Introduction to Modular Response Analysis

Daniel Kahn
Laboratoire de Biométrie & Biologie Evolutive
Lyon 1 University
& INRA MIA Department

Daniel.Kahn@univ-lyon1.fr

Modular Response Analysis

Untangling the wires: A strategy to trace functional interactions in signaling and gene networks

Kholodenko et al. (2002), PNAS 99:12481-12486

Inverse engineering problem: given observable steady-state responses of the whole system to perturbations, deduce internal interactions

Underlying assumptions

- > Each module reaches a steady-state that is stable on its own
- \triangleright Each module i communicates with other modules through only one molecular species x_i (this assumption can be relaxed)
- There are module-specific parameters that can be acted upon experimentally

Quantifying module interactions

Let us consider the evolution of module i:

$$\dot{x}_i = f_i(\mathbf{x}, \mathbf{p})$$

At steady-state of module i:

$$f_{i}(\mathbf{x}, \mathbf{p}) = 0$$

$$\frac{\partial f_{i}}{\partial x_{i}} \frac{\partial X_{i}}{\partial x_{j}} + \frac{\partial f_{i}}{\partial x_{j}} = 0$$

$$\frac{\partial X_{i}}{\partial x_{j}} = -\left(\frac{\partial f_{i}}{\partial x_{j}}\right) / \left(\frac{\partial f_{i}}{\partial x_{i}}\right)$$

expresses the sensitivity of module i to other modules j.

Quantifying module interactions

One defines local response coefficients reflecting how module i at steady-state responds to changes in the output of module j with other modules unchanged:

$$\begin{cases} r_{ij} := \frac{x_j}{X_i} \frac{\partial X_i}{\partial x_j} = \left(\frac{\partial \ln X_i}{\partial \ln x_j}\right)_{\text{module } i \text{ at steady-state}} & \text{if } i \neq j \\ r_{ii} := -1 & \end{cases}$$

These coefficients reflect the regulatory interactions between the modules.

Quantifying module interactions

One defines local response coefficients reflecting how module i at steady-state responds to changes in the output of module j with other modules unchanged:

$$\begin{cases} r_{ij} := \frac{x_j}{X_i} \frac{\partial X_i}{\partial x_j} = \left(\frac{\partial \ln X_i}{\partial \ln x_j}\right)_{\text{module } i \text{ at steady-state}} & \text{if } i \neq j \\ r_{ii} := -1 & \end{cases}$$

However they are not directly observable in the entire system because of interactions with other modules.

Quantifying the global system response

Global response coefficients express the observable response in module i when the entire system relaxes to a new steadystate in response to a perturbation p_i specific of module j:

$$R_{i,p_j} := \left(\frac{d \ln X_i}{dp_j}\right)_{\text{entire system at steady-state}}$$

Decomposing the system response

The response of module i is the sum of all responses mediated by modules k and of the direct effect of the perturbation when i = j

$$R_{i,p_j} = \sum_{k \neq i} r_{ik} R_{k,p_j} \quad \text{for } i \neq j$$

$$R_{i,p_i} = \sum_{k \neq i} r_{ik} R_{k,p_i} + \left(\frac{\partial \ln X_i}{\partial p_i} \right)_{\text{module } i \text{ at steady-state}}$$

Inferring the regulatory structure

$$\mathbf{r} \cdot \mathbf{R}_{\mathbf{p}} + diag(\mathbf{r}_{\mathbf{p}}) = 0$$

where
$$r_{p_i} = \left(\frac{\partial \ln X_i}{\partial p_i}\right)_{\text{module } i \text{ at steady-state}}$$

$$\mathbf{r} = -diag\left(\mathbf{r}_{\mathbf{p}}\right) \cdot \mathbf{R}_{\mathbf{p}}^{-1}$$

Note that $\mathbf{R}_{\mathbf{p}}$ is nonsingular

if
$$\frac{\partial \mathbf{f}}{\partial \mathbf{p}}$$
 and Jacobian $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ are nonsingular

Inferring the regulatory structure

$$\mathbf{r} = -diag\left(\mathbf{r}_{\mathbf{p}}\right) \cdot \mathbf{R}_{\mathbf{p}}^{-1}$$

whose diagonal terms are

$$-1 = -r_{p_i} \left(\mathbf{R}_{\mathbf{p}}^{-1} \right)_{ii}$$

therefore

$$diag(\mathbf{r}_{\mathbf{p}}) = \left[diag(\mathbf{R}_{\mathbf{p}}^{-1})\right]^{-1}$$

Inferring the regulatory structure

We can therefore derive an explicit relationship to calculate the local response matrix ${f r}$ from the global response matrix ${f R}_{p}$:

$$\mathbf{r} = -\left[\operatorname{diag}\left(\mathbf{R}_{\mathbf{p}}^{-1}\right)\right]^{-1} \cdot \mathbf{R}_{\mathbf{p}}^{-1}$$

The matrix ${\bf r}$ provides the regulatory structure of the system. It is a normalized inverse of ${\bf R}_{\bf p}$

Because these relationships derive from $\dot{x}_i = f_i(\mathbf{x}, \mathbf{p}) = 0$ they can also be generalized to extremal responses, not only to steady-state responses.

Introducing noise / redundancy in the data

Andrec *et al.* (2005), *J. Theoret. Biol.* 232:427-441 Sontag (2008) *Essays Biochem.* 45:161-176

Another way to posit the problem is to note that each row \mathbf{r}_i of the regulation matrix is orthogonal to n-1 response vectors \mathbf{R}_{p_i} $(j \neq i)$

As a consequence in the absence of noise \mathbf{r}_i is uniquely defined as normal to the hyperplane generated by $\left(\mathbf{R}_{p_i}\right)$

Introducing noise / redundancy in the data

In the absence of noise adding more data would leave unchanged $rank(\mathbf{R}_{p_j}) = n-1$

However in the presence of noise (\mathbf{R}_{p_j}) will have full rank n because the noise is full rank.

One then uses SVD to reduce its rank to n-1 in order to delineate the most likely hyperplane supporting $\left(\mathbf{R}_{p_i}\right)$

This in turn determines the most likely \mathbf{r}_i It is colinear with the left singular vector associated with the smallest singular value.

This procedure is akin to total least squares regression.

Example of MRA success

Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate

Santos et al. (2007) Nature Cell Biol. 9:324-330

Global responses

Local responses

MAPK regulatory structure

Different responses of the MAPK cascade to EGF and NGF are accompanied by a different feed-back pattern.

The positive loop generates a bistable behaviour in the

presence of NGF.

Unimodal response to EGF

Bimodal response to NGF

