

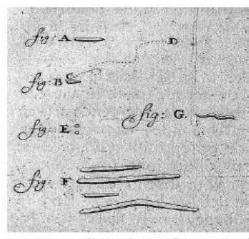
Introduction

Hidde de Jong IBIS INRIA Grenoble – Rhône-Alpes Hidde.de-Jong@inria.fr

INRIA Grenoble - Rhône-Alpes and IBIS

- IBIS: systems biology group at INRIA/Université Joseph Fourier/CNRS
 - Analysis of bacterial regulatory networks by means of models and experiments
 - Biologists, computer scientists, mathematicians, physicists, ...

http://ibis.inrialpes.fr



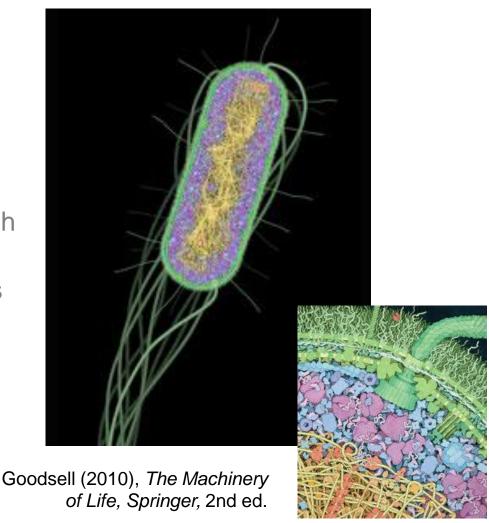
Bacteria

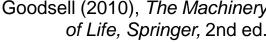
 Bacteria were first observed by Antonie van Leeuwenhoek, using a single-lens microscope of his own design

http://commons.wikimedia.org/

van Leeuwenhoek A (1684), Philosophical Transactions (1683–1775) 14: 568–574

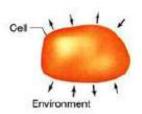
www.euronet.nl/users/warnar/leeuwenhoek.html.


"In the morning I used to rub my teeth with salt and rinse my mouth with water and after eating to clean my molars with a toothpick.... I then most always saw, with great wonder, that in the said matter there were many very little living animalcules, very prettily amoving. The biggest sort had a very strong and swift motion, and shot through the water like a pike does through the water; mostly these were of small numbers."



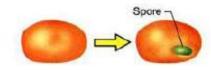
Bacteria are complex living systems

- Bacterial cells are complex biochemical and biophysical machines
 - Wide range of shapes, typically 0.5-5 µm in length
 - 10⁶ bacterial cells in 1 ml of fresh water
 - 10 times as much bacterial cells as human cells in human body

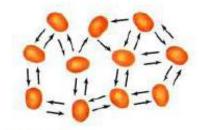


Bacteria are complex living systems

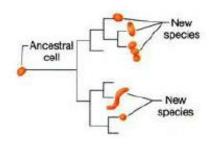
- Bacterial cells are complex biochemical and biophysical machines
- Bacteria possess
 characteristics shared by
 most living systems:
 - Metabolism
 - Growth and reproduction
 - Differentiation
 - Communication
 - Evolution


1. Metabolism

Uptake of chemicals from the environment, their transformation within the cell, and elimination of wastes into the environment. The cell is thus an open system.


2. Reproduction (growth)

Chemicals from the environment are turned into new cells under the direction of preexisting cells.

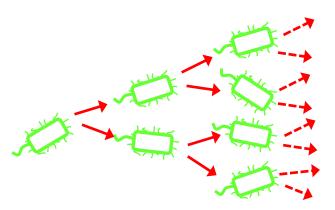

3. Differentiation

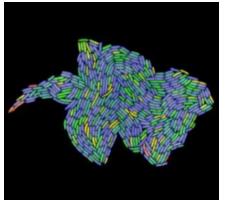
Formation of a new cell structure such as a spore, usually as part of a cellular life cycle.

4. Communication

Cells communicate or interact primarily by means of chemicals that are released or taken up.

5. Evolution


Cells evolve to display new biological properties. Phylogenetic trees show the evolutionary relationships between cells.

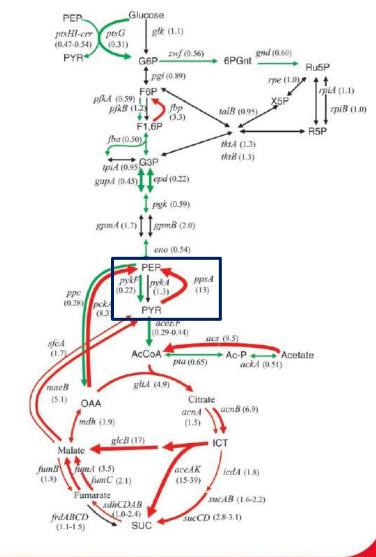

Madigan et al. (2003), Brock Biology of Microorganisms, Prentice Hall, 10th ed.

Bacteria are geared towards growth and division
Escherichia coli cells have doubling times up to 20 min

Stewart et al. (2005), PLoS Biol., 3(2): e45

Metabolism fuels growth by production of energy and building blocks for macromolecules, using nutriments from environment

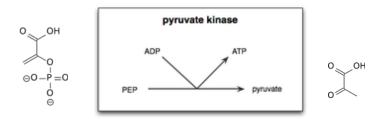
ATP, amino acids, nucleotides, ...

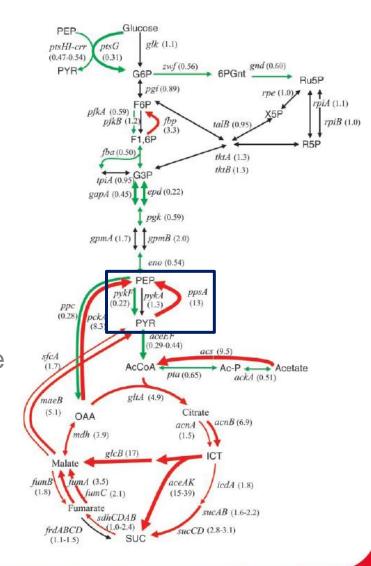


 Central carbon metabolism breaks down carbon sources for energy production and macromolecular synthesis

Glucose, acetate, lactose, ...

Oh et al. (2002), J. Biol. Chem., 277(15):13175-83

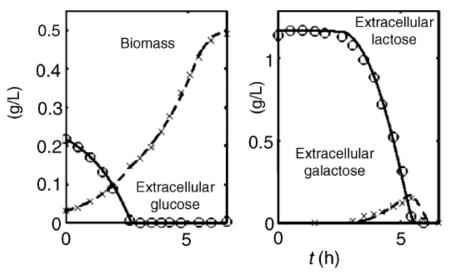




Central carbon metabolism breaks down carbon sources for energy production and macromolecular synthesis

Glucose, acetate, lactose, ...

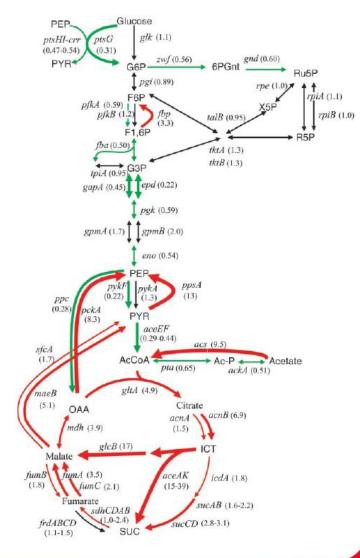
- Enzymes catalyze individual steps in metabolic network
 - Pyruvate kinase transforms phosphoenolpyruvate (PEP) into pyruvate



 Bacteria can sequentially use different sugars, in preferential order

Diauxic growth on glucose and lactose

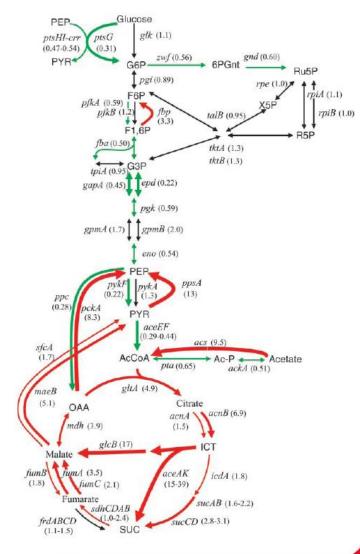
Bettenbrock *et al.* (2006), *J. Biol. Chem.*, 281(5):2578-84



- Bacteria can sequentially use different carbon sources, in preferential order
- Adaptation of bacteria to growth on different carbon source involves changes in metabolic fluxes

Different flux directions in central metabolism of *E. coli* during growth on glucose (**glycolysis**) and acetate (**gluconeogenesis**)

Oh et al. (2002), J. Biol. Chem., 277(15):13175–83



- Bacteria can sequentially use different carbon sources, in preferential order
- Adaptation of bacteria to growth on different carbon source involves adjustment of enzyme levels

Differences in expression of enzymes in central metabolism of *E. coli* during growth on glucose and acetate

Oh et al. (2002), J. Biol. Chem., 277(15):13175–83

 Bacteria can sequentially use different carbon sources, in preferential order

 Adaptation of bacteria to growth on different carbon source involves adjustment of metabolite levels

Absolute measurement of metabolite concentrations in *E. coli* cells growing on glucose

Majority of metabolites present at significantly different concentrations in cells growing on acetate rather than glucose

Bennett et al. (2009), Nat. Chem. Biol., 5(8):593-9

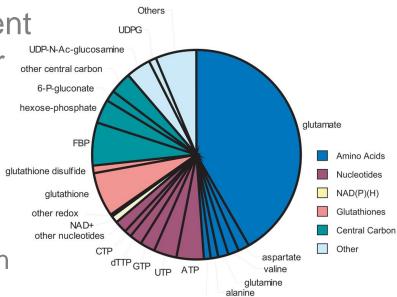
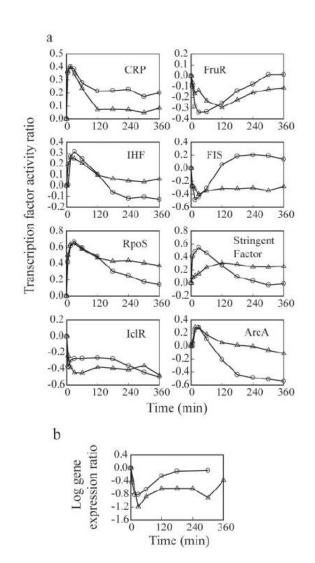


Table 1 Intracellular metabolite concentrations in glucose-fed, exponentially growing E. coli

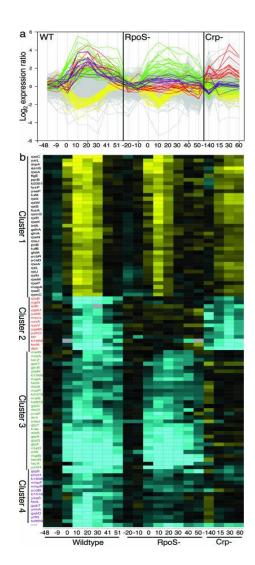
			-
Metabolite	mol I⁻¹	Metabolite	mol I⁻¹
Glutamate	9.6 × 10 ⁻²	UDP-glucuronate (51)	5.7 × 10 ⁻⁴
Glutathione	1.7×10^{-2}	ADP	5.6×10^{-4}
Fructose-1,6-bisphosphate	1.5×10^{-2}	Asparagine (52)	5.1×10^{-4}
ATP	9.6×10^{-3}	α-Ketoglutarate	4.4×10^{-4}
UDP-N-acetylglucosamine (29)	9.2×10^{-3}	Lysine (53)	4.1×10^{-4}
Hexose-Pa	8.8×10^{-3}	Proline (54)	3.9×10^{-4}
UTP (30)	8.3×10^{-3}	dTDP (55)	3.8×10^{-4}
GTP (31)	4.9×10^{-3}	Dihydroxyacetone phosphate	3.7×10^{-4}
dTTP	4.6×10^{-3}	Homocysteine (56)	3.7×10^{-4}
Aspartate	4.2×10^{-3}	CMP (57)	3.6×10^{-4}
Valine (32)	4.0×10^{-3}	Deoxyribose-5-P (58)	3.0×10^{-4}
Glutamine	3.8×10^{-3}	Isoleucine (59) + leucine (60)	3.0×10^{-4}
6-Phosphogluconate	3.8×10^{-3}	AMP	2.8×10^{-4}



- Bacteria can sequentially use different carbon sources, in preferential order
- Adaptation of bacteria to growth on different carbon source involves adjustment of transcription factor levels

Changes in activity and concentration of transcription factors during glucose-acetate diauxie in *E. coli*

Kao et al. (2005), J. Biol. Chem., 280(43):36079-87



Growth adaptation and gene expression

 Genome-wide reorganization of gene expression following growth transitions in bacteria

Gene expression during glucose-lactose diauxie in *E. coli*, in wild-type and transcription factor mutants

Traxler et al. (2006), Proc. Natl. Acad. Sci. USA, 103(7):2374–9

General question on cellular adaptation

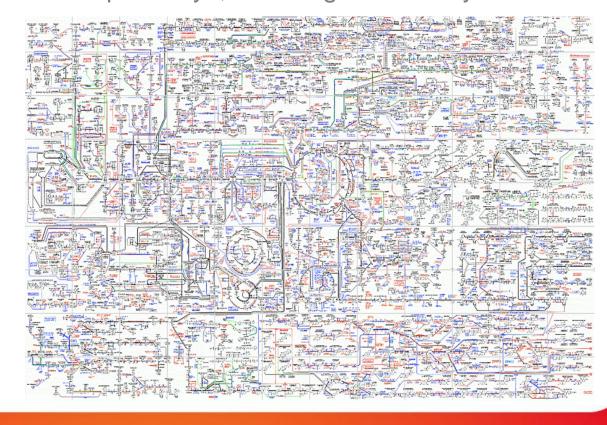
 Cells are capable of responding to a variety of changes in their environment by adapting their physiology

Change in carbon source, starvation, population density, ...

 On the molecular level, these responses involve adjustment of metabolism and gene expression

Cellular concentrations of metabolites, enzymes, transcription factors,

 Question: how does cell coordinate these adaptive responses?


Coordination of adaptive responses

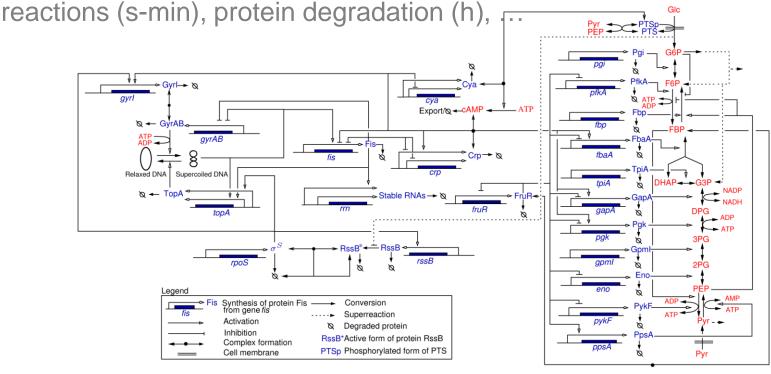
 Coordination involves regulation of functioning of biochemical reaction networks

Most networks are large and complex

- E. coli has \pm 200 metabolic pathways, involving \pm 900 enzymes and

± 1000 reactions

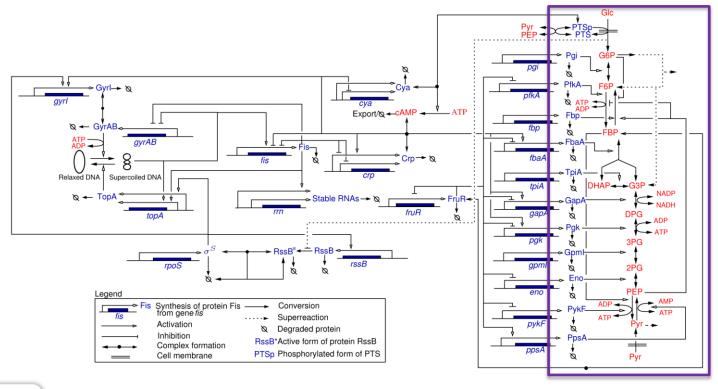
Karp et al. (2007), Nucleic Acids Res., 35(22):7577-90



Coordination of adaptive responses

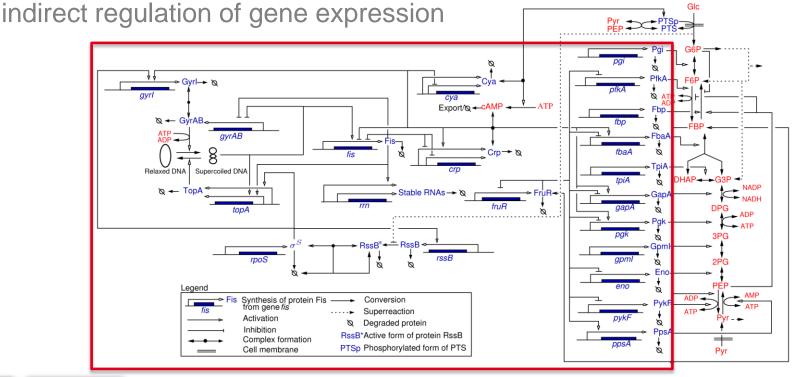
 Coordination involves regulation of functioning of biochemical reaction networks

Most networks involve variety of biochemical reaction
mechanisms, operating on different time-scales: enzymatic
reactions (s-min) protein degradation (h)


Baldazzi et al. (2010), PLoS Comput. Biol., 6(6):e1000812

Types of biochemical reaction networks

- Types of networks distinguished by focusing on specific interactions and different time-scales:
 - Metabolic networks: metabolites and enzymatic reactions



Types of biochemical reaction networks

- Types of networks distinguished by focusing on specific interactions and different time-scales:
 - Metabolic networks: metabolites and enzymatic reactions

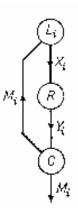
Gene regulatory networks: genes, RNAs, proteins, and direct and

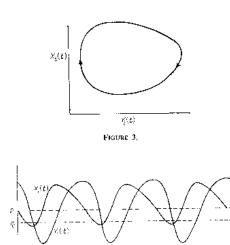
Analysis of network functioning: from structure to dynamics

- Wealth of knowledge on network structure in many bacteria
 - Scientic databases and repositories
 - Primary experimental literature
- Comprehension of network functioning requires observed system dynamics to be related to network structure
- Mathematical modeling and computer simulation indispensable for dynamic analysis of biochemical reaction networks
- Analysis of network functioning has a central place in emerging field of systems biology

Alon (2007), An Introduction to Systems Biology, Chapman & Hall/CRC Press

Historical note


 Systems biology, and more particularly the mathematical modeling and computer simulation of biochemical reaction networks, have a long history


Westerhoff and Palsson, Nat. Biotechnol., 22(10):1249-52

Simulation of metabolic pathways (glycolysis)

Garfinkel et al. (1970), Ann. Rev. Biochem., 39:473-98

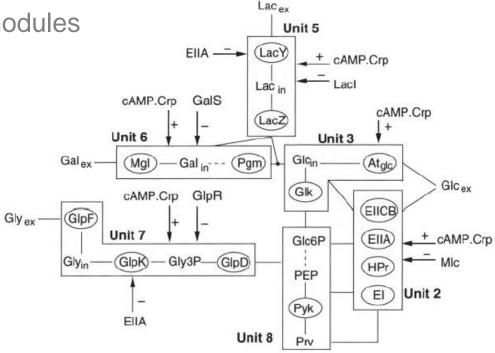
Modeling of gene regulatory networks

Goodwin (1963), Temporal Organization in Cells

Mathematical modeling of biochemical reaction networks

- Well-established framework for modeling of biochemical reaction networks using ordinary differential equation (ODE) models
- General form of ODE models of biochemical reaction networks $\dot{x} = N \, v(x)$
 - Concentration variables $x \in \mathbb{R}^n_+$
 - Reaction rates $\,v\,:\,\mathbb{R}^n_+ o\mathbb{R}^q\,$
 - Stoichiometry matrix $N \in \mathbb{Z}^{n \times q}$
- Various forms of kinetic rate laws: mass-action, Michaelis-Menten, Hill, Monod-Wyman-Changeux, ...

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall

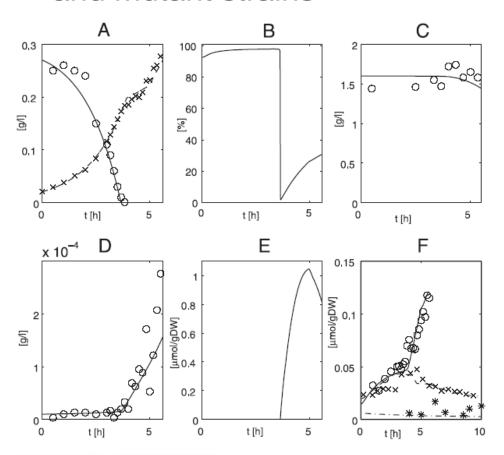


Example of network modeling

 Model of uptake of carbon sources (glucose, lactose, glycerol, ...) by E. coli

 Several dozens of equations and more than a hundred parameters, many of them unknown or unreliable

Mostly metabolic modules


Bettenbrock et al. (2005), J. Biol. Chem., 281(5): 2578-2584

Example of network modeling

 Estimation of parameter values from time-series measurements of metabolite concentrations on wild-type and mutant strains

 Model has good predictive capability

Bettenbrock *et al.* (2005), *J. Biol. Chem.*, 281(5): 2578-2584

Issues in mathematical modeling

- Mathematical models are used for explanation, prediction, and control
- Modeler confronted with several practical problems
 - Models of actual networks are large systems of nonlinear ODEs
 - Parameter values are generally unknown and difficult to measure directly
 - Reaction mechanisms are often unknown
 - Experimental measurements of variables are scarce, noisy, and indirect
- This raises issues in model reduction and approximation, parameter estimation, network inference, data analysis, ...
- But also: issues in experimental data acquisition

Objective of course "Modeling of biological networks"

- Course objective is to master kinetic modelling as applied to metabolic and gene regulatory networks
 - Both the theoretical foundations and concrete applications to diverse systems of biological regulation
 - Applications will rely on the practical use of computer tools for the modelling, analysis and simulation of biological networks

Program and teachers

- Part 1. Systems biology and kinetic modeling (courses 7 h)
 - Reminders on dynamical systems (Hidde de Jong)
 - Introduction to regulatory systems (Hans Geiselmann)
 - Reminders on kinetic modeling and enzymology (Daniel Kahn)
- Part 2. Metabolic network modeling (courses 6 h, and practicals 9 h)
 - Introduction to metabolic networks (Daniel Kahn)
 - Metabolic Control Theory (Daniel Kahn)
 - Practical on the modeling of a metabolic system using COPASI (Daniel Kahn)

Program and teachers

- Part 3. Gene regulatory network modeling (courses 16 h, and practicals 6 h)
 - Introduction to recent techniques for measuring gene expression (Hidde de Jong)
 - Kinetic models of gene expression and dynamics of gene regulatory networks (Hidde de Jong)
 - Identification and inference of gene network models (Eugenio Cinquemani)
 - Practical on the qualitative modeling of bacterial regulatory networks, using GNA (Hidde de Jong)
- Part 4. Towards integrated models of regulatory networks (courses 2 h)
 - MetaGenoReg project (Daniel Kahn and Hidde de Jong)

Evaluation

- Metabolic network modeling:
 - Exercises handed out during course
- Gene regulatory network modeling:
 - Questions on articles handed out during course
 - Or: literature review on specific topic of interest
- Grade is average of grades for two subparts of course
- Articles will be made available via course web site

Merci

www.inrialpes.fr/ibis