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« |BIS: systems biology group at INRIA/Université Joseph Fourier/CNRS

— Analysis of bacterial regulatory networks by means of models and experiments
— Biologists, computer scientists, mathematicians, physicists, ...
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Overview

Gene reqgulatory networks in bacteria
Deterministic modeling of gene regulatory networks
Qualitative modeling of gene regulatory networks

Stochastic modeling of gene regulatory networks
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Some current issues and perspectives

— Global physiological effects on the dynamics of gene expression

— Strategies for dealing with incomplete information: the case of Drosophila

development




Bacterial growth and metabolism

« Bacteria are geared towards growth and division
Escherichia coli cells have doubling times up to 20 min

G. Baptist

 Metabolism fuels growth by production of energy and building
blocks for macromolecules, using nutriments from environment

ATP, amino acids, nucleotides, ...




Growth transition and gene expression
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 (Genome-wide reorganization of gene
expression following growth transitions
In bacteria

Gene expression during glucose-lactose
diauxie in E. coli
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Growth transition and gene expression

* Adjustment of gene expression involves variety of specific
regulators

Transcription factors, small regulatory RNAs, ...
 Complex regulatory networks control adaptive responses of
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Growth transition and gene expression

« Adjustment of gene expression also involves global
physiological effects

Abundance of transcriptional and translational machinery, size of
metabolic pools, gene copy number, ...

A

m
it R

transcription rate o
— m
[
L1
genedosageg @

=T CR R
[
||

05 — | _
ﬂ L | L | L L J 1 J L
0 1 2 3 0 1 2 3
growth rate [dbl/hr] growth rate [dbl/hr]
D E
ﬁa 2 I | I | I 4%1_._‘ 4 I | I | I
% 1.5 1 S E
5 1= O-O~0—0—0 fg - 2 —
Klumpp et al. (2009), Cell, 139(7):1366-75 = 05 |2 2
[4x] " —_
Bremer and Dennis (1996), Escherichia Coli and & ol 1 v | *g =) I I
Salmonella, ASM Press, 1553-69 - o 1 2 3 a 0 1 2 3

growth rate [dbl/hr] growth rate [dbl/hr]




Growth transition and gene expression

* Question: what are relative contributions of specific
regulators and global physiological effects in adaptation of
gene expression during growth transitions?




Growth transition and gene expression

* Question: what are relative contributions of specific
regulators and global physiological effects in adaptation of
gene expression during growth transitions?

* Previous work on growth-rate dependent expression of
constitutive and regulated genes

o

— Constitutive gene: expression is YR
controlled by global physiology, but
not by specific transcription factors

— EXxpression of constitutive gene is

growth-rate dependent % 2 3
growth rate [dbl/hr]
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Klumpp et al. (2009), Cell, 139(7):1366-75




Growth transition and gene expression

* Question: what are relative contributions of specific
regulators and global physiological effects in adaptation of
gene expression during growth transitions?

* Previous work on growth-rate dependent expression of
constitutive and regulated genes

- Expression of constitutive gene is *_
growth-rate dependent g,

— Weaker growth-rate dependence

under repression, stronger
growth-rate dependence under
activation

Klumpp et al. (2009), Cell, 139(7):1366-75
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Growth transition and gene expression

* Question: what are relative contributions of specific
regulators and global physiological effects in adaptation of
gene expression during growth transitions?

Dynamics instead of steady-state, network instead of single gene

Berthoumieux et al. (2013), Mol. Syst. Biol., 9:634




Growth transition and gene expression

 Question: what are relative contributions of specific
regulators and global physiological effects in adaptation of
gene expression during growth transitions?
Dynamics instead of steady-state, network instead of single gene

* Question addressed in context of central regulatory circuit of
carbon metabolism in E. coli

Physiological state
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Berthoumieux et al. (2013), Mol. Syst. Biol., 9:634




Approach

* Real-time monitoring of dynamic response of network to
depletion of carbon source (glucose):

Growth rate

cAMP concentration

Promoter activity of network genes

Global physiological state through use of constitutive phage promoter

Physiological state
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Approach

* Real-time monitoring of dynamic response of network to
depletion of carbon source (glucose):

— Growth rate
— cAMP concentration

— Promoter activity of network genes
— Global physiological state through use of constitutive phage promoter

 Simple models of promoter activities of network genes

Models represent different hypotheses on contributions from global
and specific effects

« Validation of models using experimental data




Real-time monitoring of gene expression

ngf-’ Bacteria with
reporter plasmids . s
M9 0.3% glucose  Strong dilution Growth transition

due to glucose exhaustion

“ A/ | 2 /

log(# bacteria) M9 0.3% glucose

-302 ‘0 400 800 1000 t(min)
h Overnight culture - - Real-time measurements -
S — Transcriptional fusion of
p— promoters with gfp reporter
";’ genes on plasmid
— Measurement of absorbance
i and fluorescence signals,

Growth rate <«—— «4+—— Absorbance data
ro rate

thermostated automated
microplate reader

— Model-based derivation of
promoter activities

«— FI uorgscence data

Promoter activities «——

de Jong et al. (2010), BMC Syst. Biol., 4:55
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Real-time monitoring of gene expression

* Monitoring of fis promoter activity during growth transition
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Real-time monitoring of gene expression

* Monitoring of activity of crp, fis, acs and constitutive phage
promoters during growth transition
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Bias introduced by plasmid copy number

« Plasmids are relatively easy to construct and have strong
signal, but ... plasmid copy number varies with growth rate

Lin-Chao and Bremer (1986), Mol. Gen. Genet., 203(1):143-9

 Measurement of relative plasmid copy number using gPCR

« Variation in plasmid copy number preserves gqualitative
shape of profiles, but introduces quantitative bias

 Conclusion: need for analysis method that corrects for
growth-phase dependent variations of plasmid copy number




Measurement of cAMP

 Measurement of cCAMP concentration during growth
transition:

— Measurement of extracellular cAMP concentration
— Development of kinetic model accounting for cAMP import/export

— Determination of intracellular cAMP concentration from
measurements and model

External cAMP concentration Internal cAMP concentration

o o
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o
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Intracellular cAMP [uM]
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* (Good correspondence with intracellular cAMP profiles
pUbIIShed In Ilterature Kao et al. (2004), Proc. Natl. Acad. Sci. USA, 101(2):641-6




Approach

* Real-time monitoring of dynamic response of network to
depletion of carbon source (glucose):

— Growth rate
— cAMP concentration

— Promoter activity of network genes
— Global physiological state through use of constitutive phage promoter

 Simple models of promoter activities of network genes

Models represent different hypotheses on contributions from global
and specific effects

« Validation of models using experimental data




Model of promoter activities

« Simple model of promoter activity separating specific
effects of transcription factors from global effect of
physiological state

p(t) = kp1(t) p2(t)

k : maximum promoter activity
p1(t) : regulation by global physiological state
p2(t) : regulation by specific transcription factors
p1(t) and p2(t) vary between 0 and 1




Model of promoter activities

« Simple model of promoter activity separating specific
effects of transcription factors from global effect of
physiological state

p(t) = kp1(t) p2(t)

* Normalization with respect to reference state at t” to get
rid of unknown constant £ and logarithmic transformation:

t t t
log&O) - logpl(o) —|—logp22)
p P+ Ps

Convenient choice of reference state: growth arrest (expression peak
of acs) or steady state after growth transition




Model of promoter activities

 Hypothesis 1: effect of global physiological state (measured
by phage promoter) is dominant and effect of specific
regulators is negligible (pa(t) ~ P9 ):

log }L? = log pRé\/j(t)
p Prm

« Advantages of model:

— Straightforward to test by means of experimental data
— Non-parametric, does not require model calibration

— No effect of plasmid copy number variation if promoter activity is
measured in same plasmid vector




Test of hypothesis 1

* Global effect is dominant for expression control of
transcription factors (crp and fis), but not for metabolic gene
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fis
R
A
‘%’3 2 |
g
052

!
|og(pR~1fp 2 M)

- 0.03

bg(pcmfp
L

ST

5
0
1o9(PruPry)

e 0,06

|Og(pa s ‘,pgcs)

Viieii
bl

o5 | g-s
109(P /PRy

= 0.08




Model of promoter activities

* Hypothesis 2: effect of specific regulators is not negligible
and can be reduced to effect of change in cAMP

concentration ¢(t):

p(t)

t
log——longM(): .
p’ Pras ¢

* Hypothesis based on data, but biological assumptions
underlying simplification can be explicitly formulated

Intracellular cAMP [uM]
- N w




Test of hypothesis 2

« Combination of global effect and specific effect of CAMP
explains variation in acs promoter activity

/Orm)
E

100(P0/P3ce)

0 0
acs' Pacs)109(Prp/Pru)

0 0
p/Perp) 109 Py /PRy

log(p
log(p,,

0 05 1 15 - -2 -1 0 1 =3 -2 -1
109(P P! log(cic®) log(c/c)

R2=0.08 R2=0.93 R2=0.03

« Addition of cCAMP as regulator yields bad fit for crp and fis:
no improvement upon simpler hypothesis 1




Other experimental conditions

« Experiments and model tests were repeated in other
conditions:

— Glucose down-shift experiment Redilution into low-glucose
medium to force growth arrest

gfp Bacteria with
rt | id s
reporter plasmids 9 039 gucone Strong dilution Growth transition )
due to glucose exhaustion
/ Exponential ’/
A growth

log(# bacteria) M9 0.3% glucose

[

-800 0 400 800 1000 t(min)

Overnight culture h Real-time measurements -




Other experimental conditions

« Experiments and model tests were repeated in other
conditions:

— Glucose down-shift experiment
— Deletion mutant crp
— Deletion mutant fis

Physiclogical state
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Other experimental conditions

« Experiments and model tests were repeated in other
conditions:

— Glucose down-shift experiment
— Deletion mutant crp
— Deletion mutant fis

 Additional data confirm conclusions:

— Effect of global physiological state dominant for transcriptional control
of genes encoding transcription factors Fis and Crp

— Combined effect of global physiological state and cAMP accounts for
variation of promoter activity of acs




Other regulators

 |s effect of global physiologal state also dominant in
transcriptional control of other regulators?
RpoS (0°), master stress regulator in E. coli, inhibited by Crp-cAMP

Physiological state

_ > Fis regulon Crp regulon
115 operons 263 operons

prpoS  rpoS pacs acs




Other regulators

 |s effect of global physiologal state also dominant in
transcriptional control of other regulators?
RpoS (0°), master stress regulator in E. coli, inhibited by Crp-cAMP
« Test of hypothesis 1 in different conditions confirms
dominant role of global physiological state
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Conclusions

« Control of gene expression across growth phases is shared
between global physiological state and transcription factors

« Method to dissect shared control of promoter :
— Simple mathematical model of promoter activity
— Carefully designed data analysis procedures

* Application of method to analysis of regulatory circuit
Involving key regulators of carbon metabolism in E. coli

Physiological state
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Conclusions

« Transcriptional control of genes encoding transcription factors
IS dominated by growth-phase-dependent effect

— Many regulatory interactions involving Crp-cAMP and Fis do not
contribute to transcriptional control in our conditions

— Choice of growth conditions? Weak effects?

Physiological state

l cAMP
f
T

Fis Crp \
Crp-cAMP
i — i — P

pfis fis porp crp
i
: -
1
J’ |
v = v
prpaS  pos pacs acs

Berthoumieux et al. (2013), Mol. Syst. Biol., 9:634 |




Conclusions

* Results question central role often attributed to transcriptional
regulatory networks

« Alternative view: specific effects complement and finetune
global control exerted by physiological state, notably gene
expression machinery

Gerosa et al. (2013), Mol. Syst. Biol., 9:658

« Consequences for interpretation of transcriptome data and
design of synthetic circuits




Conclusions

* Analysis generalizable to other networks?
— Dissection of control of arginine biosynthesis genes in E. coli

A Expression machinery Transcriptional circuit
(global regulation) (specific regulation)
H v ArgR* \

» argR

S R S FET S & &------@p arg
Arginine biosynthesis pathway Wb Karg
(biological process) Biomass

Gerosa et al. (2013), Mol. Syst. Biol., 9:658




Conclusions

* Analysis generalizable to other networks?

— Dissection of control of arginine biosynthesis genes in E. coli

— Control of gene expression is combination of global physiological
state and specific effects (arginine concentration)
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Perspectives

« Can we control global physiological state, and thus gene
expression program of the cell?

Engineering of E. coli genome to put transcriptional machinery under
control of inducible promoter

D
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* Finetuning of growth rate...




Perspectives

« Can we control global physiological state, and thus gene
expression program of the cell?

Engineering of E. coli genome to put transcriptional machinery under
control of inducible promoter

Izard et al., submitted for publication
Collaboration with A. Lindner
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* Finetuning of growth rate ... in reversible way
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Whole-cell model M. genitalium
« Metabolic networks are integrated with gene networks and

signalling networks
Complex multi-level system with feedback across different time-

scales
A
External RNA \_

environment
"3 modification
RMA Ribosome i
Terminal organelle
Metabolism ~ decay . (4 :' assembly assemngry
L] tRMA Protein
o 19 ~, ) aminoacylation transloca
® 0\. ‘f' RMA processing % Protein . .
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Host epithelium
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Protein 1 Metabolites
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"". W Protein
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polymernzatio
Cytokinesis

Whole-cell model of
Mycoplasma genitalium
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seqgregafion

Karr et al. (2012), Cell, 150(2): 389-401




Whole-cell model M. genitalium

« Whole-cell model represents huge modelling effort:

— Whole-genome model including complete known metabolic, gene, and
signalling networks

100% 900+ 1900+ 28
of genes publications parameters processes

L L ] J
!

[ v v
Predictive Novel Biological Rational
Karr et al. (2012), Cell, 150(2): 389-401 capacity hypotheses discovery  design

— Variety of formalisms to model the 28 modules: FBA, kinetic ODE
models, Boolean models, Markov chains, ...

— Cell cycle simulated for >100 cells, >30 mutants on 128-core machine




Whole-cell model M. genitalium

« Whole-cell simulation of M. genitalium cell cycle




Whole-cell model M. genitalium

* Whole-cell simulations have provided new insights into
robustness of cell-cycle duration
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Karr et al. (2012), Cell, 150(2): 389-401




Whole-cell model M. genitalium

* Whole-cell simulations have provided new insights into
global use and allocation of energy
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Lack of quantitative information: strategies

« Three main strategies to deal with lack of quantitative data:
— Test of parameter sensitivity
— Model reduction and simplification
— Parameter estimation from time-series data

De Jong and Ropers (2006), Brief. Bioinform., 7(4):354-363




Test of parameter sensitivity

« Important dynamic properties are expected to be robust over
large ranges of parameter values

Important dynamic properties should be insensitive to moderate
variations in parameter values

Stelling et al. (2004), Cell, 118(6):675-685
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gene a gene b




Model reduction and simplification

 Use model reduction and simplification to obtain models that
can be analyzed with less information on parameter values

— Piecewise-linear instead of nonlinear models

— Also: Boolean models

)'(F x,=0  bistability
0 @ —

A I

i) (o
Km0 % 1001l A ma
. E =
Xy = &5 T (%) — % ol ~ "

0 X = 0 4, b —>

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29
de Jong et al. (2004), Bull. Math. Biol., 66(2):301-40




Parameter estimation

« Estimate parameter values from experimental time-series data
Systems identification in control and engineering

Ljung (1999), System ldentification: Theory for the User, Prentice Hall

« Glven model structure, search parameter values for which
model predictions best fit experimental data

N

0 t_>

Xy
l | | | Yo
| > Protein A | » Protein B

gene a gene b

* Minimization of objective function, for instance sum of squared

SO Y (L0~ YO

Possibility to add constraint or penalty terms to restrict parameter space




Lack of quantitative information: strategies

« Three main strategies to deal with lack of quantitative data:
— Test of parameter sensitivity
— Model reduction and simplification
— Parameter estimation from time-series data

De Jong and Ropers (2006), Brief. Bioinform., 7(4):354-363

 lllustration: models of developmental processes in
multicellular organisms

Development of Drosophila embryon




Development of Drosophila embryon

« Development of Drosophila melanogaster (fruit fly)

Dorsal

Posterior

Anterior §

Ventral

9 nuclear divisions
{syncytial blastoderm)

Nuclei migrate
Zygote to periphery
nucleus (2N)
Fertilized egg

Celiular
blastoderm

| I — Protein gradients
establish segmentation

Thoracic Abdominal
segments segments Embryo at 10 hours Sagmen!s

Purves et al. (1998), Life: The Science of Biology, Sinauer

UNIVERSITE
lrr 2t | LR




Development of Drosophila embryon

« Development of Drosophila melanogaster (fruit fly)

Dorsal

9 nuclear divisions
{syncytial blastoderm)

! Nuclei migrate
7~ Zygote to periphery

nueleus (2N)

Cellular
blastoderm

" Protein gradients

establish segmentation
Thoracic Abdominal

segments segments Embryo at 10 hours  Sesments

Purves et al. (1998), Life: The Science of Biology, Sinauer Tomer et al. (2012), Nat. Methods, 9(7):755-63
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Development of Drosophila embryon

Mate_mal morphogen . .
2.’3.‘"53:2?3 e Spatiotemporal gene expression

patterns during early development
of Drosophila (fruit fly)

Gap genes
e.g. Kruppel

Pair-rule genes
e.g. even-skipped

......

13> .
Segment polarity LAl Hox genes

genes e.g. Ultrabithorax
e.g. engrailed | | abdominal A

T

lT1 T2 T3“A‘l A2 A3 A4 A5 AB A7 AlB

thorax abdomen Sanson (2001), EMBO Rep., 2(12):1083-8




Development of Drosophila embryon

matema.g@ e Spatiotemporal gene expression
patterns during early development
I of Drosophila (fruit fly)

'D « Gene classes and their

<
A = interactions responsible for
<
A

/ I establishment of gene expression

patterns
pair-rule 9’09

segment polarity
genes

l

homeotic genes
Schroeder et al. (2004), PLOS Biol., 4(2):e271
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Development of Drosophila embryon

= « Spatiotemporal gene expression
= patterns during early development
of Drosophila (fruit fly)

« Gene classes and their

ol < Interactions responsible for
_rﬁ * establishment of gene expression
F_W patterns
« Complex gene regulatory

_r T Jr I t_r’ - Ul networks

sh >3 additional
genes

Carroll (2008), Cell, 134(1):25-36




Model of Drosophila segmentation

« Model of network of segment polarity genes in early
development of Drosophila
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Model of Drosophila segmentation

« Model of network of segment polarity genes in early
development of Drosophila

— 13 ODEs per cell and 48 parameters ( }/ N@
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Robustness of gene expression patterns

e Spatial expression pattern of segment polarity genes robustly
reproduced over large ranges of parameter values
— 0.5% of sampled parameter combinations leads to solution compatible

with data l
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Robustness of gene expression patterns

* Robustness of model predictions to variations in parameter
values confirmed for other developmental networks

Neurogenic network, determining neuroblasts in embryos and sensory
organ precursor cells in imaginary disks
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Logical model of Drosophila segmentation

* Logical model of segment polarity network: variables take
values 0/1 and Boolean functions to update variables
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Logical model of Drosophila segmentation

* Logical model of segment polarity network: variables take
values 0/1 and Boolean functions to update variables

* Logical models are based on topology of network only (no
parametrization), but are capable of reproducing

experimental data: robustness Predicted steady

state state (during
stages 9-11)

Observed initial state
(before stage 8)
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Logical model of Drosophila segmentation

* Logical model of segment polarity network: variables take
values 0/1 and Boolean functions to update variables

* Logical models are based on topology of network only (no
parametrization), but are capable of reproducing
experimental data: robustness

 Generalized logical models allow variables with several
discrete values (more complicated update rules)

Sanchez et al. (2008), Int. J. Dev. Biol., 52(1):1059-75




Parameter estimation from Drosophila data

 Measurement of protein concentrations of gap genes during
development of Drosophila embryon

250 F Hb
F C
200 | v

150 E ;
== Kri

100 f
el P et -
]: —il

3o0ce 3 a Kr
40.0 | 2 ,
50.0 f . O Kri
60.0 | . O Gt

Prot conc Time (min) Prot conc

250 F Hb
g

= —Kr

100 Vs — Kn

50 — Gt

0 . e TII

40 50 60 70 80 90

Jaeger et al. (2004), Nature, 430(6997):368-71 A-P position (%)
m ——
(227 B




Parameter estimation from Drosophila data

* Neural-network-like model of connections between gap
genes

— Model with 58 nuclel and 7 variables (proteins) per nucleus

— Free diffusion of proteins because at early stages of development
embryon is syncytium (multinucleate cell)

— Sigmodial response functions

— Connectivity pattern encoded in parameter matrix T, So parametric
and structural identification

dbﬁ 1.0
= Rag() +D? [(ViLy — V) + (Vi — Vf)] — \aVf

Relative activation

U =Y T +mPv;od +h?
b

-5 =4 -2 0 2 4 6
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Jaeger et al. (2004), Nature, 430(6997):368-71
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Parameter estimation from Drosophila data

* Neural-network-like model of connections between gap
genes

* Brute-force parameter estimation by fitting model to data
Parallelized simulated annealing
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Rel Act
b
g [”
e
LHF
mo -
0888§§
I.I
l =)

: — Kr
1. Protein Synthesis :
2. Protein Diffusion
Fit Model to Data T A Ty
3. Protein Decay (Numerical Optimization) A-P Position (%)
7J|f/ - Ly T.lm - Kr T.hh <+ of Tr'lh < inl l -
TK' + iy .,.Kw “+ Ky TK» - o0 1,)\‘: -+ i
T,asr - iy Tpl - Kr Tl.fl *+ gf an - bnl
ki = Bt ki 4= Kr o kni 4= g __tni 4= bni b
. _ 1 T r
Jaeger and Reinitz (2006), BioEssays, > _ - S
28(11):1102-11 Genetic Interconnectivity Matrix Gene Network Topology

‘ —




Shifts in gap gene domains

« What is function of cross-inhibition between gap genes?

Model predicts that they are important for shift in gap gene domains
after their initial establishment =

Data Model predictions
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Conclusions

« Several strategies to deal with lack of quantitative
Information

* Model predictions often robust to changes in parameter
values and to simplification/reduction of equations
Model robustness reflects robustness of biological system?

* High-quality experimental data is becoming increasingly
available, favoring estimation of parameter values from
expression data

Quantitative models can make precise predictions of subtle dynamic
phenomena
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