

maxb 

a2 

b 

maxa 

D7   

Gouzé and Sari (2002), Dyn. Syst., 17(4):299-316 
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 Analysis of global dynamics obtained by piecing together local 

dynamics in regions 

PL approximation preserves bistability of cross-inhibition network 

 

 

 

 

 

 

 

Qualitative analysis of PL models 

a1 
0 

maxb 

a2 

b 

maxa a1 
0 

maxb 

a2 

b 

maxa a1 
0 

maxb 

a2 

b 

maxa a1 
0 

maxb 

a2 

b 

maxa 
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 State space can be partitioned into regions with unique 

derivative sign pattern 

 Qualitative abstraction yields state transition graph that 

provides discrete picture of continuous dynamics 

 

 

 

 

 

 
a1 

0 

maxb 

a2 

b 

maxa 

Qualitative analysis of PL models 

. 

. xa > 0 

xb < 0 
D5: 

. 

. . 
. 
. 

. 
xa > 0 

xb > 0 

xa > 0 

xb < 0 

xa = 0 

xb < 0 D1: D5: D7: 

a1 
0 

maxb 

a2 

b 

maxa 

D12  
D22   

D23   

D24   

D17  

D18  
D21  D20  

D1   D3   D5   D7   D9   

D15   

D27   D26    D25   

D11  D13   D14   

D2   D4   D6     D8   

D10   
D16  

D19   

D1  D3  D5  D7 D9  

D15 

D27 D26 D25 

D11 D12 D13 D14 

D2  D4  D6 

D8  

D10 

D16 
D17 

D18 

D20 

D19 

D21 

D22 

D23 

D24 

de Jong et al. (2004), Bull. Math. Biol., 66(2):301-40 

Batt et al. (2008), Automatica, 44(4):982-9 

Alur et al. (2000), Proc. IEEE, 88(7):971-84 
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 State transition graph gives conservative approximation of 

continuous dynamics 

 Every solution of PL model corresponds to path in state transition graph 

 Converse is not necessarily true!  

 State transition graph is invariant for given inequality 

constraints on parameters 

Qualitative analysis of PL models 

D1  D3  

D11 D12 

a1 
0 

maxb 

a2 

b 

maxa a1 
0 

maxb 

a2 

b 

maxa a/a 

b/b 

D1   

D11   D12   

D3   

0 < a1 < a2 < a/a < maxa  

0 < b < b/b < maxb  

Batt et al. (2008), Automatica, 44(4):982-9 
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 State transition graph gives conservative approximation of 

continuous dynamics 

 Every solution of PL model corresponds to path in state transition graph 

 Converse is not necessarily true!  

 State transition graph is invariant for given inequality 

constraints on parameters 

Qualitative analysis of PL models 

D1  D3  

D11 D12 0 < a1 < a2 < a/a < maxa  

0 < b < b/b < maxb  

a1 
0 

maxb 

a2 

b 

maxa a1 
0 

maxb 

a2 

b 

maxa a/a 

b/b 

D1   

D11   D12   

D3   

Batt et al. (2008), Automatica, 44(4):982-9 



 

 

20 

 State transition graph gives conservative approximation of 

continuous dynamics 

 Every solution of PL model corresponds to path in state transition graph 

 Converse is not necessarily true!  

 State transition graph is invariant for given inequality 

constraints on parameters 

Qualitative analysis of PL models 

D1  

D11 

a1 
0 

maxb 

a2 

b 

maxa a1 
0 

maxb 

a2 

b 

maxa a/a 

b/b 

D1   

D11   D12   

D3   

0 <  a/a < a1 < a2 < maxa  

0 < b < b/b < maxb  

Batt et al. (2008), Automatica, 44(4):982-9 
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D16 

D18 

D20 

Use of state transition graph 

 Analysis of steady states and limit cycles of PL models 

 Attractor states in graph correspond (under certain conditions) to stable 

steady states of PL model 

 Attractor cycles in graph correspond (under certain conditions) to stable 

limit cycles of PL model 

a1 
0 

maxb 

a2 

b 

maxa a1 
0 

maxb 

a2 

b 

maxa 

D1  D3  D5  D7 D9  

D15 

D27 D26 D25 

D11 D12 D13 D14 

D2  D4  D6 

D8  

D10 

D17 

D19 

D21 

D22 

D23 

D24 

Casey et al. (2006), J. Math Biol., 52(1):27-56 

Glass and Pasternack (1978), J. Math Biol., 6(2):207-23 

Edwards (2000), Physica D, 146(1-4):165-99 
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 Paths in state transition graph represent predicted sequences 

of qualitative events 

Model validation: comparison of predicted and observed 

sequences of qualitative events 

 

 

 

 

 

 

 Need for automated and efficient tools for model validation 

D1  D3  D5  D7 D9  

D15 

D27 D26 D25 

D11 D12 D13 D14 

D2  D4  D6 
D8  

D10 

D16 
D17 

D18 

D20 

D19 

D21 

D22 

D23 

D24 

Use of state transition graph 

. . 
xa < 0 

xb > 0 
xa > 0 

xb > 0 

xa= 0 

xb= 0 

. 

. . . D1: D17: D18: 

Concistency? 

Yes 0 

xb 

time 

time 

0 

xa 

xa  > 0 
. 

xb  > 0 
. 

xb  > 0 
. 
xa  < 0 
. 
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Model validation by model checking 

 Dynamic properties of system can be expressed in temporal 

logic (CTL) 

 

 

 

 

Model checking is automated technique for verifying that state 

transition graph satisfies temporal-logic statements 

Efficient computer tools available for model checking 

There Exists a Future state where xa > 0 and xb > 0 

 and starting from that state,  

there Exists a Future state where xa < 0 and xb > 0 

. . 

. . 

EF(xa > 0  xb > 0  EF(xa < 0   xb > 0) ) 
. . . . 0 

xb 

time 

time 

0 

xa 

xa  > 0 
. 

xb  > 0 
. 

xb  > 0 
. 
xa  < 0 
. 

Batt et al. (2005), Bioinformatics, 21(supp. 1): i19-i28   
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Genetic Network Analyzer (GNA) 

http://www-helix.inrialpes.fr/gna 

Qualitative analysis of PL models implemented in Java: 
Genetic Network Analyzer (GNA) 

      de Jong et al. (2003),  

Bioinformatics, 19(3):336-44 

 

 

Distribution by  

Genostar SA 
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Genetic Network Analyzer (GNA) 

Model-checking technology made available to GNA user 

 

 

 

 

 

 

 

 

 Connect GNA to standard model checkers through a web-server 

connection  

 

 

 Develop temporal-logic 

patterns patterns for 

frequently-asked modeling 

questions 

Monteiro et al. (2008), Bioinformatics, 24(16):i227-33 

Mateescu et al. (2010), 

Theor. Comput. Sci., in press 

 Develop temporal logics 

tailored to biological 

questions 

 

Monteiro et al., (2009), BMC Bioinform., 10:450  
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Analysis of bacterial regulatory networks 

 Applications of qualitative simulation 

in bacteria: 

 Initiation of sporulation in Bacillus subtilis  

 

 Quorum sensing in Pseudomonas 

aeruginosa 

 

 

 Onset of virulence in Erwinia 

chrysanthemi 

 

 

de Jong, Geiselmann et al. (2004), Bull. Math. Biol., 66(2):261-300 

Viretta and Fussenegger (2004), Biotechnol. 

Prog., 20(3):670-8 

Sepulchre et al. (2007), J. Theor. Biol., 244(2):239-57  
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E. coli response to carbon starvation  

 Response of E. coli to carbon starvation conditions: transition 

from exponential phase to stationary phase 

 

 

 

 

 

 

Growth transition is accompanied by profound changes in gene 

expression, allowing cell to adjust its functioning to stress 

conditions 

log (pop. size) 

time 

> 4 h 

Storz and Hengge-Aronis (2000), Bacterial Stress Responses, ASM Press 



 

 Signal 
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Modeling of carbon starvation network 

 Can we understand how gene regulatory network controls 

adaptation in response to carbon starvation? 

 Network senses carbon source availability and global regulators 

coordinate adaptive response of bacteria 

 

 

 

 

 

 Development of qualitative model of network 

Translation of network diagram into PL formalism (regulatory logic) 

 
Ropers et al. (2006), Biosystems, 84(2):124-152 



 

 

Development of PL model 

 Translation of network diagrams into PL models 

 Straightforward for direct interactions… 

 

 

 

 … but also possible for indirect interactions 
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Cya  concentration (M) Crp  concentration (M) 
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PL model of carbon starvation network 

 

 

 

 

 

 

 

 PL models supplemented with inequality constraints on 

parameter values 

 Inequality constraints inferred from experimental literature 
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Attractors of stress response network 

 Analysis of attractors of PA model: two steady states  

• Stable steady state, corresponding to exponential-phase conditions 

• Stable steady state, corresponding to stationary-phase conditions 
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Transition to stationary phase 

 Does model reproduce transition from exponential phase to 

stationary phase upon carbon starvation? 

log (pop. size) 

time 

carbon run-out 
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Cya 

Fis 

TopA 

rrn 

Crp 
GyrAB 

Qualitative simulation of network 

 Simulation of transition from exponential to stationary phase 

 State transition graph with 851 states starting from exponential phase, all paths 

converge to stationary-phase steady state upon stress signal 

 



 

 

Signal 
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Hypothesis on carbon starvation response 

 Sequence of qualitative events leading to adjustment of 

growth of cell after carbon starvation signal 

 

 

 

 

 

 Central role for mutual inhibition of Fis and Crp, the two major 

regulators of the cell  

Cross inhibition functions as toggle switch, pulled by stress signal 
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Real-time monitoring of gene expression 

 Use of reporter gene systems to monitor gene expression in 
vivo and in real time 

• Fluorescent and luminescent reporters 

• Reporters on plasmid and in chromosome 

 

promoter region 

bla 

ori 

gfp reporter 

gene  cloning promoter 

regions on plasmid 

rrnB 

fis 

crp 

rpoS 

topA 

gyrB 

gyrA 

     nlpD 
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 Integration of reporter gene systems into bacterial cell 

Real-time monitoring of gene expression 

Global 

regulator 

GFP 

E. coli 

genome 

Reporter 
gene 

excitation 

emission 
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 Integration of reporter gene systems into bacterial cell 

Real-time monitoring of gene expression 

 Use of automated microplate reader to monitor in parallel in 

single experiment expression of different reporter genes 

96-well microplate 

Well with 

bacterial culture 

Different gene reporter 

system in wells 
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Real-time monitoring of gene expression 

 High-precision measurements of changes in gene expression 

on population level in response to environmental perturbations 

 Measurement of absorbance, fluorescence, luminescence 

 About 100 data points over an interval of 10 hours 

 Treatment of raw data 

 Outlier detection, regression spline fitting with GCV, background 

substraction, confidence intervals via bootstrap, ... 

 

 

 

 

 

 

Fluorescence and absorbance data 

de Jong et al. (2010), BMC Syst. Biol., 4:55 
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Real-time monitoring of gene expression 

 Computation of biological quantities using kinetic models 

 Reporter protein concentrations and reporter synthesis rates 

(proportional to mRNA concentrations) 

 

 

 

 

 

 

 

 

 

 

fis reporter mRNA concentration Fluorescence and absorbance data Fis reporter concentration 

de Jong et al. (2010), BMC Syst. Biol., 4:55 
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Real-time monitoring of gene expression 

Wellreader: Matlab program for analysis of reporter gene 

expression data  

 

Boyer et al. (2010), Bioinformatics, 26(9): 1262-4 



 

 

Biodegradation of polluants by P. putida 

 Soil bacterium Pseudomonas putida mt-2 is archetypal model 

for environmental biodegradation of aromatic pollutants 

 TOL network involved in degradation of m-xylene to intermediates for 

central carbon metabolism 

41 

Rocha-Silva et al. (2011), Environ. Microbiol., in press 



 

 

Role of regulators of TOL network 

What is the role of the central, plasmid-encoded regulators 

XylR and XylS? 

 

 

 

 

 

 

 Development of PL model of TOL network 

 Translation of network diagram into regulatory logic and PL models 
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Rocha-Silva et al. (2011), BMC Syst. Biol., in press 



 

 

Role of regulators of TOL network 

 Validation of model by testing predictions under different 

perturbation conditions (mutants, metabolic inducers, …) 

 

 

 

 

 

 Plasmid-encoded regulators of TOL network act as regulatory 

firewall  

 Prevent toxic m-xylene and its biodegradation intermediates from 

intervening with indigenous metabolic pathways 
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Rocha-Silva et al. (2011), BMC Syst. Biol., in press 



 

 

IRMA: synthetic network in yeast 

 IRMA: synthetic network in 

yeast consisting of interlocked 

positive and negative 

feedback loops 

 Networks functions 

independently from host cell 

 Network can be externally 

controlled by growing cells in 

glucose or galactose 
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Cantone et al. (2009), Cell, 137(1):172-81 



 

 

IRMA: synthetic network in yeast 

 IRMA proposed as a 

benchmark for modeling and 

identification approaches 

 IRMA dynamics measured over 

time in galactose (switch-on) 

and glucose (switch-off) 

 Quantitative RT-PCR  

 Question: are measured 

dynamics consistent with 

constructed network structure? 

45 

Cantone et al. (2009), Cell, 137(1):172-81 



 

 

Test of consistency structure-dynamics 

 Development of (unparametrized) PL model representing 

network structure 

 Approach to test consistency between network structure and 

data based on automated parameter constraint search: 

 Generate temporal logic formulae encoding observed network dynamics 

46 

Batt et al. (2010), Bioinformatics, 

26(18):i603-10   



 

 

Test of consistency structure-dynamics 

 Development of (unparametrized) PL model representing 

network structure 

 Approach to test consistency between network structure and 

data based on automated parameter constraint search: 

 Generate temporal logic formulae encoding observed network dynamics 

 Test if there are any parametrizations of PL model satisfy temporal logic 

formulae 

47 



 

 

Test of consistency structure-dynamics 

 Development of (unparametrized) PL model representing 

network structure 

 Approach to test consistency between network structure and 

data based on automated parameter constraint search: 

 Generate temporal logic formulae encoding observed network dynamics 

 Test if there are any parametrizations of PL model satisfy temporal logic 

formulae 

 Analyze parametrizations for biological plausibility 
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« Activation threshold of CBF1 by Swi5 higher than activation 

threshold of ASH1 »: confirmed by independent experimental data 

Batt et al. (2010), Bioinformatics, 

26(18):i603-10   



 

 

Test of consistency structure-dynamics 

 Development of (unparametrized) PL model representing 

network structure 

 Approach to test consistency between network structure and 

data based on automated parameter constraint search: 

 Generate temporal logic formulae encoding observed network dynamics 

 Test if there are any parametrizations of PL model satisfy temporal logic 

formulae 

 Analyze parametrizations for biological plausibility 

 Automated approach for testing coherence between network 

structure and data based on model-checking techniques 

 Symbolic encoding of model, dynamics and properties to make problem 

feasible 
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Perspectives: towards quantitative models 

 Qualitative models can help understand basic principles 

underlying dynamics of complex gene regulatory networks 

 Models provide a coarse-grained picture of the dynamics, but capture the 

regulatory logic of the network of interactions 

 Biological validation of qualitative models has a long history, 

and experimental validation of specific predictions is 

increasingly becoming possible 

 New measurement techniques: fluorescent reporter genes, quantitative 

proteomics , metabolomics, … 

 New ways to control biological experiments: overexpression plasmids, 

microfluidics, … 

50 



 

 

Perspectives: towards quantitative models 

Quality of data produced by new experimental techniques 

makes it increasingly realistic to work with fully quantitative 

ODE models 

 More accurate representation of biochemical mechanisms 

 More precise predictions 

 Perspective raises new methodological challenges: parameter 

estimation in large nonlinear ODE models 

51 



 

 

Perspectives: towards quantitative models 

 Qualitative models can help understand basic principles 

underlying dynamics of complex gene regulatory networks 

 Models provide a coarse-grained picture of the dynamics, but capture the 

regulatory logic of the network of interactions 

 Biological validation of qualitative models has a long history, 

and experimental validation of specific predictions is 

increasingly becoming possible 

 New measurement techniques: fluorescent reporter genes, plate 

readers (cell populations) and microscopes (individual cells), quantitative 

proteomics and metabolomics, … 

 New ways to control biological systems: overexpression plasmids, 

microfluidics, synthetic biology, … 
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Perspectives: towards quantitative models 

Quality of data produced by new experimental techniques 

makes it increasingly realistic to work with fully quantitative 

ODE models 

 More accurate representation of biochemical mechanisms 

 More precise predictions 

 Perspective raises new methodological challenges: parameter 

estimation in large nonlinear ODE models 

53 



 

 

Perspectives: towards quantitative models 

 Coupling of global regulation of transcription with carbon 

metabolism 

Modeling of glucose-acetate shift in E. coli 

54 

Kotte et al. (2010), Mol. Syst. Biol., 6: 355 



 

 

Perspectives: towards quantitative models 

 Kinetic model with 47 variables and 193 parameters 

 Parameters estimated from published experimental steady-state data 

sets for balanced growth on either glucose or acetate 

 Analysis of model shows that adaptation to change in carbon 

source is achieved by distributed sensing of intracellular fluxes 
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Kotte et al. (2010), Mol. Syst. Biol., 6: 355 
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Perspectives: towards quantitative models 

 No algorithms that guarantee globally optimal solution for 

parameter estimation in nonlinear models 

 Evolutionary algorithms, simulated annealing, genetic algorithms, … 

 Parameter estimation demands experimental data of sufficient 

quantity and quality 

 Common problems: noise, sampling density, unobserved variables, … 

 

Moreover, models of regulatory networks may be non-

identifiable by principle, but … 

 … even partially identifiable models may yield interesting 

results! 

 

Ashyraliyev et al.  (2009), FEBS J., 276:886-902 

van Riel (2006), Brief. Bioinform., 7(4):364–74 
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Perspectives: network identification 

 Adaptation of methods for hybrid-systems identification to PL 

models of genetic regulatory networks  

Time-series 

data 

Switch detection 

Mode estimation 

Threshold reconstruction 

Network inference 

Drulhe et al. (2008), IEEE Trans. Autom. Control, 53(1):153-65  
Porreca et al. (2008), J. Comput. Biol., 15(10):1365-80  

  



 

 

58 

Perspectives: network identification 

 Adaptation of methods for hybrid-systems identification to PL 

models of genetic regulatory networks  

Time-series 

data 

Switch detection 

Mode estimation 

Threshold reconstruction 

Network inference 

Drulhe et al. (2008), IEEE Trans. Autom. Control, 53(1):153-65  
Porreca et al. (2008), J. Comput. Biol., 15(10):1365-80  
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Perspectives: network identification 

 Adaptation of methods for hybrid-systems identification to PL 

models of genetic regulatory networks  

Time-series 

data 

Switch detection 

Mode estimation 

Threshold reconstruction 

Network inference 

Drulhe et al. (2008), IEEE Trans. Autom. Control, 53(1):153-65  
Porreca et al. (2008), J. Comput. Biol., 15(10):1365-80  
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Perspectives: network identification 

 Adaptation of methods for hybrid-systems identification to PL 

models of genetic regulatory networks  

Time-series 

data 

Switch detection 

Mode estimation 

Threshold reconstruction 

Network inference 

A                B    

Drulhe et al. (2008), IEEE Trans. Autom. Control, 53(1):153-65  
Porreca et al. (2008), J. Comput. Biol., 15(10):1365-80  

  



 

 

Perspectives: towards controller networks 

 Instead of understanding how naturally occuring regulatory 

networks control cellular processes (systems biology)… 

… one could try to (re)design synthetic regulatory networks for 

controlling cellular processes (synthetic biology) 

 Reprogramming  natural pathways by means of synthetic toggle 

switch 

 SOS pathway from E. coli (DNA damage) and transgenic pathway from 

V. fischeri (quorum sensing) 

61 

Kobayashi et al. (2004), Proc. Natl. Acad. Sci. USA, 101(22):8414–9 
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 Reprogramming  natural pathways by means of synthetic toggle 

switch 

 SOS pathway from E. coli (DNA damage) and transgenic quorum 

sensing pathway from V. fischeri (quorum sensing) 
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Kobayashi et al. (2004), Proc. Natl. Acad. Sci. USA, 101(22):8414–9 



 

 

Perspectives: towards controller networks 

 Reprogramming  natural pathways by means of synthetic toggle 

switch 

 SOS pathway from E. coli (DNA damage) and transgenic quorum 

sensing pathway from V. fischeri (quorum sensing) 

 

 

 

 

 Strain produces biofilm when DNA damage is induced by UV light or by 

antibiotic (mitomycin) 

64 

Kobayashi et al. (2004), Proc. Natl. Acad. Sci. USA, 101(22):8414–9 



 

 

Perspectives: towards controller networks 

 Instead of understanding how naturally occuring regulatory 

networks control cellular processes (systems biology)… 

… one could try to (re)design synthetic regulatory networks for 

controlling cellular processes (synthetic biology) 

 New and very active domain 

 Student competition iGEM 

 Potential applications: 

 Biotechnology (biofuels, …) 

 Medicine (viruses targeting cancer cells, …) 
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E. coli and biofuel production 

 Can E. coli cells be engineered to convert sugars into fuels at 

high yield and productivity? 

 Fermentable sugars obtained from agricultural waste (cellulose, …) 

 Redesign E. coli cell by including pathways from other 

organisms and modifying regulatory mechanisms 

66 

 Development of 

biorefineries only in its 

infancy, many technical, 

economical, and 

environmental 

challenges 

Liu, Khoshla (2010), Annu. Rev. Genet., 44:53-69 
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Conclusions 

 Variety of modeling formalisms and computer tools for 

modeling of gene regulatory networks exist 

 Formalisms built on different modeling assumptions, suitable for 

answering different questions 

 Choice of modeling formalism is choice of tool, not necessarily choice of 

world view 

 

 

Ordinary differential 

equations (ODEs) 

Stochastic master 

equations 
Boolean 

networks 

coarse-grained detailed 
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Conclusions 

Modeling of genetic regulatory networks in bacteria often 

hampered by lack of information on parameter values 

 Use of coarse-grained PL models that provide reasonable 

approximation of dynamics 

Mathematical methods and computer tools for analysis of 

qualitative dynamics of PL models  

Weak information on parameter values (inequality constraints) 

 Use of PL models may gain insight into functioning of large and 

complex networks 

 PL models provide first idea of qualitative dynamics that may 

guide modeling by means of quantitative models  



 

 

Some challenges for modelers 

 Upscaling of analysis to large networks of dozens or even 

hundreds of genes, proteins, metabolites, … 

 Model reduction, qualitative models, and formal verification tools 

 System identification and parameter estimation 

 New measurement techniques yield higher-quality data, but still noisy, 

sparse, heterogeneous 

 Large models on different time-scales, with many unobserved variables 

 Systematic design of experimental perturbations for 

identification and control 

 Redesign of networks for biotechnological or therapeutic 

purposes (synthetic biology) 

  

69 



 

 

Internships in IBIS 

 Challenging problems for biologists, physicists, computer 

scientists, mathematicians, … 

… in a multidisciplinary working environment. 

 Contact: Hidde.deJong@inria.fr and www.ibis.fr 
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Courtesy Guillaume Baptist (2008) 
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