
Whereas low-level activation of TRPV4 chan-
nelswith synthetic agonists (e.g., 3 to 10 nMGSK)
or via muscarinic receptor stimulation caused
significant vasodilation (P < 0.0001; paired two-
sample t test), higher-level activation (100 nM
GSK) led to rapid global Ca2+ overload in ECs
and oscillations of blood-vessel diameter (fig. S7
and movie S6). Notable in this context, system-
ic activation of TRPV4 channels by GSK causes
a reduction in blood pressure and generalized
circulatory failure (14). Collectively, these obser-
vations indicate that small numbers of EC TRPV4
channels regulate vascular physiology and sug-
gest that pathologies characterized by blood-
pressure reduction and vascular permeability
increases (e.g., septic shock) may involve ex-
cessive activation of EC TRPV4 channels.
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Multidimensional Optimality of
Microbial Metabolism
Robert Schuetz,1 Nicola Zamboni,1 Mattia Zampieri,1 Matthias Heinemann,1,2 Uwe Sauer1*

Although the network topology of metabolism is well known, understanding the principles that
govern the distribution of fluxes through metabolism lags behind. Experimentally, these fluxes can
be measured by 13C-flux analysis, and there has been a long-standing interest in understanding
this functional network operation from an evolutionary perspective. On the basis of 13C-determined
fluxes from nine bacteria and multi-objective optimization theory, we show that metabolism
operates close to the Pareto-optimal surface of a three-dimensional space defined by competing
objectives. Consistent with flux data from evolved Escherichia coli, we propose that flux states
evolve under the trade-off between two principles: optimality under one given condition and
minimal adjustment between conditions. These principles form the forces by which evolution
shapes metabolic fluxes in microorganisms’ environmental context.

As a network of about a thousand enzy-
matic reactions, metabolism fuels growth
by converting nutrients into building

blocks and energy, but our understanding of the
principles that govern the functional distribution
of fluxes through this network is limited. Exper-
imentally, intracellular fluxes can be determined
by 13C-based flux analysis (1, 2). Based on em-
pirically derived optimality principles (3, 4), stoi-
chiometric models of metabolism (3, 4) can predict
condition-dependent flux phenotypes (5–9) as

the outcome of single environment evolution
(10, 11). However, a concept that integrates such
incidental empirical observations into a consistent
framework is lacking (12). Although cost-benefit
theory indicates that evolution in a constant en-
vironment minimizes the expression of enzymes
(10, 13), in reality microbes must cope with con-
tinuous environmental changes. Thus, we investi-
gatedwhether the incidental objectives ofmetabolic
operation (5–10) can be integrated into a general
optimality framework that explains an organism’s
evolution toward particular distributions of fluxes
under fluctuating conditions.

The basis of our analysis is a stoichiometric
reaction model of Escherichia coli central metab-
olism (table S1) that constrains metabolic fluxes
at steady state in a convex space of feasible solu-
tions (3, 4). Assuming that optimality goals are
tailored to conditions and that different, even-

tually competing, objectives cannot be optimized
simultaneously, cells face a trade-off that is de-
scribed by the Pareto surface (14) on which each
point is Pareto optimal; that is, the value of one
objective can be increased only at the cost of
another. To identify the axes of such a multi-
dimensional optimality space, we computation-
ally predicted flux distributions with 54 single
objective functions and quantified the deviation
to 44 reported in vivo flux distributions (fig. S1a
and table S2) obtained from 13C-labeling exper-
iments (15–19) (table S3). Five of the objective
functions were found to be consistent with the
in vivo fluxes under some conditions: maximum
adenosine triphosphate (ATP), biomass, acetate,
and carbon dioxide yields and minimum sum of
absolute fluxes (fig. S1a). For all possible pairs
and triplets of these, we computed the Pareto
surface (fig. S1b). Although no dual combination
could describe all measured fluxes adequately,
the combination of the two efficiency objectives,
maximum ATP yield and maximum biomass
yield, with the optimal resource allocation ob-
jectiveminimum sumof absolute fluxes achieved
the highest optimality, evidenced by all 44 in
vivo flux distributions being very close to the
Pareto surface (Fig. 1, A and E, and figs. S1b
and S2).

On the Pareto surface, the in vivo flux dis-
tributions occupied distinct regions that cluster
into biologically meaningful groups (Fig. 1A).
Whereas aerobic cultures of various E. coli strains
grown with nonlimiting glucose (blue) clustered
in the upper right corner, cultures in which glu-
cose was continuously supplied at a limiting
amount (green) stretched according to their
growth rate diagonally between the maximum
ATP and biomass yield axes. The proximity of
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in vivo flux distributions to the Pareto surface
of this three-dimensional optimality space is sta-
tistically significant because it is much closer
when compared to the average distance of ran-
dom steady-state flux distributions (P < 5 × 10−16,
t test) (Fig. 1, B to D). Furthermore, other bacterial
species also locate close to the surface (Fig. 2, A
and B), and their different locations on the sur-
face indicate that each species features a distinct
flux distribution under a given condition. Thus,
metabolism of wild-type bacteria appears to gen-
erally operate close to the Pareto surface of the
space that defines metabolic optimality as a com-
bination of (i) network output in the form of
biomass and energy yield and (ii) resource al-
location. Akin to E. coli (Fig. 1B), mutations can
eventually shift their flux distributions away from
the surface, as shown for Bacillus subtilis mu-
tants with strongly altered fluxes (20) that lo-
cate significantly (P < 2 × 10−33, t test) below the
Pareto surface (Fig. 2C), supporting our hypoth-
esis that Pareto optimality results from evolution-
ary adaptation.

Why are particular flux distributions mani-
fested in E. coli? For this question, we tested how
Pareto optimality constrains fluxes of individual
reactions. We determined the values that each re-
action flux can assume in the subspace immedi-
ately below the spot on the Pareto surface where
the in vivo flux distributions of a certain condi-
tion clustered together (Fig. 1E). For each of the
18 degrees of freedom (table S4) that determine
all fluxes, we calculated (by exhaustive sampling)
the absolute range of fluxes that each reaction
can assume within the subspaces of near meta-
bolic optimality (figs. S3 and S4). For each re-
action, we thereby obtained, as a function of
the distance from the Pareto surface, a flux range;
that is, a variability value that defines possible
fluxes at a specific optimality value (Fig. 3, A
toC). Formost degrees of freedom,with increasing
distance from the surface the flux variability ini-
tially increases drastically before converging to
stable values (Fig. 3, D to H).

All experimentally determined flux distri-
butions were found to locate at a distance from
the Pareto surface (along the x axes) character-
ized by a significant variability; for example, in
aerobic batch cultures the glucose-6-phosphate
dehydrogenase (Zwf) flux locates at a distance
where the flux can vary from 3 to 11 mmol/g
per hour at the same optimality value (Fig. 3A).
The specific location is typically where a fur-
ther distance increase does not further increase
flux variability (Fig. 3, D to H). The almost
identical position of individual flux measure-
ments along the y axis indicates that the 18 tested
E. coli wild-type strains do not exploit the full
optimality-preserving variability range but rather
cluster at a particular flux value (Fig. 3, A to C,
and fig. S3).

So far, we found that E. coli operates its
metabolism slightly below the Pareto surface,
where it can achieve a high degree of variabil-
ity in most reactions while nearly preserving

Fig. 1. (A) Projection of 44 13C-determined in vivo flux distributions of E. coli wild type into the solution
space defined by three objectives. The Pareto surface is shown in red. Blue dots indicate cultures for which
glucose was present in excess and green dots, continuous cultures at different dilution rates D (table S3)
(14–18, 24). Axes values are normalized such that the coordinates of the points on the Pareto surface
range from 0 to 1, where 1 represents the theoretical minimum or maximum of an objective. Akin to the
flux cone in flux balance analysis (25), the present space contains all mass-balanced fluxes, but the
geometry is entirely different because the dimensions are objectives and not free fluxes. (B to E) Pareto
surface distance of the 44 13C-determined (solid bars) and 10,000 random flux distributions (open bars)
that are uniformly distributed within the full solution space (26). Random fluxes were chosen without
imposing additional constraints (B), after elimination of futile cycles (C) and upon additionally constraining
the biomass yield to at least 20% of the maximal theoretical value (D). The solid black line highlights the
subspace of metabolic optimality that is relevant in vivo with a maximal distance of 0.025 units from the
Pareto surface (E). Data were binned to reduce noise. The distance for the anaerobic condition is relative to
its respective Pareto surface. The red bars in (B) represent the flux distribution of the E. coli triple mutant
with deleted pyruvate formate lyase (pfl ), lactate dehydrogenase ( ldhA), and glucose phosphotransferase
system enzyme II (ptsG) at CO2 concentrations of 3, 10, and 50% (27).

Fig. 2. (A) Projection of 10 13C-determined in vivo flux distributions of eight bacteria (25) into the
metabolic optimality space of E. coli. The Pareto surface of E. coli is shown in red. The values on the axes
are normalized as in Fig. 1. (B) Distance of the eight experimental (solid bars) and 10,000 random E. coli
flux distributions (open bars) to each bacterium’s own Pareto surface. (C) Distance to the Pareto surface of
three B. subtilis wild types (solid bars); ccpN, ccpN-gapB, and ccpN-src1 B. subtilismutants (20) (red solid
bars); and 10,000 random B. subtilis flux distributions without futile cycles and biomass yield of at least
20% of the maximal theoretical value (open bars).
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optimality. This led us to the hypothesis that ad-
ditional selection criteria guide evolution toward
particular flux distributions. A specific flux dis-
tribution at a certain conditionmight be chosen to
minimize adjustment efforts to other conditions.
To test this possibility, we systematically com-
puted the average flux adjustments that would be
required to switch between the five investigated
environmental conditions (Fig. 4A). We calcu-
lated the range of average flux adjustments from
the distances between 10,000 randomly chosen
flux distributions from the optimality-preserving
subspace underneath each condition (Fig. 3, A

to C). We found that, although flux distribu-
tions at the Pareto surface are optimal for a given
condition, they require relatively large flux ad-
justments to enable growth under alternative con-
ditions (black dots in Fig. 4A). However, starting
from the slightly less optimal values where the in
vivo flux distributions locate, significantly smaller
flux adjustments are necessary for growth under
other conditions (P < 1.4 × 10−57, rank sum test).
In the trade-off between optimality and adjust-
ment, experimentally measured fluxes appear to
minimize the adjustment efforts rather than the
distance to the Pareto surface (fig. S5).

To obtain experimental evidence for minimi-
zation of flux adjustments between conditions as
an evolutionary selection criterion for a flux dis-
tribution, we analyzed an E. coli population that
was evolved for 1000 generations on alternating
glucose and acetate batch cultures (21, 22). The
ancestor differentiated into two distinct ecotypes,
that is, one exhibiting slow growth on glucose
but fast to switch to acetate growth and the other
with fast growth on glucose but slow to switch
to acetate (22). Metabolically, one would expect
that short switching times correspond to small flux
adjustments and long switching times likewise

Fig. 4. Flux adjustment between multiple envi-
ronmental conditions. Lines indicate the minimal
and maximal average flux adjustment values based
on randomly chosen flux distributions within the
flexible subspace of metabolic optimality for each
condition, that is, all flux distributions within a max-
imal distance of 0.025 units from the Pareto surface
(Fig. 1E). (A) Average flux adjustment for switching
of E. coli wild type from the indicated condition to
any of the other four. Light blue and black dots in-
dicate the average flux adjustment based on the in
vivo realized and the hypothetical Pareto optimal
flux distributions, respectively. (B) Flux adjustment
for switching from aerobic growth on excess glu-
cose to one of the indicated environmental condi-
tions. Black dots indicate the unevolved strain,
whereas red and green dots show evolved strains
with fast or slow switching phenotypes, respective-
ly, between aerobic growth on glucose and ace-
tate. Average values are given where more than
one experimental flux distribution was available
(table S5).

Fig. 3. Flux variability immediately below the
Pareto surface for three key E. coli reactions. (A to
C) Minimal and maximal optimal in silico fluxes
(lines) and in vivo fluxes (dots) as a function of the
distance to the Pareto surface in aerobic (black) and
anaerobic (green) glucose batch cultures, glucose-
limited continuous cultures with D = 0.09 1/hour
(red) and 0.4 1/hour (light blue), and nitrogen-
limited continuous cultures withD= 0.4 1/hour (dark
yellow). Results for all 18 degrees of freedom are
shown in figs. S3 and S4. (D to H) Variability of flux
distributions as a function of their distance from the
Pareto surface. Variability is defined as the fraction of
degrees of freedom with a coefficient of variation
(standard deviation/mean value) exceeding 10%
(dashed lines), 50% (solid lines), or 80% (dashed-
dotted lines) based on sampling of the metabolic
optimality space. Gray areas indicate minimal and
maximal distance of in vivo flux distributions.
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correspond to large flux adjustments. Although
we cannot make any predictions about the
metabolism of the slow switchers, our hypothesis
of minimization of flux adjustments predicts that
the fast-switching strains have a flux distribution
when grown on glucose that is closer to the flux
distribution when grown on acetate and vice
versa. Indeed, 13C-labeling experiments with 15
randomly selected clones from this cyclic
environment evolution (tables S5 and S6) revealed
that the fast-switching ecotypes migrated toward
Pareto optimality and an in-between flux distri-
bution with, for example, higher tricarboxylic acid
cycle fluxes on glucose (fig. S6) that lead to sig-
nificantly (P < 0.009) reduced flux adjustments
between growth on glucose and acetate (Fig. 4B
and fig. S7). The slow switchers, in contrast, ex-
hibited higher flux adjustment values than the
ancestor. Consistent with our hypothesis, the flux
adjustments from glucose batch growth to any
other (not selected for) environmental condition
scatter around the ancestor with no significant
difference between the two ecotypes (Fig. 4B).
Thus, within the optimality-preserving variability
at one condition, evolution favors flux distribu-
tions that minimize adjustments to other envi-
ronmental conditions.

The principles of variable, near-optimal me-
tabolism and minimal flux adjustment suffice to
explain all investigated flux distributions. The
range of investigated bacteria and conditions
suggests that these principles are prevalent. In
contrast to the previously described adaptive pre-
diction, in which regulation patterns evolved that
anticipated sequential environmental changes
(23), the adaptive property of minimal flux ad-

justment is not restricted to the temporal order
of occurring environments. Instead, minimal flux
adjustment represents more generally an optimal
starting point for growth under multiple condi-
tions, presumably reflecting an organism’s nat-
ural habitat(s). An organism cannot be optimally
adapted to all possible conditions, but the evo-
lutionary benefit of an ideal starting point will
be important for microbes that are not highly spe-
cialized to particular nutritional conditions. By
this trade-off between (near) optimality under a
given condition and minimal adjustment to alter-
native conditions, we provide a consistent theo-
retical framework to decipher optimality-based
forces that shape metabolic fluxes in a micro-
organism’s environmental context.

References and Notes
1. U. Sauer, Mol. Syst. Biol. 2, 62 (2006).
2. N. Zamboni, S.-M. Fendt, M. Rühl, U. Sauer, Nat. Protoc.

4, 878 (2009).
3. M. A. Oberhardt, B. O. Palsson, J. A. Papin, Mol. Syst. Biol.

5, 320 (2009).
4. A. M. Feist, M. J. Herrgård, I. Thiele, J. L. Reed,

B. O. Palsson, Nat. Rev. Microbiol. 7, 129 (2009).
5. R. Schuetz, L. Kuepfer, U. Sauer, Mol. Syst. Biol. 3,

119 (2007).
6. A. P. Burgard, C. D. Maranas, Biotechnol. Bioeng. 82,

670 (2003).
7. H.-G. Holzhütter, Eur. J. Biochem. 271, 2905 (2004).
8. D. Segrè, D. Vitkup, G. M. Church, Proc. Natl. Acad.

Sci. U.S.A. 99, 15112 (2002).
9. T. Shlomi, O. Berkman, E. Ruppin, Proc. Natl. Acad.

Sci. U.S.A. 102, 7695 (2005).
10. N. E. Lewis et al., Mol. Syst. Biol. 6, 390 (2010).
11. R. U. Ibarra, J. S. Edwards, B. O. Palsson, Nature 420,

186 (2002).
12. A. M. Feist, B. O. Palsson, Curr. Opin. Microbiol. 13,

344 (2010).
13. E. Dekel, U. Alon, Nature 436, 588 (2005).

14. D. Nagrath et al., Ann. Biomed. Eng. 35, 863
(2007).

15. A. Perrenoud, U. Sauer, J. Bacteriol. 187, 3171
(2005).

16. M. Emmerling et al., J. Bacteriol. 184, 152 (2002).
17. N. Ishii et al., Science 316, 593 (2007);

10.1126/science.1132067.
18. A. Nanchen, A. Schicker, U. Sauer, Appl. Environ.

Microbiol. 72, 1164 (2006).
19. E. Fischer, U. Sauer, Eur. J. Biochem. 270, 880

(2003).
20. S. Tännler et al., J. Bacteriol. 190, 6178 (2008).
21. C. C. Spencer, J. Tyerman, M. Bertrand, M. Doebeli,

Proc. Natl. Acad. Sci. U.S.A. 105, 1585 (2008).
22. C. C. Spencer, M. Bertrand, M. Travisano, M. Doebeli,

PLoS Genet. 3, e15 (2007).
23. A. Mitchell et al., Nature 460, 220 (2009).
24. T. Fuhrer, E. Fischer, U. Sauer, J. Bacteriol. 187, 1581

(2005).
25. N. D. Price, J. L. Reed, B. O. Palsson, Nat. Rev. Microbiol.

2, 886 (2004).
26. D. Kaufman, R. Smith, Oper. Res. 46, 84 (1998).
27. S. Lu, M. A. Eiteman, E. Altman, J. Biotechnol. 143,

213 (2009).

Acknowledgments: R.S. is in the Life Science Zurich Ph.D.
program on Systems Physiology and Metabolic Diseases,
Zurich, Switzerland. We thank M. Doebeli for the mutants,
E. Michlig for flux analysis, J. Banga for initial discussion on
Pareto optimality, and V. Chubukov for proofreading. We
acknowledge financial support via an ETH grant to U.S. Data
and model described in this paper are presented in the
supplementary materials.

Supplementary Materials
www.sciencemag.org/cgi/content/full/336/6081/601/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S9
Tables S1 to S6
References (28–38)

21 November 2011; accepted 16 March 2012
10.1126/science.1216882

Radio-Wave Heating of Iron Oxide
Nanoparticles Can Regulate Plasma
Glucose in Mice
Sarah A. Stanley,1 Jennifer E. Gagner,2 Shadi Damanpour,1 Mitsukuni Yoshida,3

Jonathan S. Dordick,4 Jeffrey M. Friedman1,5*

Medical applications of nanotechnology typically focus on drug delivery and biosensors.
Here, we combine nanotechnology and bioengineering to demonstrate that nanoparticles
can be used to remotely regulate protein production in vivo. We decorated a modified
temperature-sensitive channel, TRPV1, with antibody-coated iron oxide nanoparticles that are
heated in a low-frequency magnetic field. When local temperature rises, TRPV1 gates calcium
to stimulate synthesis and release of bioengineered insulin driven by a Ca2+-sensitive promoter.
Studying tumor xenografts expressing the bioengineered insulin gene, we show that exposure
to radio waves stimulates insulin release from the tumors and lowers blood glucose in mice.
We further show that cells can be engineered to synthesize genetically encoded ferritin
nanoparticles and inducibly release insulin. These approaches provide a platform for using
nanotechnology to activate cells.

Remote activation of specific cells to trig-
ger gene expression and peptide release
in vivo could provide a useful research

tool and, in time, potentially provide a means for

regulated expression of proteins in clinical set-
tings. Cell activation by direct stimulation with
electrodes (1) is limited by nonspecific and var-
iable activation, the need for permanent implants,

and potential tissue damage (2, 3). Ion channels,
such as channelrhodopsin, regulate intracellular
ions and cell activity (4) with anatomical spec-
ificity and temporal control, but, because light
waves do not penetrate tissue, implanted devices
are required. In contrast, low and medium radio
frequencies (RFs) can penetrate deep tissues with
minimal energy absorption (5, 6). Unlike tissue,
metal nanoparticles absorb energy and heat in
response to RF (7, 8). This heating, which de-
pends on particle composition and size and RF
field strength, (9) can be converted into a cellular
signal by using a temperature-sensitive channel
to allow ion entry. Targeting of nanoparticles can
be achieved by coating with specific antibodies
(10, 11) to induce cell-specific, cell membrane
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