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• IBIS: systems biology group at INRIA/Université Joseph Fourier/CNRS 

– Analysis of bacterial regulatory networks by means of models and 

experiments 

– Biologists, computer scientists, mathematicians, physicists, … 
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Overview 

1. Gene regulatory networks in bacteria 

2. Deterministic modeling of gene regulatory networks 

3. Qualitative modeling of gene regulatory networks  

4. Stochastic modeling of gene regulatory networks 

5. Some current issues and perspectives 

 



Gene regulatory networks 

• Gene regulatory networks control changes in gene 

expression levels in response to environmental perturbations 
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Kotte et al. (2010), Mol. Syst. Biol., 6:355 

• Gene regulatory networks 

consist of genes, gene 

products, signalling 

metabolites, and their mutual 

regulatory interactions  

 Global regulators of transcription 

involved in glucose-acetate 

diauxie in E. coli 



Gene expression 
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• Typically, and simplifying quite a bit, gene expression in 

bacteria involves:  

– Transcription by RNAP (mRNA) 

– Translation by ribosomes (proteins) 

– Degradation of mRNA and protein 

 

 

 

 



Regulation of gene expression 
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• Typically, and simplifying quite a bit, regulation of gene 

expression in bacteria involves:  

– Transcription regulation by transcription factors 

– Translation regulation by small RNAs 

– Regulation of degradation by proteases 



Modeling of gene regulatory networks 

• Different modeling formalisms exist, describing gene 

expression on different levels of detail 
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Ordinary differential 

equations (ODEs) 

Stochastic master 

equations 
Boolean 

networks 

coarse-grained detailed 

Smolen et al. (2000), Bull. Math. Biol., 62(2):247-292 

Hasty et al. (2001), Nat. Rev. Genet., 2(4):268-279 

de Jong (2002), J. Comput. Biol., 9(1): 69-105 

Szallassi et al. (2006), System Modeling in Cellular Biology, MIT Press 

Bolouri (2008), Computational Modeling of Gene Regulatory Networks, 

Imperial College Press 

Karleback and Shamir (2008), Nat. Rev. Mol. Cell Biol., 9(10):770-80  
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Ordinary differential equation models 

• Cellular concentration of proteins, mRNAs, and other 

molecules at time-point t represented by continuous variable 

xi(t)  R0 

• Regulatory interactions, controlling synthesis and 

degradation, modeled by ordinary differential equations 

 where x  [x1,…, xn]´and f (x) is rate law 

• Kinetic theory of biochemical reactions provides well-

established framework for specification of rate laws 

 

  x  f (x),   
. dx 

dt 

Cornish-Bowden (1995), Fundamentals of Enzyme Kinetics, Portland Press 

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall 
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• ODE model of gene expression, distinguishing transcription 

and translation 

 

 

 

 

 

 

 

Modeling of gene regulatory networks 

m  m – (m+µ) m  

. 

p  p m – (p+µ) p  

. 

m(t) ≥ 0, concentration mRNA  

p(t) ≥ 0, concentration protein  

m, p > 0, synthesis rate constants  

m, p > 0, degradation rate constants  

µ ≥ 0, growth rate 



10 

• ODE model of gene expression, collapsing transcription and 

translation 

 

 

 

 

 

 

 

Modeling of gene regulatory networks 

p  p  – (p+µ) p  

. 

p(t) ≥ 0, concentration protein  

p > 0, synthesis rate constant  

p > 0, degradation rate constant  

µ ≥ 0, growth rate 
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Modeling of gene regulatory networks 

• ODE model of gene expression, taking into account regulation 

of transcription 

 

 

 

 

• Regulation function f (x) describes modulation of synthesis rate 

by transcription factor 

Generalization to regulation on translational and proteolytic level 

 

 

x 

m  m f (x)– (m+µ) m  

. 

p  p m – (p+µ) p  

. 
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Modeling of gene regulatory networks 

• ODE model of gene expression, taking into account regulation 

of transcription 

 

 

 

 

• Regulation function f (x) typically has sigmoidal form, due to 

cooperative nature of regulation 

 

f (x) =                   ,    > 0 threshold,  
 

n 

 
n
 + x 

n 

x 

f (x) 

 0 

1 

n  > 1 cooperativity  

x 

m  m f (x)– (m+µ) m  

. 

p  p m – (p+µ) p  

. 
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Modeling of gene regulatory networks 

• ODE model of gene expression, taking into account regulation 

of transcription 

 

 

 

 

• Regulation function f (x) typically has sigmoidal form, 

accounting for cooperative nature of regulation 

• Implicit modeling assumptions: 

– Ignore gene expression machinery (RNA polymerase, ribosome) 

– Simplification of complex protein-DNA interactions to response function 

 

 

x 

m  m f (x)– (m+µ) m  

. 

p  p m – (p+µ) p  

. 



Modeling of gene regulatory networks 

• ODE model of gene expression, taking into account regulation 

of transcription 

 

 

 

 

• Gene regulatory network has many genes with mutual 

regulatory interactions: model of coupled ODEs 

 

 

 

 

x 

m  m f (x)– (m+µ) m  

. 

p  p m – (p+µ) p  

. 
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Analysis and numerical simulation 

• No analytical solution for most nonlinear differential equations 

• Dynamic systems theory provides techniques for analysis of 

nonlinear differential equations, but usually not scalable 

– Phase portrait 

– Bifurcation analysis 

• Approximation of solution obtained by numerical simulation, 

given parameter values and initial conditions x(0)  x0 

Kaplan and Glass (1995),  Understanding 

Nonlinear Dynamics, New York 

Lambert (1991), Numerical Methods  

for Ordinary Differential Equations, Wiley t 

x 

0 

f (x) dt 

t 

t + t 

x (t + t )  x (t)   x (t)   f (x) t  
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• Cross-inhibition network consists of two genes, each coding 

for transcription regulator inhibiting expression of other gene 

 

 

 

• Cross-inhibition network is example of positive feedback, 

important for phenotypic differentiation (multi-stability)  

Cross-inhibition network 

Thomas and d’Ari (1990), Biological Feedback, CRC Press 
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ODE model of cross-inhibition network 

 

 

 

 

f (x) =                   ,    > 0 threshold,  
 

n 

 
n
 + x 

n 

x 

f (x) 

 0 

1 

n  > 1 cooperativity  

xa  a f (xb) – a xa  

. 

xb  b f (xa) – b xb  
. 

xa(t) ≥ 0, concentration protein A  

xb(t) ≥ 0, concentration protein B  

a , b > 0, synthesis rate constants  

a , b > 0, degradation rate constants  
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Bistability of cross-inhibition network 

• Analysis of steady states in phase plane   

 

 

 

 

 

• System is bistable: two stable and one unstable steady state. 

• For almost all initial conditions, system will converge to one of 

two stable steady states (differentiation) 

• System returns to steady state after small perturbation 

xb 

xa 

0 

xa = 0  
. 

xa  0  xa  (a / a) f (xb) 
. 

xb  0  xb  (b / b) f (xa) 
. 

xb = 0  
. 



Hysteresis in cross-inhibition network 

• Transient perturbation may cause irreversible switch from one 

steady state to another (hysteresis) 

Modulation of regulatory effect of one of regulators (α) 

 

 

 

 

 

 

 

 

• Change in parameter causes saddle-note bifurcation 
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xb 

xa 

0 xb 

xa 

0 

α 1  α  0  

xa  a f (αxb) – a xa  

. 

xb  b f (xa) – b xb  

. 

xa = 0  
. 

xb = 0  
. 

xa = 0  
. 

xb = 0  
. 
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Construction of cross inhibition network 

• Construction of cross inhibition network in vivo 

 

 

 

 

 

 

 

• ODE model of network 

 

u =                      – u 
1 + v β 

α1 v =                      – v 
1 + u 
α2 . . 

Gardner et al. (2000), Nature, 403(6786): 339-42 
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Experimental test of model 

• Experimental test of mathematical model (bistability and 

hysteresis) 

 

 

 

 

 

Gardner et al. (2000), Nature, 403(6786): 339-42 
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Bacteriophage  infection of E. coli 

• Response of E. coli to phage  

infection involves decision between 

alternative developmental pathways:   

lysis and lysogeny 
Ptashne, A Genetic Switch, Cell Press,1992 
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Bistability in phage  
• Lytic and lysogenic pathways involve different patterns of 

gene expression 
 

Ptashne, A Genetic Switch, Cell Press,1992 
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Control of phage  fate decision 

• Cross-inhibition feedback plays key role in establishment of 

lysis or lysogeny, as well as in induction of lysis after DNA 

damage 

Santillán and Mackey (2004), Biophys. J., 86(1):75-84 
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Simple model of phage  fate decision  

• Differential equation model of cross-inhibition feedback 

network involved in phage  fate decision 

 mRNA and protein, delays, thermodynamic description of gene 

regulation 

Santillán and Mackey (2004), Biophys. J., 86(1):75-84 
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Analysis of phage  model 

• Bistability (lysis and lysogeny) only occurs for certain 

parameter values 

• Switch from lysogeny to lysis involves bifurcation from one 

monostable regime to another, due to change in degradation 

constant 

 

  

 

Santillán and Mackey (2004), Biophys. J., 86(1):75-84 
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Extended model of phage  infection 

• ODE model of the extended network underlying decision 

between lysis and lysogeny 

Role of other regulatory proteins (CII, N, Q, …) 

McAdams and Shapiro (1995), 

Science, 269(5524):650-6 

• Recent experimental 

work downplays 

importance of mutual 

inhibition of CI and Cro 

in lysis-lysogeny 

decision 
Oppenheim et al. (2005), Annu. Rev. 

Genet., 39:409–29 



28 

Simulation of phage  infection 

• Numerical simulation of promoter activity and protein 

concentrations in (a) lysogenic and (b) lytic pathways 

 

 

 

 

 

 

 

• Cell follows one of two pathways for different initial 

conditions 



Real-time monitoring of phage  infection  

• New measurement techniques allow real-time and in-vivo 

monitoring of the execution of lytic and lysogenic pathways 

 Use of fluorescent reporter genes in combination with automated 

plate readers 
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Q 

CII 

Kobiler et al. (2005), Proc. Natl. 

Acad. Sci. USA, 102(12): 4470-5 
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Other examples of bistability 

• Many other examples of bistability exist in bacteria 

– Lactose utilization in E. coli 

– Persister cells and antibiotic resistance in E. coli 

– Genetic competence in B. subtilis 

– … 

• Can we find general design principles, relating network 

structure to bistability and other properties of network 

dynamics? 

 

 

 

 

Dubnau and Losick (2006), Mol. Microbiol., 61 (3):564–72 

Alon (2007), An Introduction to Systems Biology, Chapmann&Hall/CRC 
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Necessary condition for bistability 

• Necessary condition for bistability, or multistability, is the 

occurrence of positive feedback loops in the regulatory 

network 

 

 

• Increasingly general mathematical proofs of necessary 

condition for bistability, or multistability, in regulatory 

networks 

 Regulatory interactions (activation/inhibition) lead to non-zero signs 

(+/-) in Jacobian matrix 

• Condition is not sufficient, as the actual occurrence of 

bistability depends on parameter values 

 

Thomas and d’Ari (1990), Biological Feedback, CRC Press 

+ 

+ 

+ 

− 

− 

Soulé (2003), ComPlexUs, 1:123-33 



Necessary condition for oscillations 

• Necessary condition for oscillations is the occurrence of 

negative feedback loops in the regulatory network 

 

 

 

• Condition is not sufficient, as the actual occurrence of 

(stable) oscillations depends on: parameter values, 

nonlinearities, number of genes, … 
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Thomas and d’Ari (1990), Biological Feedback, CRC Press 

− 

+ − 

Purcell et al. (2010), J. R. Soc. Interface, 7(52):1503-24  



Construction of oscillator network 

• Construction of oscillator in vivo: repressilator 

 

 

 

 

 

• ODE model of oscillator 
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Elowitz and Leibler (2000), Nature, 403(6767):335-8  



Necessary condition for oscillations 

• Necessary condition for oscillations is the occurrence of 

negative feedback loops in the regulatory network 

 

 

 

• Condition is not sufficient, as the actual occurrence of 

(stable) oscillations depends on: parameter values, 

nonlinearities, number of genes, … 

• Combination of negative with positive feedback tends to 

stabilize oscillations 
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Thomas and d’Ari (1990), Biological Feedback, CRC Press 

+ − 

+ − 
− + 

Purcell et al. (2010), J. R. Soc. Interface, 7(52):1503-24  
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Conclusions 

• Ordinary differential equation (ODE) models describe 

dynamics of gene regulatory networks in deterministic way 

• ODE models provide general formalism for which powerful 

analysis and simulation techniques exist 

• ODE models are based on well-developed theoretical 

framework and have been applied to many gene regulatory 

networks 

• Difficulties with ODE models: 

– Numerical techniques are often difficult to apply due to lack of 

quantitative data on model parameters  

– Assumptions of continuous and deterministic change of 

concentrations may not be valid on molecular level 
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