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Modular Response Analysis 

 Kholodenko et al. (2002), PNAS 99:12481-12486 

 

 Inverse engineering problem: 

 given observable steady-state responses  

of the whole system to perturbations, 

deduce internal interactions 
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Underlying assumptions 

 Each module reaches a steady-state that is stable on its own 

 Each module i communicates with other modules through only 

one molecular species xi (this assumption can be relaxed) 

 There are module-specific parameters that can be acted upon 

experimentally 
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Quantifying module interactions 

 Let us consider the evolution of module i : 

 

 At steady-state of module i : 

 

 

 

 

 

  

 expresses the sensitivity of module i to other modules j.  
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Quantifying module interactions  

 One defines local response coefficients reflecting how module i 
at steady-state responds to changes in the output of module j  
with other modules unchanged: 

 

  

  

 

  

 These coefficients reflect the regulatory interactions between 

the modules.  
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Quantifying module interactions  

 One defines local response coefficients reflecting how module i 
at steady-state responds to changes in the output of module j 
with other modules unchanged: 

 

  

  

 

  

 However they are not directly observable in the entire system 

because of interactions with other modules. 
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Quantifying the global system response 

 Global response coefficients express the observable response 

in module i when the entire system relaxes to a new steady-

state in response to a perturbation pj specific of module j : 
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Decomposing the system response  
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 The response of module i is the sum of all responses mediated 

by modules k and of the direct effect of the perturbation when  

i = j 
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Inferring the regulatory structure 
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Inferring the regulatory structure 
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Inferring the regulatory structure  

 We can therefore derive an explicit relationship to calculate the 

local response matrix r from the global response matrix Rp : 

 

 

  

 

The matrix r provides the regulatory structure of the system. 

It is a normalized inverse of Rp 

 Because these relationships derive from 

they can also be generalized to extremal responses,  

not only to steady-state responses.  
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Introducing noise / redundancy in the data 

 Andrec et al. (2005), J. Theoret. Biol. 232:427-441 

 Sontag (2008) Essays Biochem. 45:161-176 

 

 Another way to posit the problem is to note that each row ri  
of the regulation matrix is orthogonal to n-1 response vectors 

 

 As a consequence in the absence of noise ri  is uniquely 

defined as normal to the hyperplane generated by 
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Introducing noise / redundancy in the data 

 In the absence of noise adding more data would leave 

unchanged  

 However in the presence of noise      will have full rank n  
because the noise is full rank. 

 One then uses SVD to reduce its rank to n-1 in order to 

delineate the most likely hyperplane supporting  

 This in turn determines the most likely ri  

It is colinear with the left singular vector associated with the 

smallest singular value.  

 This procedure is akin to total least squares regression. 
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Example of MRA success 

 Santos et al. (2007) Nature Cell Biol. 9:324-330 
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Global responses 

Raf 

Mek 

Erk 
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Local responses 
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MAPK regulatory structure 

 Different responses of the MAPK cascade to EGF and NGF  

are accompanied by a different feed-back pattern. 

The positive loop generates a bistable behaviour in the 

presence of NGF.  
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Unimodal response to EGF 
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Bimodal response to NGF 


