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Systems biology of microbial metabolism
Matthias Heinemann1,2 and Uwe Sauer1
One current challenge in metabolic systems biology is to map

out the regulation networks that control metabolism. From

progress in this area, we conclude that non-transcriptional

mechanisms (e.g. metabolite–protein interactions and protein

phosphorylation) are highly relevant in actually controlling

metabolic function. Furthermore, recent results highlight more

functions of enzymes and metabolites than currently

appreciated in genome-scale metabolic reconstructions,

thereby adding another level of complexity. Combining

experimental analyses and modeling efforts we are also

beginning to understand how metabolic behavior emerges.

Particularly, we recognize that metabolism is not simply a dull

workhorse process but rather takes very active control of itself

and other cellular processes, rendering true system-level

understanding of metabolism possibly more difficult than for

other cellular systems.

Addresses
1 ETH Zurich, Institute of Molecular Systems Biology, Wolfgang-Pauli-

Str. 16, 8093 Zurich, Switzerland
2 University of Groningen, Groningen Biomolecular Sciences and

Biotechnology Institute, Molecular Systems Biology, Nijenborgh 4, 9747

AG Groningen, The Netherlands

Corresponding author: Heinemann, Matthias (m.heinemann@rug.nl) and

Sauer, Uwe (sauer@ethz.ch)

Current Opinion in Microbiology 2010, 13:337–343

This review comes from a themed issue on

Systems Biology

Edited by Jens Nielsen and Marc Vidal

Available online 10th March 2010

1369-5274/$ – see front matter

# 2010 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.mib.2010.02.005

Introduction
A prerequisite for attaining any system-level understand-

ing is the knowledge of the components of a system and the

interactions between those. In contrast to other cellular

networks, such topological knowledge is already relatively

complete for metabolic networks even in exotic microbes

[1], or can be drafted automatically from the genome [2]. At

least for organisms with very small genomes, such network

reconstructions are nearing completion as judged by the

good agreement between in silico and in vivo growth

phenotypes [3��]. In addition, techniques for quantitative

analyses of metabolic system components (metabolites

and proteins) and output (fluxes) are available [4]. Much

less advanced is our knowledge of the topologies and
www.sciencedirect.com
activities of the diverse regulatory networks that control

metabolic operation. Moreover, we also lack a true system

understanding of metabolism. For instance, most often we

even do not know how a metabolite concentration or a

metabolic flux emerges from the interactions in the under-

lying networks or we do not know how cells realize the

adaptation of metabolic operation in response to changing

nutrient availability.

Towards these challenges, systems biology raises great

expectation by its novel experimental capabilities and

computational approaches that essentially come in three

flavors (cf. Figure 1). The first key element is techniques

for large-scale, high-throughput experimentation to

identify and quantify molecular components, to deter-

mine genetic or physical interactions [5�], or to determine

the functional network output (i.e. metabolic fluxes for

metabolism [4,6]). Aiming at extracting actual biological

insights from such inherently complex data sets, compu-

tational algorithms for the so-called top-down analysis

of large-scale data sets are the second key element

of systems biology. Such data-driven computational

approaches promise to provide us with shortcuts to good

hypotheses on, for instance, novel components and mol-

ecular interactions. Jointly with classical molecular

biology, the first two branches of systems biology identify

and quantify the constituents of a system and interactions

between them. The third branch of systems biology then

aims to understand how a certain biological behavior

emerges when the various system components quantitat-

ively interact in time and space. Essential to this task are

mathematical models at all levels of complexity to

formally describe, to simulate and to ultimately under-

stand such system behavior. It is mostly the third branch

that pursues an iterative interplay between experimental

and computational analyses.

Here, we review papers since 2008 that used any of the

above mentioned systems biology approaches. By focus-

ing on work that has provided novel biological insight (in

contrast to advocating new methods), we ask whether

systems biology actually holds up against its own

promises. For this purpose, papers are grouped into the

categories (i) identifying metabolic components and

interactions, (ii) connecting regulatory networks with

metabolism, and (iii) generating molecular and higher

level systems understanding (cf. Figure 1).

Identifying metabolic components and
interactions
Metabolic networks are constituted by enzymes and

metabolites, and a reaction is considered an ‘interaction’
Current Opinion in Microbiology 2010, 13:337–343
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Figure 1

Various systems biology approaches (i.e. large-scale omics techniques, data-driven computational approaches and hypothesis-driven mathematical

modeling approaches) generate knowledge and understanding about metabolism. The first two approaches primarily support identification of network

components and their interactions, the latter approach is suited to generate system understanding; often being described as the ultimate goal of

systems biology.
between these components. Today’s metabolomics

efforts often detect metabolites that were so far not

considered in network reconstructions. Likewise enzy-

matic reactions are often added to an organism’s meta-

bolic network on the basis of stoichiometric

considerations within genome-scale reconstructions [1]

and, more recently, also by computational prediction of

novel pathways based on enzyme reaction rules and

thermodynamics, as was demonstrated for biodegradation

pathways [7�]. Once the topology of a metabolic network

is reconstructed, it is often exploited to develop targeted

experimental methods for comprehensive component

quantification with significant progress towards coverage,

resolution, dynamic range, and accuracy of detection, in

particular for the proteome [8] and the metabolome

[4,9,10�].

Reactions of the metabolic network are conceptually

connected via enzymes to genes. Despite extensive gen-

ome-scale modeling [1,5�], a surprisingly constant 20% of

all enzymatic reactions remain without a link (‘inter-

action’) to a gene (i.e. are orphans) in network reconstruc-

tions of model organisms and exotic species alike. Several

systematic computational and experimental approaches

to unravel novel enzymatic functions and links to genes

were recently reviewed [4]. An alternative approach is

the combination of large-scale protein structures with
Current Opinion in Microbiology 2010, 13:337–343
genome-scale modeling, although most inferred gene–
enzyme relationships in the so far largest study with

478 enzyme structures were only confirmatory [11].

Beyond identifying new reaction-gene links [12], we need

to assure and maintain high quality of the existing func-

tional annotations, in particular given the relatively high

error rate in data bases such as KEGG [3��,5�]. To this

end, a new and experimentally validated computational

method can recognize errors in existing annotations

and make specific predictions for better annotations

by systematic comparison of function (i.e. enzyme pos-

ition in the metabolic network) and context genomic

correlations [13�].

A somewhat rediscovered topic with potentially signifi-

cant impact on metabolic network connectivity is enzyme

promiscuity; i.e. latent catalytic side-activity of the reac-

tion an enzyme was presumably evolved for. Such relaxed

substrate and reaction specificity facilitates evolution of

novel biodegradation pathways [14] but can also have

biochemical relevance [4], thereby leading to much

higher connectivity of metabolic networks than current

genome-scale models represent [15]. Promiscuity does

not only concern the peripheral network but is very real

even in central metabolism, as was convincingly shown by

systematic comparison of stoichiometric model predic-

tions with growth phenotypes of 217 Escherichia coli
www.sciencedirect.com
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double enzyme deletion mutants under 13 conditions

[16��]. Discrepancies between prediction and data indi-

cated unknown reactions, leading to the discovery of a

novel sedoheptulose-7-phosphate breakdown pathway

that is catalyzed by side activities of phosphofructokinase

and aldolase, rather than the normal transaldolase in the

pentose phosphate pathway. Triggered simply by intra-

cellular accumulation of a metabolite, alternative path-

ways can thus modify the connectivity of the network and

possibly its robustness. Beyond novel reactions, promis-

cuity also concerns cofactor specificity. In particular bac-

terial enzymes appear to be less specific to energy [17] or

redox cofactors [18] than their mammalian homologs.

Since these cofactors connect many reactions, flexible

cofactor usage significantly increases a network’s capa-

bility to balance its various demand and supply fluxes.

The last two years also brought a typically ignored feature

of metabolism to the general attention—moonlighting

proteins [19–21]. Beyond their well-characterized meta-

bolic function, a steadily growing number of enzymes

perform a second function (‘only in secret under the

moonlight’) that is not metabolic in nature and not caused

by gene fusions, etc. Such second functions establish

interactions between metabolism and other cellular net-

works. A large class of these second functions is control of

gene expression, exerted by so-called trigger enzymes

[22]. Such ‘moonlighting’ of enzymes is particularly

abundant in central metabolism, where for example

glycolytic enzymes function also in DNA replication,

mRNA processing, apoptosis, and transcriptional regu-

lation [23]. Multifunctionality is still in a discovery phase

where the few tens of so far identified moonlighting

proteins are most likely the tip of an iceberg, and sys-

tematic protein–protein interaction analyses are

expected to be of key importance in identification

[23]. So far, systems biology has not yet tackled the

added complexity that arises from different biochemical

networks that are functionally intertwined by such

protein multifunctionality.

Connecting regulatory networks with
metabolism
Despite promiscuity and some missing links to the gen-

ome, metabolism is currently still the most comprehen-

sively known biological network and therefore an ideal

playground for systems biology. The major thrust of top-

down systems biology now attempts to connect metabolic

networks with the regulatory networks that control them.

Currently, transcriptional regulation attracts the major

attention, primarily because of mature experimental

methods for transcriptomics and physical DNA–protein

interaction analyses. On the basis of such data, the main

focus is to reconstruct the architecture of transcriptional

regulation networks [24,25]. Such reconstructed regula-

tion networks already provided hints on how environ-

mental cues are linked to a cell’s transcriptional state [26],
www.sciencedirect.com
in some cases explicitly including metabolite concen-

trations as regulatory feedbacks [27].

After having inferred the topology of metabolic regulation

networks the next quest is then to determine those parts

of the network that actively control metabolism under a

given condition [10�,28��,29��]. Here, 13C flux analysis is

being used to identify whether certain transcription fac-

tors actually control the distribution of metabolic flux [30–
32]. Further, it seems important to analyze data from

multiple cellular levels as otherwise major mechanisms

can be missed. This is illustrated by the different con-

clusions derived from dynamic metabolite data [33] com-

pared to dynamic mRNA-based expression data [34] for

yeast’s response to oxidative stress. The potential of

multiple data integration is illustrated by the recent

identification of novel regulatory gene–metabolite inter-

actions upon nutrient deprivation in yeast that were

obtained from context-dependent correlations of metab-

olite and transcript data using a probabilistic framework

[35]. Another example of how regulation can control a

metabolic function comes from correlating metabolite,

transcript and enzyme levels that revealed a passive

homeostasis mechanism, which is also a mechanistic

explanation for why decreased enzyme abundance, and

thus to some extent transcript abundance, cause increased

substrate metabolite concentrations [36]. By correlating

fluxes and metabolite concentrations with expression data

in a global transcription factor mutant, specific hypoth-

eses could be derived on active regulation processes and

functional pathway usage [37]. As a mechanistic formal-

ism for data integration, time-dependent regulation

analysis is a particularly pertinent method to quantify

the actual control exerted by metabolic versus expression

regulation mechanisms [38].

While much efforts in connecting metabolic with regu-

latory networks still concentrate on transcriptional

mechanisms [26,27,39], a pertinent question is how

relevant transcriptional regulation actually is for meta-

bolic operation? A comprehensive omics data set from

the reduced-genome Mycoplasma pneumoniae, which

lacks the majority of metabolic transcription factors

[25], clearly shows that complex metabolic regulation

can be achieved with a reduced transcription factor

network [3��]. This conclusion is further corroborated

by empirical observations from bacteria to yeast showing

(i) that only a small number of transcription factors

actually control the distribution of metabolic flux

[31,32], (ii) that flux control is distributed between

the metabolic and the other layers of regulation

[38,40], and (iii) that dynamic responses of metabolism

are dominated by metabolic and not by transcriptional

regulation [33]. Collectively, these arguments suggest

that other regulatory mechanisms, such as post-transla-

tional modifications and metabolite–protein interactions

are possibly even more important.
Current Opinion in Microbiology 2010, 13:337–343
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One such potentially underestimated regulation process

for metabolism is enzyme phosphorylation. Although

follow-ups to prove functional relevance of phosphoryl-

ation events are clearly missing, surprisingly many central

metabolic enzymes appear to be phosphorylated in many

microbes as identified by mass spectrometric analyses

[41,42]. How kinases thereby achieve control of metab-

olism has elegantly been demonstrated for the global

energy regulator kinase Snf1 in yeast by integrating

large-scale data sets with various computational network

analysis methods [43�].

Another key regulation process occurs at the level of

metabolite–protein interactions. There is increasing

recognition of the fact that metabolism is not simply a

dull workhorse process [29��] but rather takes very active

control of itself and other cellular processes through

regulatory crosstalk by signaling metabolites that modu-

late activity of regulatory and other proteins [27,29��,44�].
From dynamic single cell expression data, the con-

sequences of such metabolite–transcription factor inter-

actions were quantified for leucine biosynthesis [45] to

parameterize a five ordinary differential equation model

that predicts the pathway response and ultimately its flux

upon new perturbations. The drastic higher induction of

enzymes downstream of the intermediate control point

was shown to be crucial for dynamic but not steady-state

leucine formation, thus questioning the generality of the

previously described just-in-time dynamics of amino acid

biosynthesis in E. coli [46].

Generating systems understanding
Understanding of a biological system (cf. right part of

Figure 1) can come in different flavors. First, one could

aim at a mechanistic understanding on the molecular

level. Since biological systems are very complex, we still

have to make compromises between a system’s size that

we consider and the level of detail at which we model a

system. Second, one could aim at a more global system

understanding, where not exact molecular mechanisms

but rather the general principles underlying a particular

system are in the core of the interest. The following

section first highlights important work that generated

mechanistic system understanding and then briefly

illustrates work that generated a more global system

understanding.

On our way towards a true molecular systems understand-

ing, stoichiometric model analyses can provide us with

certain relevant information—particularly when com-

bined with experimental efforts [47,48]. Ultimately, how-

ever, such models will not be sufficient. Instead,

differential equation-type models will be required to

describe molecular interactions in mechanistic detail.

Lack of appropriate rate expressions and kinetic

parameters and persisting difficulty in generating time-

course data to fit the model parameters renders devel-
Current Opinion in Microbiology 2010, 13:337–343
opment of such models challenging. Thus, until today

most of the modeled systems are still rather small but

recent examples provided valuable insight about metab-

olism that could not have been obtained through classical

approaches [49,50]. For E. coli, several new detailed

models have been developed for diverse sub-systems.

For instance, models of the PTS-based carbohydrate

uptake systems have revealed a set of interesting func-

tional insights [51], such as demonstrating the importance

of a forward loop that guarantees robust behavior in

carbohydrate uptake [52]. Another model was built for

the ammonia assimilation system and validated with a set

of environmental and genetic perturbations that were not

used for model fitting. In a nice iterative cycle between

modeling and experimental efforts, the authors found that

the dynamic metabolome data acquired in nutrient per-

turbation experiments in the wild-type and in mutant

strains could only be fitted to the model when compe-

tition for the active sites of saturated enzymes was con-

sidered [10�]. This sort of regulation mechanism is hardly

ever considered and the results indicate that this mech-

anism might be much more important for the regulation

of metabolism than is usually considered. Also another

metabolism-relevant regulation mechanism was recently

found to be important in a similar model-based exper-

imental study of Saccharomyces cerevisiae. Using data from

fluorescence reporter genes obtained from dynamically

changing environments in microfluidic devices and an

adapted comprehensive model of the galactose network,

it was found that the experimental data could only be

described by the model when active glucose-dependent

degradation of the GAL1 and GAL3 transcripts was con-

sidered [28��]. This model prediction was found to be

correct in follow-up experimental analyses, which overall

provided insights into the importance of post-transcrip-

tional regulation in this case.

All so far mentioned models only modeled small sub-

systems. For several system-level questions, for example,

how central metabolism and its regulatory machinery

ensure metabolic homeostasis in changing environments,

however, we will need to use larger mechanistic models.

To this end, the field seems to be a bit hampered by the

conjecture that exact mechanisms cannot be modeled at

large, given the lack of rate expressions and kinetic

parameters. Indeed it might take a while until we have

a sufficient number of modular models developed to

combine them into a large cellular model as was recently

suggested [10�]. Thus, in order to answer more compre-

hensive system-level questions on the molecular func-

tioning of microbial metabolism, it deems necessary to

find ways to develop mechanistic-based models despite

this uncertainty and still to be able to extract relevant

insights from these models. In fact, there is indication that

structural features of cellular networks outweigh the

potentially critical fine-tuning of rate laws and parameters

[53,54]. Two recent approaches exploit this property in
www.sciencedirect.com
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the context of mechanistic metabolic models and make a

leap towards larger models without the need for detailed

characterization of kinetic parameters.

Liao and co-workers introduced an approach where they

capitalized on thermodynamics and on experimentally

measured steady states to constrain ensembles of ordinary

differential equation models, thereby reducing the can-

didate ensembles significantly [55]. Models with predic-

tive power were obtained, which were able to guide

metabolic engineering efforts [56]. In another work, a

recently proposed approach to estimate model structures

and parameters from steady-state omics data [57] was

used to develop a large-scale model of E. coli’s central

metabolism, including its allosteric, transcriptional and

post-transcriptional regulation. Model analyses revealed

that adaptations to fluctuating nutrient availability are

enabled by indirect recognition of carbon sources through

a distributed sensing of intracellular metabolic fluxes.

Molecular flux sensors were found to be embedded in

global feedback loop architectures, which realize that

metabolic operation adapts itself autonomously to fluctu-

ating carbon sources without requiring any classical sen-

sing and signaling [29��]. This work shows that, despite

the inherent uncertainty, a molecular system understand-

ing can be generated even for larger metabolic systems. In

fact, recently generated omics data point to the existence

of similar metabolism/transcriptional level-overarching

regulation mechanisms in yeast [35].

Beyond answering questions that require molecular un-

derstanding (as the ones just illustrated), there are also

questions in the realm of ‘system understanding’ that can

be addressed at a more abstract level using existing knowl-

edge on biological networks and experimental data. One

example of such global system-level problems is the ques-

tion of how a unicellular organism optimizes its growth rate

and fitness in the light of (fluctuating) nutrient availability

and competition by other organisms. Here, several recent

studies made interesting contributions.

After reconstructing metabolic networks from genomic

data for 113 bacterial species, Freilich and colleagues

computationally inferred the species’ habitable environ-

ments and scored these environments according to the

number of species that can live in the respective environ-

ment (denoting the level of competition that a species

encounters in this environment). When correlating these

data with the species’ growth rates, they found that

obviously slow growth rates are used in specialized niches

with little co-habitation and high growth rates in com-

petitive environments [58]. Another interesting study

shed new light on the phenomenon of overflow metab-

olism that is usually seen to go against a growth max-

imization goal. Teusink and colleagues developed a

simple self-replicator model that considers several cellu-

lar sub-systems. They found that when the system, for
www.sciencedirect.com
instance, also accounts for enzyme synthesis costs, then

under certain environmental conditions indeed an over-

flow metabolism can actually maximize growth [59]. Not

only focusing on something completely different, but also

advancing our understanding in what contributes to fit-

ness, van Oudenaarden and colleagues investigated how

fitness can be optimized in fluctuating environments.

Using an experimental approach supported by a popu-

lation-dynamics model they found that in rapidly fluctu-

ating environments fast-switching populations

outcompete slow switchers and that the opposite is the

case in rarely changing environments, overall suggesting

that cells might be have adapted their inter-phenotype

switching rates to the frequency of environmental

changes [60]. On the basis of models, computational

analyses and experimental data, these studies provided

us with novel perspectives on growth rate and fitness as an

important cellular (metabolic) behavior and thus global

systems understanding.

Conclusions
Does systems biology hold up against its promises?

Experimentally, large-scale omics techniques provide

unprecedented opportunities and much of the current

systems biology activities are concerned with generating

data. Several of these experimental efforts deliver data

that directly allow us to complete network topologies.

Once information on novel components and interactions

cannot be directly obtained from omics data, however, we

often struggle in translating this data into actual biological

insight, arguably because of still lacking theoretical

methods or concepts. Even when inference methods

are used, the type of obtained biological insight is mostly

of a hypothesizing or spotlighting nature and thus distinct

from the molecular level insights that are provided by

molecular biology. Since the number of such hypotheses

can be rather large, a great number of follow-up analyses

are typically required to prove functionality and pinpoint

molecular mechanisms. The challenge for computational

methods is (i) to obtain more ‘molecular’ insights through

top-down analyses of omics data and (ii) to efficiently

guide follow-up analyses.

On the more hypothesis-driven side of systems biology,

we have recently seen several nice examples of molecular

systems understanding in small sub-networks. For small

systems, most theoretical methods are in place and we

can thus expect to see more of such studies. Before the

understanding of larger systems can be tackled, however,

several conceptual challenges will have to be solved,

most pressing perhaps how to deal with the inherent

uncertainty [53].

In our view, the current key challenge for systems biology

of microbial metabolism is regulation, in particular

through so far not often considered mechanisms of metab-

olite–protein interactions and enzyme phosphorylation.
Current Opinion in Microbiology 2010, 13:337–343
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Systems biology must provide appropriate experimental

means and computational methods of how such regula-

tion can be inferred from large-scale data. Further, we are

convinced that mathematical modeling will be the only

vehicle capable of generating a true understanding about

how biological systems really work. In this context,

metabolism is frequently presented as an ideal test case

for systems biology, given the wealth of our current

knowledge. However, the operation of metabolism is a

system-level property that is possibly more complex than

any other cellular system. This is because metabolic

operation is (i) influenced by a whole arsenal of regulatory

actions at various cellular levels, and (ii) metabolism itself

feeds back to almost all cellular systems, including itself.

Thus, although metabolism is definitely a good starting

point for system biology endeavors, it might very well

turn out to be the most challenging cellular system to

generate a system-level understanding.
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Genome-scale reconstruction of the Lrp regulatory
network in Escherichia coli. Proc Natl Acad Sci 2008,
105:19462-19467.
www.sciencedirect.com



Systems biology of metabolism Heinemann and Sauer 343
27. Goelzer A, Bekkal Brikci F, Martin-Verstraete I, Noirot P,
Bessieres P, Aymerich S, Fromion V: Reconstruction and
analysis of the genetic and metabolic regulatory networks of
the central metabolism of Bacillus subtilis. BMC Syst Biol 2008,
2:20.

28.
��

Bennett MR, Pang WL, Ostroff NA, Baumgartner BL, Nayak S,
Tsimring LS, Hasty J: Metabolic gene regulation in a
dynamically changing environment. Nature 2008,
454:1119-1122.

Single cell-based dynamic gene-expression data analyzed with a kinetic
model identified glucose-mediated mRNA decay as a novel regulation
mechanism in yeast.

29.
��

Kotte O, Zaugg JB, Heinemann M: Bacterial adaptation through
distributed sensing of metabolic fluxes. Mol Syst Biol 2010,
6:355.

A large-scale kinetic model of E. coli central metabolism and its enzy-
matic, transcriptional and post-translational regulation suggests that
certain extracellular carbon sources are sensed through intracellular
metabolic flux sensors. Their embedding in global feedback architectures
makes metabolism an autonomous, self-regulating system.

30. Kleijn RJ, Buescher JM, Le Chat L, Jules M, Aymerich S, Sauer U:
Metabolic fluxes during strong carbon catabolite repression
by malate in Bacillus subtilis. J Biol Chem 2010, 285:1587-1596.

31. Nanchen A, Schicker A, Revelles O, Sauer U: Cyclic AMP-
dependent catabolite repression is the dominant control
mechanism of metabolic fluxes under glucose limitation in
Escherichia coli. J Bacteriol 2008, 190:2323-2330.

32. Tannler S, Fischer E, Le Coq D, Doan T, Jamet E, Sauer U,
Aymerich S: CcpN controls central carbon fluxes in Bacillus
subtilis. J Bacteriol 2008, 190:6178-6187.

33. Ralser M, Wamelink MM, Latkolik S, Jansen EE, Lehrach H,
Jakobs C: Metabolic reconfiguration precedes transcriptional
regulation in the antioxidant response. Nat Biotechnol 2009,
27:604-605.

34. Chechik G, Oh E, Rando O, Weissman J, Regev A, Koller D:
Activity motifs reveal principles of timing in transcriptional
control of the yeast metabolic network. Nat Biotechnol 2008,
26:1251-1259.

35. Bradley PH, Brauer MJ, Rabinowitz JD, Troyanskaya OG:
Coordinated concentration changes of transcripts and
metabolites in Saccharomyces cerevisiae. PLoS Comput Biol
2009, 5:e1000270.

36. Fendt SM, Buescher JM, Rudroff F, Picotti P, Zamboni N, Sauer U:
Tradeoff between enzyme and metabolite efficiency maintains
metabolic homeostasis upon perturbations in enzyme
capacity. Mol Syst Biol 2010, 6:356.

37. Moxley JF, Jewett MC, Antoniewicz MR, Villas-Boas SG, Alper H,
Wheeler RT, Tong L, Hinnebusch AG, Ideker T, Nielsen J et al.:
Linking high-resolution metabolic flux phenotypes and
transcriptional regulation in yeast modulated by the global
regulator Gcn4p. Proc Natl Acad Sci USA 2009, 106:6477-6482.

38. van Eunen K, Bouwman J, Lindenbergh A, Westerhoff HV,
Bakker BM: Time-dependent regulation analysis dissects
shifts between metabolic and gene-expression regulation
during nitrogen starvation in baker’s yeast. FEBS J 2009,
276:5521-5536.

39. Cimini D, Patil KR, Schiraldi C, Nielsen J: Global transcriptional
response of Saccharomyces cerevisiae to the deletion of
SDH3. BMC Syst Biol 2009, 3:17.

40. Daran-Lapujade P, Rossell S, van Gulik WM, Luttik MA, de
Groot MJ, Slijper M, Heck AJ, Daran JM, de Winde JH,
Westerhoff HV et al.: The fluxes through glycolytic enzymes in
Saccharomyces cerevisiae are predominantly regulated at
posttranscriptional levels. Proc Natl Acad Sci USA 2007,
104:15753-15758.

41. Sun X, Ge F, Xiao CL, Yin XF, Ge R, Zhang LH, He QY:
Phosphoproteomic analysis reveals the multiple roles of
phosphorylation in pathogenic bacterium Streptococcus
pneumoniae. J Proteome Res 2010, 9:275-282.
www.sciencedirect.com
42. Soufi B, Gnad F, Jensen PR, Petranovic D, Mann M, Mijakovic I,
Macek B: The Ser/Thr/Tyr phosphoproteome of Lactococcus
lactis IL1403 reveals multiply phosphorylated proteins.
Proteomics 2008, 8:3486-3493.

43.
�

Usaite R, Jewett MC, Oliveira AP, Yates JR, Olsson L, Nielsen J:
Reconstruction of the yeast Snf1 kinase regulatory network
reveals its role as a global energy regulator. Mol Syst Biol 2009,
5:319.

Interrogating transcriptomics, proteomics, and metabolomics data in
several mutants by four network analysis methods enabled to map the
Snf1 kinase network in yeast revealing the key role of Snf1 as a low-
energy checkpoint akin to its mammalian homologue AMPK.

44.
�

Gruning NM, Lehrach H, Ralser M: Regulatory crosstalk of the
metabolic network. Trends Biochem Sci 2010 doi: 10.1016/
j.tibs.2009.12.001.

An insightful review on the regulatory roles of metabolism in controlling
itself and other cellular processes.

45. Chin CS, Chubukov V, Jolly ER, DeRisi J, Li H: Dynamics and
design principles of a basic regulatory architecture controlling
metabolic pathways. PLoS Biol 2008, 6:e146.

46. Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H,
Tsalyuk M, Surette MG, Alon U: Just-in-time transcription
program in metabolic pathways. Nat Genet 2004, 36:486-491.

47. Gonzalez O, Gronau S, Pfeiffer F, Mendoza E, Zimmer R,
Oesterhelt D: Systems analysis of bioenergetics and growth of
the extreme halophile Halobacterium salinarum. Plos Comput
Biol 2009, 5:e1000332.

48. Segura D, Mahadevan R, Juarez K, Lovley DR: Computational
and experimental analysis of redundancy in the central
metabolism of Geobacter sulfurreducens. PLoS Comput Biol
2008, 4:e36.

49. Garcia J, Shea J, Alvarez-Vasquez F, Qureshi A, Luberto C,
Voit EO, Del Poeta M: Mathematical modeling of pathogenicity
of Cryptococcus neoformans. Mol Syst Biol 2008, 4:183.

50. Klamt S, Grammel H, Straube R, Ghosh R, Gilles ED: Modeling the
electron transport chain of purple non-sulfur bacteria. Mol Syst
Biol 2008, 4:156.

51. Kremling A, Bettenbrock K, Gilles E: Analysis of global control of
Escherichia coli carbohydrate uptake. BMC Syst Biol 2007, 1:42.

52. Kremling A, Bettenbrock K, Gilles ED: A feed-forward loop
guarantees robust behavior in Escherichia coli carbohydrate
uptake. Bioinformatics 2008, 24:704-710.

53. Kaltenbach HM, Dimopoulos S, Stelling J: Systems analysis
of cellular networks under uncertainty. FEBS Lett 2009,
583:3923-3930.

54. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR,
Sethna JP: Universally sloppy parameter sensitivities in
systems biology models. PLoS Comput Biol 2007, 3:1871-1878.

55. Tran LM, Rizk ML, Liao JC: Ensemble modeling of metabolic
networks. Biophys J 2008, 95:5606-5617.

56. Contador CA, Rizk ML, Asenjo JA, Liao JC: Ensemble modeling
for strain development of l-lysine-producing Escherichia coli.
Metab Eng 2009, 11:221-233.

57. Kotte O, Heinemann M: A divide-and-conquer approach to
analyze underdetermined biochemical models. Bioinformatics
2009, 25:519-525.

58. Freilich S, Kreimer A, Borenstein E, Yosef N, Sharan R, Gophna U,
Ruppin E: Metabolic-network-driven analysis of bacterial
ecological strategies. Genome Biol 2009, 10:R61.

59. Molenaar D, van Berlo R, de Ridder D, Teusink B: Shifts in growth
strategies reflect tradeoffs in cellular economics. Mol Syst Biol
2009, 5:323.

60. Acar M, Mettetal JT, van Oudenaarden A: Stochastic switching
as a survival strategy in fluctuating environments. Nat Genet
2008, 40:471-475.
Current Opinion in Microbiology 2010, 13:337–343

http://dx.doi.org/10.1016/j.tibs.2009.12.001
http://dx.doi.org/10.1016/j.tibs.2009.12.001

	Systems biology of microbial metabolism
	Introduction
	Identifying metabolic components and interactions
	Connecting regulatory networks with metabolism
	Generating systems understanding
	Conclusions
	References and recommended reading


