UNIVERSITE
JOSEPH FOURIER

SCIENCES TECHNOLOGIE MEDECINE

y 4

: informatics g”mathematics

Introduction

Hidde de Jong
IBIS

INRIA Grenoble — Rhéne-Alpes
Hidde.de-Jong@inria.fr

September 26, 2012



INRIA Grenoble - Rhone-Alpes and IBIS

« |BIS: systems biology group at INRIA/Université Joseph Fourier/CNRS

— Analysis of bacterial regulatory networks by means of models and experiments
— Biologists, computer scientists, mathematicians, physicists, ...

|
o o
http://ibis.inrialpes.fr \ | l hls %

I&L'zz'a/-




Bacteria

« Bacteria were first observed by Antonie van Leeuwenhoek,
using a single-lens microscope of his own design
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van Leeuwenhoek A (1684),
Philosophical Transactions
(1683—1775) 14: 568-574

httpZ//commons.wikimedia.org/ WWW. euronet nVusers/wamar/leeuwenhoek html.

"In the morning | used to rub my teeth with salt and rinse my mouth with water and after

eating to clean my molars with a toothpick.... | then most always saw, with great wonder,

that in the said matter there were many very little living animalcules, very prettily a-
moving. The biggest sort had a very strong and swift motion, and shot through the water

like a pike does through the water; mostly these were of small numbers."
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Bacteria are complex living systems

« Bacterial cells are complex
biochemical and biophysical
machines
— Wide range of shapes, typically

0.5-5 um in length
— 106 bacterial cells in 1 ml of fresh
water

— 10 times as much bacterial cells
as human cells in human body

Goodsell (2010), The Machinery
of Life, Springer, 2nd ed.
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Bacteria are complex living systems

Bacterial cells are complex

ce|\~"

biochemical and biophysical ,/0\ ",,‘\\
machines nErR ﬂ ' \7;':/’

. 1. Metabolism . H Q=9
BaCte”a possess 33.'3&.?:.%0" wW\hﬁt;"ctglo.andelininaﬁot:* e "’
of wastes into the emvironmant. The cell is thus an

characteristics shared by opea sy, v o o i by s

most living systems: "
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— Metabolism — species
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— Growth and reproduction Row ol ndor e iecton of promiig calh

— Differentiation smi >

B Comm.unlcatlon == "E!"iéﬂ%"mw new biological properties

— Evolution . Dl Phylogenetio rees show ffio voitonary

Formation of a new cell structure such asaspore,  relationships between cells.
usually as part of a cellular ¥e cycle.

Madigan et al. (2003), Brock Biology of
Microorganisms, Prentice Hall, 10th ed.




Bacterial growth and metabolism

« Bacteria are geared towards growth and division
Escherichia coli cells have doubling times up to 20 min

Stewart et al. (2005), PLoS Biol., 3(2): e45

 Metabolism fuels growth by production of energy and building
blocks for macromolecules, using nutriments from environment

ATP, amino acids, nucleotides, ...
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Bacterial growth and metabolism
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Bacterial growth and metabolism

« Central carbon metabolism breaks el >
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Bacterial growth and met

abolism

e Bacteria can sequentially use different

sugars, in preferential order

Diauxic growth on glucose and lactose

0-5 Biomass {(1:
0.4 ;[ '
- ¥
3 03 y
0.2 .,f/
0.1 / Extracellular 1
glucose
0
0 5

Extracellular
galactose

Extracellular
lactose

et

t(h)

5

Bettenbrock et al. (2006), J. Biol. Chem.,
281(5):2578-84




Bacterial growth and metabolism

e Bacteria can sequentially use different

carbon sources, in preferential order

« Adaptation of bacteria to growth on
different carbon source involves
changes in metabolic fluxes

Different flux directions in central
metabolism of E. coli during growth on
glucose (glycolysis) and acetate
(gluconeogenesis)

Oh et al. (2002), J. Biol. Chem., 277(15):13175-83
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Bacterial growth and metabolism

e Bacteria can sequentially use different
carbon sources, in preferential order

« Adaptation of bacteria to growth on
different carbon source involves
adjustment of enzyme levels

Differences in expression of enzymes in
central metabolism of E. coli during growth
on glucose and acetate

Oh et al. (2002), J. Biol. Chem., 277(15):13175-83

PEP. Glucose

ptsHl-crr Y ptsG glk (1.1)
(0.47-0.54) A_(0.31)
PYR GSP 2w (0.56) gnd (0.60)

EPEN e Ru 5P

pg F(0.89) w(l‘ﬂ/)'
iA (1.1)
plkA ¢059)| rp
pjkB(l )ﬂ’;;) IBV 'pB(m)

fbago. 5°’ tlaA a3

tht B(I 3)
1pid (095 i 095 39F
gapd (0. 45)1 epd (0.22)
I pek (0.59)
gpmA (IJ)I Igme 2.0)

I eno (0.54)

PEP,
PYKF pykA ppsd
(0.22) (1.3) (13)
pckA

l(n 29-0.44)
AcCoAr_-i-\Acelate

Pla(0.65) ackA (0.51)

gltd (4.9)

!l
51 paa Citrate

acnd acnB (6.9)
/mdh (39 (1.5) \\\

gl B (17) IcT

A (3.5) iedA (1.8)
( 8) C( 1) (1539)

SUCAB (1.6-22)

dhCDAB
ﬁ'dAB(‘D\ 0-2.49) SucCD (2.8-3.1)

(1.1-1.5) SuC




Bacterial growth and metabolism

« Bacteria can sequentially use different oo

UDP-N-Ac-glucosamine

carbon sources, in preferential order o cmso

6-P-gluconate

« Adaptation of bacteria to growth on s o
different carbon source involves B, i ks

glutathione disulfide e

adjustment of metabolite levels

other redox

Absolute measurement of metabolite GOk e
concentrations in E. coli cells growing on TP aspartate

glucose darive

Table 1 Intracellular metabolite concentrations in glucose-fed, exponentially growing E. coli

Majority of metabolites present at

B Nucleotides
[ NAD(P)(H)
O Glutathiones
B Central Carbon

|:| Other

. L. . . . Glutamate 9.6x10-2 UDP-glucurona te (51) 5.7 x10-4
significantly different concentrations in g 170 e
Fructose-1,6-bisphosphate 1.5x10-2 Asparagine (52) 5.1x10-*

| | 1 t t th th ATP 9.6 % 10-3 o-Ketoglutarate 4.4%10-4
Ce S g rOWI n g 0 n ace a' e ra er an UDP-N-acetylglucosamine (29) 9.2x10°3 Lysine (53) 4.1x10-%
Hexose-P? 88x10-3 Proline (54) 3.9x10-*

glucose UTP (30) 8.3x10-3 dTDP (55) 3.8x10-4
GTP (31) 4.9x10-3 Dihydroxyacetone phosphate 3.7x10-4

H . _ dTTP 4.6x10-3 Homocysteine (56) 3.7x10-*

Bennett et al. (2009), Nat. Chem. Biol., 5(8):593-9 | pa10s e 1o
Valine (32) 4.0x10-3 Deoxyribose-5-P (58) 3.0x10-*

Glutamine 3.8x10-3 Isoleucine (59) +leucine (60) 3.0x10-*

6-Phosphogluconate 3.8x10°2 AMP 2.8x10°*




Bacterial growth and metabolism

e Bacteria can sequentially use different e
carbon sources, in preferential order 02 “”M
 Adaptation of bacteria to growth on e

different carbon source involves
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Growth adaptation and gene expression

 Genome-wide reorganization of gene ]
expression following growth
transitions in bacteria B

Gene expression during glucose-lactose
diauxie in E. coli, in wild-type and
transcription factor mutants
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Traxler et al. (2006), Proc. Natl. Acad. Sci. USA, 103(7):2374-9
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General question on cellular adaptation

« Cells are capable of responding to a variety of changes In
their environment by adapting their physiology
Change in carbon source, starvation, population density, ...
* On the molecular level, these responses involve adjustment
of metabolism and gene expression
Cellular concentrations of metabolites, enzymes, transcription factors,

* Question: how does cell coordinate these adaptive
responses?




Coordination of adaptive responses

« Coordination involves regulation of functioning of
biochemical reaction networks
— Most networks are large and complex

— E. coli has = 200 metabolic pathways, involving £ 900 enzymes and
+ 1000 reactions |

. . “3‘.: "fh- P e

Karp et al. (2007), Nucleic Acids Res.,
35(22):7577-90
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Coordination of adaptive responses

« Coordination involves regulation of functioning of
biochemical reaction networks

Most networks involve variety of biochemical reaction

mechanisms, operating on different time-scales: enzymatic
reactions (s-min), protein degradation (h), -
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Types of biochemical reaction networks

* Types of networks distinguished by focusing on specific
Interactions and different time-scales:
— Metabolic networks: metabolites and enzymatic reactions
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Types of biochemical reaction networks

« Types of networks distinguished by focusing on specific
Interactions and different time-scales:

— Metabolic networks: metabolites and enzymatic reactions

— Generegulatory networks: genes, RNAs, proteins, and direct and

indirect regulation of gene expression v
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Analysis of network functioning: from
structure to dynamics

* Wealth of knowledge on network structure in many bacteria
— Scientic databases and repositories
— Primary experimental literature

« Comprehension of network functioning requires observed
system dynamics to be related to network structure

« Mathematical modeling and computer simulation
Indispensable for dynamic analysis of biochemical reaction
networks

* Analysis of network functioning has a central place In
emerging field of systems biology

Alon (2007), An Introduction to Systems Biology, Chapman & Hall/CRC Press




Historical note

e Systems biology, and more particularly the mathematical
modeling and computer simulation of biochemical reaction

networks, have a long history
Westerhoff and Palsson, Nat. Biotechnol.,22(10):1249-52

« Simulation of metabolic pathways (glycolysis)
Garfinkel et al. (1970), Ann. Rev. Biochem., 39:473-98

Modeling of gene regulatory networks




Mathematical modeling of biochemical
reaction networks

* Well-established framework for modeling of biochemical

reaction networks using ordinary differential equation
(ODE) models

 General form of ODE models of biochemical reaction

networks
" = N v(x)

— Concentration variables z € RY
— Reactionrates v : R} — R?
— Stoichiometry matrix N &€ Z™*1¢

 Various forms of kinetic rate laws: mass-action, Michaelis-
Menten, Hill, Monod-Wyman-Changeuyx, ...

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall




Example of network modeling

* Model of uptake of carbon sources (glucose, lactose,
glycerol, ...) by E. coli
— Several dozens of equations and more than a hundred parameters,
many of them unknown or unreliable
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Bettenbrock et al. (2005), J. Biol. Chem., 281(5): 2578-2584




Example of network modeling

« Estimation of parameter values from time-series
measurements of metabolite concentrations on wild-type
and mutant strains

5 c * Model has good
R 2 o predictive capability
80 15fo o % 9
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Issues In mathematical modeling

 Mathematical models are used for explanation, prediction,
and control

* Modeler confronted with several practical problems

Models of actual networks are large systems of nonlinear ODEs

Parameter values are generally unknown and difficult to measure
directly

Reaction mechanisms are often unknown

Experimental measurements of variables are scarce, noisy, and
Indirect

* This raises issues in model reduction and approximation,
parameter estimation, network inference, data analysis, ...

« But also: issues in experimental data acquisition




Objective of course "Modeling of biological
networks"

 Course objective is to master kinetic modelling as applied
to metabolic and gene regulatory networks

Both the theoretical foundations and concrete applications to diverse
systems of biological regulation

Applications will rely on the practical use of computer tools for the
modelling, analysis and simulation of biological networks




Program and teachers

« Part 1. Systems biology and kinetic modeling (courses 7 h)

— Reminders on dynamical systems (Hidde de Jong)
— Introduction to regulatory systems (Hans Geiselmann)
— Reminders on kinetic modeling and enzymology (Daniel Kahn)

« Part 2. Metabolic network modeling (courses 6 h, and

practicals 9 h)

— Introduction to metabolic networks (Daniel Kahn)
— Metabolic Control Theory (Daniel Kahn)

— Practical on the modeling of a metabolic system using COPASI
(Daniel Kahn)




Program and teachers

« Part 3. Gene regulatory network modeling (courses 16 h,
and practicals 6 h)

Introduction to recent techniques for measuring gene expression
(Hidde de Jong)

Kinetic models of gene expression and dynamics of gene regulatory
networks (Hidde de Jong)

|dentification and inference of gene network models (Eugenio
Cinguemani)

Practical on the qualitative modeling of bacterial regulatory networks,
using GNA (Hidde de Jong)

« Part 4. Towards integrated models of regulatory networks
(courses 2 h)
— MetaGenoReg project (Daniel Kahn and Hidde de Jong)




Evaluation

Metabolic network modeling:
Exercises handed out during course

Gene reqgulatory network modeling:

— Questions on articles handed out during course
— Oir: literature review on specific topic of interest

Grade is average of grades for two subparts of course
Articles will be made available via course web site
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