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— Analysis of bacterial regulatory networks by means of models and experiments
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Overview
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Gene reqgulatory networks in bacteria
Deterministic modeling of gene regulatory networks
Qualitative modeling of gene regulatory networks

Stochastic modeling of gene regulatory networks

Some current issues and perspectives




Gene expression

* Typically, and simplifying quite a bit, gene expression in
bacteria involves:

— Transcription by RNAP (mMRNA)
— Translation by ribosomes (proteins)
— Degradation of mRNA and protein
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Modeling of gene regulatory networks

 ODE model of gene expression, distinguishing transcription

and translation p p
m P
transcription m(t) translation
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m(t) > 0, concentration mRNA

p(t) > 0, concentration protein

K, K, > 0, synthesis rate constants

Yo Vo> 0, degradation rate constants

>0, growth rate




Stochasticity In gene expression

 ODE models make abstraction of underlying biochemical

reaction processes involved in gene expression that may not
be warranted Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464

* Gene expression Is stochastic instead of deterministic
process

— Underlying biochemical reactions are stochastic processes

— Probability of reaction to occur depends on random encounters of
molecules in cell

Goodsell (2010), The Machinery
of Life, Springer, 2nd ed.




Stochasticity In gene expression

 ODE models make abstraction of underlying biochemical
reaction processes involved in gene expression that may not

be warranted Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464
« (Gene expression is stochastic instead of deterministic
process

— Underlying biochemical reactions are stochastic processes

— Probability of reaction to occur depends on random encounters of
molecules in cell

* Discrete number of molecules of reaction species, instead
of continuous concentrations

Some reactions species involved in gene expression have very low
copy numbers (1-10)




Stochasticity In gene expression

e Stochasticity in gene expression leads to noise
Fluctuations in mRNA and protein concentrations
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Stochasticity In gene expression

e Stochasticity in gene expression leads to noise
Fluctuations in mRNA and protein concentrations

* Noise amplified by small number of molecules
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Stochasticity In gene expression

e Stochasticity in gene expression leads to noise
Fluctuations in mRNA and protein concentrations

* Noise amplified by small number of molecules

transcription translation
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 Different types of noise:

— Intrinsic noise: fluctutations due to stochasticity of processes
involved in gene expression (transcription, translation, ...)




Stochasticity In gene expression

e Stochasticity in gene expression leads to noise
Fluctuations in mRNA and protein concentrations

* Noise amplified by small number of molecules
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 Different types of noise:

— Intrinsic noise: fluctutations due to stochasticity of processes
involved in gene expression (transcription, translation, ...)

— Extrinsic noise: fluctuations due to variability in external factors
(temperature, ribosome availability, ...). Impact on rate constants




Stochasticity In gene expression

* Experimental discrimination between intrinsic and extrinsic
noise

Expression in a single cell with two different reporter genes (gfp and
cfp) controlled by same promoter
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Stochasticity In gene expression

* Experimental discrimination between intrinsic and extrinsic
noise

Expression in a single cell with two different reporter genes controlled
by same promoter
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Stochasticity In gene expression

* Experimental discrimination between intrinsic and extrinsic
noise

Expression in a single cell with two different reporter genes controlled

by same promoter
A
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Stochasticity In gene expression

* Major question is how cells both tolerate and exploit noise.

Rao et al. (2002), Nature, 420(6912):231-237
Raj and van Oudenaarden (2008), Cell, 135(2):216-26

* Most cellular processes are robust to noise, despite
stochasticity of underlying system of biochemical reactions

@ o0
o . . . ? - I BACTERIOPHAGE LAMBDA
S(_)metlmes, mt_racellular noise DT
drives population heterogeneity | o
that may be beneficial for a species @ w1
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« ODE models are not suitable for  wsoecoc: %
studying origin and effects of noise (7




Stochastic models

e Stochastic models of gene regulation are more appropriate

« Number of molecules of each species I at time-point t
represented by discrete variable Xi(t) € N

RNAP RNAP-P, RBS,

X4 X, X3 X4




Stochastic models

e Stochastic models of gene regulation are more appropriate

« Number of molecules of each species I at time-point t
represented by discrete variable Xi(t) € N

* Reactions between molecular species lead to change Iin state of
system from X (1) to X (t+At) over time-interval At, where
X=[X,..., X ]

Change of state by reaction K described by vector v

—
Reaction 1: yy=[-1-1 1 0] [ — - — g

Pa RNAP RNAP-P,

Reaction 2: n,=[11 -1 1] &, @& . = .

RNAP-P, RNAP Pa

RBS,




Stochastic models

e Stochastic models of gene regulation are more appropriate
« Number of molecules of each species I at time-point t
represented by discrete variable Xi(t) € N

* Reactions between molecular species lead to change Iin state of
system from X (1) to X (t+At) over time-interval At, where

X = [Xla n]
_t_—_’ <D - P
RNAP RNAP-P, RBSa
X, =1 X, =7 X,=0 X, = 10

Reaction 1: vy =[-1-1 1 O] l




Stochastic models

e Stochastic models of gene regulation are more appropriate
« Number of molecules of each species I at time-point t
represented by discrete variable Xi(t) € N

* Reactions between molecular species lead to change Iin state of
system from X (1) to X (t+At) over time-interval At, where

X = [Xla n]
_t_—_’ <D - P
RNAP RNAP-P, RBSa
X, =0 X, =6 X,=1 X, = 10

Reaction 2: v, =[11-11] l




Stochastic models
* Possible states are given by possible value combinations for
variables: X =V, with V =[V,,..., V]

+ Transitions between states are given by possible reactions kK
[1,7,0,10]
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Stochastic models

- Probability distribution p[X(t)=V] describes probability that at
time-point t there are V = [V,,..., V,]” molecules
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Stochastic models

- Probability distribution p[X(t)=V] describes probability that at
time-point t there are V = [V,,..., V,]” molecules

Time t,
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Stochastic models

- Probability distribution p[X(t)=V] describes probability that at
time-point t there are V = [V,,..., V,]” molecules
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Stochastic master equation
« Evolution of probability distribution p[X(t)=V] given by
IX (t+A) =V] = pIX () =V](1- X g At) +
j=1

2 pIX () = V-u] fi A

— M is the number of reactions that can occur in the system

— a; Atis the probability that reaction J will occur in [t, t +At] given that
X(t)=V

— J Atis the probability that reaction K will bring the system from
X(t)= V—v, to X(t +A)=V in [t, t +At]

Van Kampen (1997), Stochastic Processes in
Physics and Chemistry, Elsevier
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Stochastic master equation

* For At - 0 we obtain stochastic master equation
dp[X(1)=V]/ dt = 2. p[X(1)=V-v] £ - p[X()=V] ¢
j=1

 Probabilities Q, ,Bj are defined in terms of kinetic constants of
reactions and number of reactant molecules

* Unimolecular reaction j: S; — product(s)

o5 = ki X, (X;-1)/2

* Bimolecular reaction j: S; + S, — product(s)
o = ki X1 X,/Q Q : cell volume

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55 ‘




Stochastic master equation

* For At - 0 we obtain stochastic master equation

dpIX()=V] / dt = Y. pIX(W)=V-¥] £ - PIXO=V]

j=1
 Probabilities Q, ,Bj are defined in terms of kinetic constants of
reactions and number of reactant molecules

« Analytical solution of master equation is not possible in most
situations of practical interest

Van Kampen (1997), Stochastic Processes in Physics and Chemistry, Elsevier




Stochastic simulation

« Analytical solution of master equations is not possible in most
situations of practical interest

e Stochastic simulation predicts sequences of reactions that
change state of system, starting from initial state X(0) =V,

— Stochastic simulation samples joint probability density function
plz, JIX(t) = V]
T — time until occurrence of next reaction

] = index of next reaction

— Interpretation: p[z, j|X(t) = V]dr is probability, given X(t) =V, that next
reaction will occur in [t+7, t +7+dz] and is reaction j

Gillespie (2002), J. Phys. Chem., 81(25): 2340-61

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55 ‘




Stochastic simulation

« Analytical solution of master equations is not possible in most
situations of practical interest

e Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,

Stochastic simulation samples joint probability density function
plz, JIX(t) = V]
T — time until occurrence of next reaction

] = index of next reaction

Probability density function defined in terms of a, B (reaction
constants)

Gillespie (2002), J. Phys. Chem., 81(25): 2340-61

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55 ‘




Stochastic simulation

« Analytical solution of master equations is not possible in most
situations of practical interest

e Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,

« Stochastic simulation based on sampling of p[z, J|X(t) = V]

generates sequences in exact accordance with stochastic
master equations

* Repeating stochastic simulation many times (Monte-Carlo
procedure) yields approximation of probability distribution

p(X (t)=V)

Gillespie (2002), J. Phys. Chem., 81(25): 2340-61
Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55




Stochastic simulation

« Analytical solution of master equations is not possible in most
situations of practical interest

e Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,

« Various approximations of basic stochastic simulation
algorithm, trading exactness for simulation speed:
— Tau-leaping approaches: choose 7z such that ¢;, 4 remain approximately
constant over time interval (encapsulate several reactions in one step)

— Quasi-steady-state approximations (distinguish between slow and fast
reactions)

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55




Stochastic simulation

* Relation of stochastic simulation models with other modeling
approaches

a;dt = probability that R;will fire in next df

a; = constant during 1, Vj

CME SSA ! Tau-leaping | | Discrete and stochastic
L 1
at > 1,V }
| I 1 | |
1 CFPE ! i CLE ! Continuous and stochastic
1 1

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55




Stochastic simulation

e Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,
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« Stochastic simulation may lead to different dynamical behaviors
starting from identical initial conditions: heterogeneity
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Auto-inhibition network

e Auto-inhibition network consists of a single gene, coding for
transcription regulator inhibiting expression of its own gene

| J‘ > Prnltein A

gene a

« Auto-inhibition is example of negative feedback, and
frequently occurs in bacterial regulatory networks

Thieffry et al. (1998), BioEssays, 20(5):433-440

* Development of stochastic model requires list of species,
reactions, and kinetic constants




Reactions and species
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Stochastic simulation of auto-inhibition

* Occurrence of fluctuations and bursts in gene expression
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Auto-inhibition and noise reduction

« Auto-inhibition reduces fluctuations in gene expression level
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Bacteriophage A infection of E. coli

 Response of E. coli to phage A 6 0 X S
infection involves decision 0
between alternative Lo
developmental pathways: @ o v
lytic cycle and lysogeny |
Ptashne (1997), A Genetic Switch: Phage A CIRCULIZATION OF DNA
and Higher Organisms, Cell Press LYSOGENIC CYCLE / \

LYTIC CYCLE

STRESS
(DNA
DAMAGE

4,/
Bt e;»?




Stochastic analysis of phage A infection
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Stochastic analysis of phage A infection

* Time evolution of Cro and CI
dimer concentrations

* Due to stochastic fluctuations,
under identical conditions cells
follow one or other pathway (with
some probability)
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Arkin et al. (1998), Genetics, 149(4): 1633-1648




Comparison with deterministic approach

138 _|(a) all cells

 Deterministic models can be seen - o G102
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as predicting average behavior of

cell population
Gillespie. (2000), J. Chem. Phys., 113(1): 297-306

« Analysis of average behavior may
obscure that one part of population

chooses one pathway rather than
another
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Measurements of phage A infection

 New measurement techniques allow real-time and in-vivo
monitoring of the execution of lytic and lysogenic pathways
In individual cells
Use of reporter genes in combination with fluorescence microscopy
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Stochasticity and hidden variables

* |Is observed population heterogeneity entirely due to

100; Single phage 100; Single cel
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stochastic dynamics of biochemical reactions?

Hidden variables that

deterministically set outcome of
what seems noisy decision process
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Conclusions

« Stochastic models provide more realistic picture of gene
expression

 Difficulty of stochastic models is that required information on
regulatory mechanisms on molecular level usually not
available

Reaction schemas and kinetic constants, necessary for generating
values of parameters 7 and p, are not or incompletely known

« Another difficulty is that stochastic simulation is
computationally expensive

Large networks cannot currently be handled, but a host of extensions
and approximations have been developed
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