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Overview

Gene reqgulatory networks in bacteria
Deterministic modeling of gene regulatory networks
Qualitative modeling of gene regulatory networks

Stochastic modeling of gene regulatory networks
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Some current issues and perspectives




Gene regulatory networks

 Gene regulatory networks control changes in gene
expression levels in response to environmental perturbations
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Gene expression

* Typically, and simplifying quite a bit, gene expression in
bacteria involves:

— Transcription by RNAP (mMRNA)
— Translation by ribosomes (proteins)
— Degradation of mRNA and protein
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Regulation of gene expression

« Typically, and simplifying quite a bit, regulation of gene
expression in bacteria involves:

— Transcription regulation by transcription factors
— Translation regulation by small RNAs
— Regulation of degradation by proteases
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Modeling of gene regulatory networks

 Different modeling formalisms exist, describing gene
expression on different levels of detalil

detailed

coarse-grained

)

Stochastic master
equations

Ordinary differential Boolean
equations (ODES) networks

Smolen et al. (2000), Bull. Math. Biol., 62(2):247-292

Hasty et al. (2001), Nat. Rev. Genet., 2(4):268-279

de Jong (2002), J. Comput. Biol., 9(1): 69-105

Szallassi et al. (2006), System Modeling in Cellular Biology, MIT Press

Bolouri (2008), Computational Modeling of Gene Regulatory Networks,
Imperial College Press

Karleback and Shamir (2008), Nat. Rev. Mol. Cell Biol., 9(10):770-80




Ordinary differential equation models

* Cellular concentration of proteins, mRNAs, and other
molecules at time-point t represented by continuous variable

Xi(t) € Ry
* Regulatory interactions, controlling synthesis and
degradation, modeled by ordinary differential equations

dx
E —X—f(X),

where X = [Xy,..., X,] and f(X) is rate law

* Kinetic theory of biochemical reactions provides well-
established framework for specification of rate laws

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall
Cornish-Bowden (1995), Fundamentals of Enzyme Kinetics, Portland Press




Modeling of gene regulatory networks

 ODE model of gene expression, distinguishing transcription

and translation p p
m P
transcription m(t) translation

. P T, ————————— t
M=t = Ont M b o wea "

p = .m— (7/ _|_u) p promoter gene protein

P P degradation degradation l
Ym + Tp T M

m(t) > 0, concentration mRNA

p(t) > 0, concentration protein
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Modeling of gene regulatory networks

 ODE model of gene expression, collapsing transcription and

translation p
P

transcription + translation

| > p
p: Kp — (7p+p) P promoter gene protein

degradation l
Tp + M

(t)

p(t) > 0, concentration protein

K, > 0, synthesis rate constant

p
%> 0, degradation rate constant

>0, growth rate




Modeling of gene regulatory networks

« ODE model of gene expression, taking into account regulation
of transcription X\
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* Regulation function f (x) describes modulation of synthesis rate
by transcription factor
Generalization to regulation on translational and proteolytic level




Modeling of gene regulatory networks

« ODE model of gene expression, taking into account regulation
of transcription X\
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* Regulation function f (x) typically has sigmoidal form, due to
cooperative nature of regulation f(x) 1
1
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Modeling of gene regulatory networks

« ODE model of gene expression, taking into account regulation
of transcription X\

Ko Kp
transcription m(t) translation

M = iy £ (- (rth) m SNy
. D W
P=r,m—(%+H) P promoter gene protein
degradation degradation l

Ym + Tp M

* Regulation function f (x) typically has sigmoidal form,
accounting for cooperative nature of regulation

« Implicit modeling assumptions:

— Ignore gene expression machinery (RNA polymerase, ribosome)
— Simplification of complex protein-DNA interactions to response function




Modeling of gene regulatory networks

« ODE model of gene expression, taking into account regulation
of transcription X\

Ko Kp
transcription m(t) translation
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degradation degradation l
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« (Gene regulatory network has many genes with mutual
regulatory interactions: model of coupled ODEs




Analysis and numerical simulation

* No analytical solution for most nonlinear differential equations

 Dynamic systems theory provides techniques for analysis of
nonlinear differential equations, but usually not scalable

— Phase portrait Kaplan and Glass (1995), Understanding
Nonlinear Dynamics, New York

— Bifurcation analysis
« Approximation of solution obtained by numerical simulation,
given parameter values and initial conditions X(0) = x°

X t+ At
X(t+At)=x(t)+ f f(x)dt =~x(t) +f(x) At
/// t
0 = Lambert (1991), Numerical Methods

{ — for Ordinary Differential Equations, Wiley




Cross-inhibition network

* Cross-inhibition network consists of two genes, each coding
for transcription regulator inhibiting expression of other gene

| J‘ - PmteinlA | J‘ > Protein B

gene a gene b

* Cross-inhibition network is example of positive feedback,
Important for phenotypic differentiation (multi-stability)

Thomas and d’Ari (1990), Biological Feedback, CRC Press




ODE model of cross-inhibition network

|l + Proteina | I > Prot|einB X,(t) > 0, concentration protein A

gere a gore b Xp(t) > 0, concentration protein B

K, , k,> 0, synthesis rate constants
Xa = 1T (Xp) — 72 X4 7., %> 0, degradation rate constants

Xo = Ky f (X)) — 7% Xp

f(x) 1
N

f(x) = - — 6 > 0 threshold,
n > 1 cooperativity




Bistability of cross-inhibition network

Analysis of steady states in phase plane

Xa = 0= Xa:(Ka/ 7/a) f (Xb)
X, =0=X,=(x,/ 3p) T (%)

System is bistable: two stable and one unstable steady state.

* For almost all initial conditions, system will converge to one of
two stable steady states (differentiation)

System returns to steady state after small perturbation




Hysteresis in cross-inhibition network

e Transient perturbation may cause irreversible switch from one
steady state to another (hysteresis)

Modulation of regulatory effect of one of regulators (&)
Xq = Ka T (aXp) — 72 X4

Xp = K T (X2) — % %p

0




Construction of cross inhibition network

 Construction of cross inhibition network in vivo
Gardner et al. (2000), Nature, 403(6786): 339-42
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Experimental test of model

« Experimental test of mathematical model (bistability and

hVStereSIS) Gardner et al. (2000), Nature, 403(6786): 339-42
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Bacteriophage A infection of E. coli
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 Response of E. coli to phage A o

Infection involves decision between E‘

alternative developmental pathways: ; ?

lysis and lysogeny
Ptashne, A Genetic Switch, Cell Press, 1992 |
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Bistability in phage A

« Lytic and lysogenic pathways involve different patterns of
gene expression
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Control of phage A fate decision

* Cross-inhibition feedback plays key role in establishment of
lysis or lysogeny, as well as in induction of lysis after DNA
damage
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Santillan and Mackey (2004), Biophys. J., 86(1):75-84




Simple model of phage A fate decision

« Differential equation model of cross-inhibition feedback

network involved in phage A fate decision
MRNA and protein, delays, thermodynamic description of gene

regulation
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Santillan and Mackey (2004), Biophys. J., 86(1):75-84




Analysis of phage A model

 Bistability (lysis and lysogeny) only occurs for certain
parameter values

« Switch from lysogeny to lysis involves bifurcation from one
monostable regime to another, due to change in degradation

constant

[Cm 4] ten




Extended model of phage A infection

 ODE model of the extended network underlying decision
between lysis and lysogeny
Role of other regulatory proteins (CIl, N, Q, ...)
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McAdams and Shapiro (1995),
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Simulation of phage A infection

* Numerical simulation of promoter activity and protein
concentrations in (a) lysogenic and (b) lytic pathways

« Cell follows one of two pathways for different initial
conditions
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Real-time monitoring of phage A infection

 New measurement techniques allow real-time and in-vivo
monitoring of the execution of lytic and lysogenic pathways
Use of fluorescent reporter genes in combination with automated

plate readers ” " "
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Other examples of bistability

* Many other examples of bistability exist in bacteria

— Lactose utilization in E. coli

— Persister cells and antibiotic resistance in E. coli

— Genetic competence in B. subtilis

- ... Dubnau and Losick (2006), Mol. Microbiol., 61 (3):564-72

« Can we find general design principles, relating network

structure to bistability and other properties of network
dynamics?

Alon (2007), An Introduction to Systems Biology, Chapmann&Hall/CRC




Necessary condition for bistability

 Necessary condition for bistability, or multistability, is the

occurrence of positive feedback loops in the regulatory
network Thomas and d’Ari (1990), Biological Feedback, CRC Press

e eo o o
+ —\/ +\/
 Increasingly general mathematical proofs of necessary
condition for bistability, or multistability, in regulatory

networks
Regulatory interactions (activation/inhibition) lead to non-zero signs
(+/-) iIn Jacobian matrix Soulé (2003), ComPlexUs, 1:123-33

« Condition is not sufficient, as the actual occurrence of
bistability depends on parameter values




Necessary condition for oscillations

 Necessary condition for oscillations is the occurrence of

negative feedback loops in the regulatory network
Thomas and d’Ari (1990), Biological Feedback, CRC Press

e o o
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« Condition is not sufficient, as the actual occurrence of

(stable) oscillations depends on: parameter values,
nonlinearities, number of genes, ...

Purcell et al. (2010), J. R. Soc. Interface, 7(52):1503-24




Construction of oscillator network

» Construction of oscillator in vivo: repressilator
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« ODE model of oscillator N
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Elowitz and Leibler (2000), Nature, 403(6767):335-8




Necessary condition for oscillations

 Necessary condition for oscillations is the occurrence of

negative feedback loops in the regulatory network
Thomas and d’Ari (1990), Biological Feedback, CRC Press

N S
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« Condition is not sufficient, as the actual occurrence of

(stable) oscillations depends on: parameter values,
nonlinearities, number of genes, ...

« Combination of negative with positive feedback tends to
stabilize oscillations

Purcell et al. (2010), J. R. Soc. Interface, 7(52):1503-24




Conclusions

* Ordinary differential equation (ODE) models describe
dynamics of gene regulatory networks in deterministic way

 ODE models provide general formalism for which powerful
analysis and simulation technigues exist

 ODE models are based on well-developed theoretical
framework and have been applied to many gene regulatory
networks

 Difficulties with ODE models:

— Numerical techniques are often difficult to apply due to lack of
guantitative data on model parameters

— Assumptions of continuous and deterministic change of
concentrations may not be valid on molecular level
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