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Outline
1. Introduction to systemic sensitivity analysis
2. The stoichiometry matrix

System reduction

3. System evolution
System relaxation between steady-states

4. Control coefficients
5. Summation theorem
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General problem
Let us consider an arbitrary complex metabolic network
Each reaction rate responds to changes in concentrations of 
substrates, products and some effectors:

These kinetic laws are individual molecular properties
of each enzyme in the system

Central questions of MCT:
How does the system respond to changes 
in individual molecular properties (enzyme activities)?

How does the system’s response depend on the network structure?

How constrained are systemic sensitivities?
Do they show dependencies? 
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Steady-states and system definition
Metabolism concerns almost exclusively sustainable processing 
of chemical inputs into outputs such as biomass, energy, waste, 
etc.: it must reach a stable steady-state.
Therefore:
The system must be open in order to reach 
a thermodynamically feasible non-trivial steady-state 
(i.e., with non-zero fluxes)
Most reactions should be sensitive to both substrate and 
product concentrations, allowing for the 
balancing of metabolite production and consumption rates
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Intuitively?
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Formally
It is possible to derive a very general treatment of metabolic 
control theory for metabolic systems of arbitrary complexity. 
C. Reder

 
(1988)

 
J. Theoret. Biol. 135:175-201

General definitions:
x = x(t,p) Molarity vector
X = X(p) Steady-state molarity vector: dx / dt = 0
v = v(x,p) Rate vector
J = J(p) Steady-state flux vector

= v(X(p),p) 
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The stoichiometry matrix

Reactions in the network are expressed in the stoichiometry 
matrix N, whose columns contain the stoichiometric
coefficients for each reaction
This matrix reflects the system’s structure

The stoichiometry matrix N is of maximal rank if and only if 
there is no conservation relationship constraining the different
concentrations, which we will initially assume for simplicity

Otherwise it should be reduced to a matrix N0 with maximal 
rank in order to deal with independent variables:

N = L . N0
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Exercise: 2-component transduction
Write stoichiometry matrix for the following system:

Shinar et al, 2007, PNAS 104:19931-19935
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System evolution
The evolution of the system’s concentration vector x 
is a simple function of the reaction rate vector v : 

dx/dt = N · v(x,p)

where p is a parameter vector, and the Jacobian is :

ℑ
 

= N · ∂v/∂x

∂vi /∂xj are non-normalized ‘elasticities’.
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Shifting between steady-states
Starting from a steady-state X1, what happens if we perturb the 
rates v with a small change in parameters δp ?
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Shifting between steady-states

These relationships express the changes in steady-state 
concentrations X and fluxes J in response to a change in the 
enzyme rates δv
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Steady-state flux constraints
We are interested in analysing the steady-state of the system:

dx/dt = N · v(X(p), p) = 0
where X(p) is the vector of steady-state concentrations
The steady-state introduces linear dependencies between 
fluxes: 

N · J(p) = 0
Kirchhoff’s law for metabolic intermediates
Therefore the flux vector J can be expressed 
in a basis of Ker(N) (often termed K)
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Expressing systemic control
Differentiating the steady-state equation with respect to p:

This equation relates systemic changes in steady-state 
concentrations X to changes in rates v
The matrix Γ = - ℑ−1 · N 
contains all concentration control coefficients

N · ∂v/∂x · ∂X/∂p + N · ∂v/∂p = 0

∂X/∂p = - ℑ−1
 

· N · ∂v/∂p
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Flux control
Let us calculate the resulting steady-state flux:

J = v(X(p), p)
and differentiate it with respect to p:

∂J/∂p = ∂v/∂x · ∂X/∂p + ∂v/∂p
= (∂v/∂x · Γ

 
+ I ) · ∂v/∂p

This equation relates systemic changes 
in steady-state fluxes J to changes in rates v
The matrix Φ = I + ∂v/∂x · Γ
contains all flux control coefficients
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Generalisation 
If the system shows conservation relationships 
such as [ATP]+[ADP]+[AMP] = constant 
we need to reduce N to a matrix N0 with maximal rank 
corresponding to independent metabolite molarities x0 : 

N = L · N0

dx0/dt = N0 · v(x,p)
ℑ

 
= N0 · ∂v/∂x · L

Γ
 

= - L · ℑ−1 · N0

Φ
 

= I + ∂v/∂x · Γ
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Normalised control coefficients

It is customary to express control in terms of dimension-less 
normalised control coefficients :

where the Ei parameters denote enzyme activities.
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Scaling of fluxes with enzyme activities
The steady-state equation:

N · v(X,E) = 0
is invariant to an arbitrary scaling of activities E:

v(X,αE) = αv(X,E), ∀α
 

∈
Therefore the flux vector J is a 1st order homogeneous function 
of enzyme activities E: 

J(αE) = αJ(E), ∀α
 

∈
and concentrations X are 0-order homogeneous functions: 

X(αE) = X(E), ∀α ∈

+R

+R

+R
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Summation relationships

Summation theorems follow directly 
by derivation with respect to α

Flux control is distributed across the system
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Response coefficients
The linearised response of the system to a change in any 
parameter pi can be expressed from control coefficients and 
elasticity coefficients:

where 

are normalised elasticity coefficients expressing the sensitivities 
of rates to parameter changes.

The Ri
j are called response coefficients
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Response coefficients

The response of the network depends on two factors:
- the sensitivities of enzymes to parameter pi (a molecular property)

- the control exerted by these enzymes on the flux (a systemic property)

One can similarly define response coefficients for metabolite 
concentrations:

j j k
i k i

k

R C ε= ∑

j jX X k
i k i

k

R C ε= ∑
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Connectivity relationships

Γ
 

= - L · ℑ−1 · N0

⇒ Γ · ∂v/∂x · L = - L

Φ
 

= I + ∂v/∂x · Γ
⇒ Φ · ∂v/∂x · L = 0
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Connectivity relationships
When using normalised elasticities, connectivity relationships 
must be expressed with respect to independent variables xi

0 :

where is Kronecker’s symbol.
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Connectivity relationships

These relationships can be interpreted in terms of the internal 
system’s response to perturbations of xi

0

They are necessary for the system’s stability:
The system counteracts fluctuations of xi

0 

The rest of the system is insensitive to these fluctuations at 1st order 
approximation 

0j k
k i

k
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jX k
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Summary
The system’s response depends on both enzyme properties 
and network structure
Fluxes are constrained to a low-dimension subspace because 
of metabolite pool balancing at steady-state
Control of flux is generally distributed across the system
(no ‘bottleneck’)

This is important for biotechnology and pharmacology!

The system’s behaviour can be thought of under a general
action-reaction principle:

It usually buffers changes imposed externally

It counteracts internal fluctuations
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Further reading
Part 1 to 3.2 of Sauro (2004) Network dynamics
in Computational Systems Biology, Methods in Molecular
Biology vol. 541, pp. 269-290, Humana Press
Understanding the Control of Metabolism, by David Fell 
Portland Press, London, 1997
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For the practical course
Familiarize yourself with the COPASI modeling environment
http://www.copasi.org

COPASI handbook 

Be prepared to use your favourite mathematical package 
such as Scilab, Maple, R or Matlab
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