
Modeling and simulation of 
gene regulatory networks 5 

Hidde de Jong 

IBIS 

INRIA Grenoble – Rhône-Alpes 

Hidde.de-Jong@inria.fr December 18, 2013 



2 

INRIA Grenoble - Rhône-Alpes and IBIS 

 

 

 

 

 

• IBIS: systems biology group at INRIA/Université Joseph Fourier/CNRS 

– Analysis of bacterial regulatory networks by means of models and experiments 

– Biologists, computer scientists, mathematicians, physicists, … 

http://ibis.inrialpes.fr 
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Overview 

1. Gene regulatory networks in bacteria 

2. Deterministic modeling of gene regulatory networks 

3. Qualitative modeling of gene regulatory networks  

4. Stochastic modeling of gene regulatory networks 

5. Some current issues and perspectives 

− Global physiological effects on the dynamics of gene expression 

− Strategies for dealing with incomplete information: the case of Drosophila 

development 
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Bacterial growth and metabolism 

• Bacteria are geared towards growth and division 

 Escherichia coli cells have doubling times up to 20 min  

 

G. Baptist 

• Metabolism fuels growth by production of energy and building 

blocks for macromolecules, using nutriments from environment 

 ATP, amino acids, nucleotides, … 

  



Growth transition and gene expression 

• Genome-wide reorganization of gene 

expression following growth transitions 

in bacteria 

 Gene expression during glucose-lactose  

   diauxie in E. coli 
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Traxler et al. (2006), Proc. Natl. Acad. Sci. USA, 103(7):2374–9 



• Adjustment of gene expression involves variety of specific 

regulators 

Transcription factors, small regulatory RNAs, … 

• Complex regulatory networks control adaptive responses of 

cell 
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Baldazzi et al. (2010), PLoS Comput. Biol., 6(6):e1000812 

Growth transition and gene expression 



• Adjustment of gene expression also involves global 

physiological effects 

Abundance of transcriptional and translational machinery, size of 

metabolic pools, gene copy number, … 
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Klumpp et al. (2009), Cell, 139(7):1366-75 

Growth transition and gene expression 

Bremer and Dennis (1996), Escherichia Coli and 

Salmonella, ASM Press, 1553-69 



Growth transition and gene expression 

• Question: what are relative contributions of specific 

regulators and global physiological effects in adaptation of 

gene expression during growth transitions? 
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Growth transition and gene expression 

• Question: what are relative contributions of specific 

regulators and global physiological effects in adaptation of 

gene expression during growth transitions? 

• Previous work on growth-rate dependent expression of 

constitutive and regulated genes 
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− Constitutive gene: expression is 

controlled by global physiology, but 

not by specific transcription factors  

− Expression of constitutive gene is 

growth-rate dependent 

 

Klumpp et al. (2009), Cell, 139(7):1366-75 



Growth transition and gene expression 

• Question: what are relative contributions of specific 

regulators and global physiological effects in adaptation of 

gene expression during growth transitions? 

• Previous work on growth-rate dependent expression of 

constitutive and regulated genes 
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− Expression of constitutive gene is 

growth-rate dependent 

− Weaker growth-rate dependence 

under repression, stronger 

growth-rate dependence under 

activation 

 

Klumpp et al. (2009), Cell, 139(7):1366-75 



Growth transition and gene expression 

• Question: what are relative contributions of specific 

regulators and global physiological effects in adaptation of 

gene expression during growth transitions? 

Dynamics instead of steady-state, network instead of single gene 
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Berthoumieux et al. (2013), Mol. Syst. Biol., 9:634 



Growth transition and gene expression 

• Question: what are relative contributions of specific 

regulators and global physiological effects in adaptation of 

gene expression during growth transitions? 

Dynamics instead of steady-state, network instead of single gene 

• Question addressed in context of central regulatory circuit of 

carbon metabolism in E. coli 
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Berthoumieux et al. (2013), Mol. Syst. Biol., 9:634 



Approach 

• Real-time monitoring of dynamic response of network to 

depletion of carbon source (glucose):  

– Growth rate 

– cAMP concentration 

– Promoter activity of network genes 

– Global physiological state through use of constitutive phage promoter 
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Approach 

• Real-time monitoring of dynamic response of network to 

depletion of carbon source (glucose):  

– Growth rate 

– cAMP concentration 

– Promoter activity of network genes 

– Global physiological state through use of constitutive phage promoter 

• Simple models of promoter activities of network genes  

 Models represent different hypotheses on contributions from global 

and specific effects 

• Validation of models using experimental data 
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Real-time monitoring of gene expression 
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de Jong et al. (2010), BMC Syst. Biol., 4:55 

– Transcriptional fusion of 

promoters with gfp reporter 

genes on plasmid 

– Measurement of absorbance 

and fluorescence signals, 

thermostated automated 

microplate reader  

– Model-based derivation of 

promoter activities 

 

COMPLETE 



• Monitoring of fis promoter activity during growth transition 
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Growth rate Absorbance and fluorescence Promoter activity 

Real-time monitoring of gene expression 
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• Monitoring of activity of crp, fis, acs and constitutive phage 

promoters during growth transition 

 

 

 

 

Real-time monitoring of gene expression 



Bias introduced by plasmid copy number 

• Plasmids are relatively easy to construct and have strong 

signal, but … plasmid copy number varies with growth rate 

 

• Measurement of relative plasmid copy number using qPCR 

• Variation in plasmid copy number preserves qualitative 

shape of profiles, but introduces quantitative bias 

• Conclusion: need for analysis method that corrects for 

growth-phase dependent variations of plasmid copy number 
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Lin-Chao and Bremer (1986), Mol. Gen. Genet., 203(1):143-9 



Measurement of cAMP 
• Measurement of cAMP concentration during growth 

transition: 

– Measurement of extracellular cAMP concentration 

– Development of kinetic model accounting for cAMP import/export 

– Determination of intracellular cAMP concentration from 

measurements and model 

 

 

 

 

 

• Good correspondence with intracellular cAMP profiles 

published in literature 
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External cAMP concentration Internal cAMP concentration 

Kao et al. (2004), Proc. Natl. Acad. Sci. USA, 101(2):641-6 



Approach 

• Real-time monitoring of dynamic response of network to 

depletion of carbon source (glucose):  

– Growth rate 

– cAMP concentration 

– Promoter activity of network genes 

– Global physiological state through use of constitutive phage promoter 

• Simple models of promoter activities of network genes  

 Models represent different hypotheses on contributions from global 

and specific effects 

• Validation of models using experimental data 

 
 

20 



Model of promoter activities 

• Simple model of promoter activity separating specific 

effects of transcription factors from global effect of 

physiological state 

 

 

    : maximum promoter activity 

         : regulation by global physiological state 

         : regulation by specific transcription factors 

           and           vary between 0 and 1 
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Model of promoter activities 

• Simple model of promoter activity separating specific 

effects of transcription factors from global effect of 

physiological state 

 

• Normalization with respect to reference state at      to get 

rid of unknown constant     and logarithmic transformation: 

 

 

 Convenient choice of reference state: growth arrest (expression peak 

of acs) or steady state after growth transition 

22 



Model of promoter activities 

• Hypothesis 1: effect of global physiological state (measured 

by phage promoter) is dominant and effect of specific 

regulators is negligible (                     ): 

 

 

• Advantages of model: 

– Straightforward to test by means of experimental data 

– Non-parametric, does not require model calibration 

– No effect of plasmid copy number variation if promoter activity is 

measured in same plasmid vector 
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Test of hypothesis 1 

• Global effect is dominant for expression control of 

transcription factors (crp and fis), but not for metabolic gene 

(acs) 
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R2 = 0.08 R2 = 0.93 R2 = 0.96 



Model of promoter activities 

• Hypothesis 2: effect of specific regulators is not negligible 

and can be reduced to effect of change in cAMP 

concentration        : 

 

 

• Hypothesis based on data, but biological assumptions 

underlying simplification can be explicitly formulated 
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Test of hypothesis 2 

• Combination of global effect and specific effect of cAMP 

explains variation in acs promoter activity 

 

 

 

 

 

 

• Addition of cAMP as regulator yields bad fit for crp and fis: 

no improvement upon simpler hypothesis 1 
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R2 = 0.93 R2 = 0.08 R2 = 0.03 



Other experimental conditions 

• Experiments and model tests were repeated in other 

conditions: 

– Glucose down-shift experiment 
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Redilution into low-glucose 

medium to force growth arrest 



Other experimental conditions 

• Experiments and model tests were repeated in other 

conditions: 

– Glucose down-shift experiment 

– Deletion mutant crp 

– Deletion mutant fis 
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Other experimental conditions 

• Experiments and model tests were repeated in other 

conditions: 

– Glucose down-shift experiment 

– Deletion mutant crp 

– Deletion mutant fis 

• Additional data confirm conclusions: 

– Effect of global physiological state dominant for transcriptional control 

of genes encoding transcription factors Fis and Crp  

– Combined effect of global physiological state and cAMP accounts for 

variation of promoter activity of acs  
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Other regulators 

• Is effect of global physiologal state also dominant in 

transcriptional control of other regulators? 

 RpoS (σS), master stress regulator in E. coli, inhibited by Crp·cAMP 
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Other regulators 

• Is effect of global physiologal state also dominant in 

transcriptional control of other regulators? 

 RpoS (σS), master stress regulator in E. coli, inhibited by Crp·cAMP 

• Test of hypothesis 1 in different conditions confirms 

dominant role of global physiological state 
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R2 = 0.84 



Conclusions 

• Control of gene expression across growth phases is shared 

between global physiological state and transcription factors 

• Method to dissect shared control of promoter : 

– Simple mathematical model of promoter activity 

– Carefully designed data analysis procedures 

• Application of method to analysis of regulatory circuit 

involving key regulators of carbon metabolism in E. coli 
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Conclusions 

• Transcriptional control of genes encoding transcription factors 

is dominated by growth-phase-dependent effect 

– Many regulatory interactions involving Crp·cAMP and Fis do not 

contribute to transcriptional control in our conditions 

– Choice of growth conditions? Weak effects? 
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Berthoumieux et al. (2013), Mol. Syst. Biol., 9:634 



Conclusions 

• Results question central role often attributed to transcriptional 

regulatory networks 

• Alternative view: specific effects complement and finetune 

global control exerted by physiological state, notably gene 

expression machinery 

 

• Consequences for interpretation of transcriptome data and 

design of synthetic circuits 
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Gerosa et al. (2013), Mol. Syst. Biol., 9:658 



Conclusions 

• Analysis generalizable to other networks? 

– Dissection of control of arginine biosynthesis genes in E. coli 
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Gerosa et al. (2013), Mol. Syst. Biol., 9:658 



Conclusions 

• Analysis generalizable to other networks? 

– Dissection of control of arginine biosynthesis genes in E. coli 

– Control of gene expression is combination of global physiological 

state and specific effects (arginine concentration) 
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Gerosa et al. (2013), Mol. Syst. Biol., 9:658 



Perspectives 

• Can we control global physiological state, and thus gene 

expression program of the cell?  

 Engineering of E. coli genome to put transcriptional machinery under 

control of inducible promoter 

 

 

 

 

 

 

 

 

 

• Finetuning of growth rate… 

 

 

 

37 

Izard et al., submitted for publication 



Perspectives 

• Can we control global physiological state, and thus gene 

expression program of the cell?  

 Engineering of E. coli genome to put transcriptional machinery under 

control of inducible promoter 

 

 

 

 

 

 

 

 

 

• Finetuning of growth rate … in reversible way  
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Izard et al., submitted for publication 

Collaboration with A. Lindner 



Whole-cell model M. genitalium 

• Metabolic networks are integrated with gene networks and 

signalling networks 

 Complex multi-level system with feedback across different time-

scales 

  

 

 

 

 

 

 

 

 Karr et al. (2012), Cell, 150(2): 389-401 
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Whole-cell model of 

Mycoplasma genitalium 



Whole-cell model M. genitalium 

• Whole-cell model represents huge modelling effort: 

– Whole-genome model including complete known metabolic, gene, and 

signalling networks 

 

 

 

 

 

 

 

 

 

– Variety of formalisms to model the 28 modules: FBA, kinetic ODE 

models, Boolean models, Markov chains, … 

– Cell cycle simulated for >100 cells, >30 mutants on 128-core machine 

  

 

 

Karr et al. (2012), Cell, 150(2): 389-401 



Whole-cell model M. genitalium 

• Whole-cell simulation of M. genitalium cell cycle 

 

 

 

 

 

 

 

 

 



Whole-cell model M. genitalium 

• Whole-cell simulations have provided new insights into 

robustness of cell-cycle duration 

 

 

 

 

 

 

 

Karr et al. (2012), Cell, 150(2): 389-401 

– High variability of replication 

initiation buffered by dNTP-

dependent duration of replication 

– This metabolic control of 

replication leads to decreased 

variability of cell-cycle length  

  

 

 

 

 

 

 

 



Whole-cell model M. genitalium 

• Whole-cell simulations have provided new insights into 

global use and allocation of energy 

 

 

 

 

 

 

 

Karr et al. (2012), Cell, 150(2): 389-401 

– Transcription and translation most 

costly processes 

– Energy use largely independent of 

cell-cycle length 

– Usage of almost half of produced 

energy not accounted for!  
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Lack of quantitative information: strategies 

• Three main strategies to deal with lack of quantitative data: 

– Test of parameter sensitivity 

– Model reduction and simplification 

– Parameter estimation from time-series data 

De Jong and Ropers (2006), Brief. Bioinform., 7(4):354-363 
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Test of parameter sensitivity 

• Important dynamic properties are expected to be robust over 

large ranges of parameter values 

 Important dynamic properties should be insensitive to moderate 

variations in parameter values 

 

xb 

xa 

0 

xb = 0  
. 

xa = 0  
. 

bistability 

xb 

xa 

0 

xb = 0  
. 

xa = 0  
. 

bistability 

Stelling et al. (2004), Cell, 118(6):675-685 



Model reduction and simplification 
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xa = a f (xb)  a xa 

xb = b f (xa)  b xb 
x 

f (x ) 

 
0 

1 

xa 

xb 0 

xb = 0  
. 

xa = 0  
. 

bistability 

a 

b 

de Jong et al. (2004), Bull. Math. Biol., 66(2):301-40 

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29 

. 

. 

• Use model reduction and simplification to obtain models that 

can be analyzed with less information on parameter values 

─ Piecewise-linear instead of nonlinear models 

─ Also: Boolean models 
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Parameter estimation 

• Estimate parameter values from experimental time-series data 

 Systems identification in control and engineering 

• Given model structure, search parameter values for which 

model predictions best fit experimental data 

 

 

• Minimization of objective function, for instance sum of squared 

errors:  

 Possibility to add constraint or penalty terms to restrict parameter space 

Ljung (1999), System Identification: Theory for the User, Prentice Hall  

t 

xb 

0 

∑ t (x(t,θ) – y(t))2 

yb 



48 

Lack of quantitative information: strategies 

• Three main strategies to deal with lack of quantitative data: 

– Test of parameter sensitivity 

– Model reduction and simplification 

– Parameter estimation from time-series data 

 

 

• Illustration: models of developmental processes in 

multicellular organisms 

Development of Drosophila embryon 

De Jong and Ropers (2006), Brief. Bioinform., 7(4):354-363 



Development of Drosophila embryon 

• Development of Drosophila melanogaster (fruit fly) 

49 

Purves et al. (1998), Life: The Science of Biology, Sinauer  



Development of Drosophila embryon 

• Development of Drosophila melanogaster (fruit fly) 
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Purves et al. (1998), Life: The Science of Biology, Sinauer  Tomer et al. (2012), Nat. Methods, 9(7):755–63 



Development of Drosophila embryon 

• Spatiotemporal gene expression 

patterns during early development 

of Drosophila (fruit fly) 
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Sanson (2001), EMBO Rep., 2(12):1083–8 



Development of Drosophila embryon 

• Spatiotemporal gene expression 

patterns during early development 

of Drosophila (fruit fly) 

• Gene classes and their 

interactions responsible for 

establishment of gene expression 

patterns 
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Schroeder et al. (2004), PLOS Biol., 4(2):e271 



Development of Drosophila embryon 
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Carroll (2008), Cell, 134(1):25-36 

• Spatiotemporal gene expression 

patterns during early development 

of Drosophila (fruit fly) 

• Gene classes and their 

interactions responsible for 

establishment of gene expression 

patterns 

• Complex gene regulatory 

networks 
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Model of Drosophila segmentation 

• Model of network of segment polarity genes in early 

development of Drosophila 

 

von Dassow et al. (2000), Nature, 406(6792): 188-92 
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Model of Drosophila segmentation 

• Model of network of segment polarity genes in early 

development of Drosophila 

– 13 ODEs per cell and 48 parameters 

 

von Dassow et al. (2000), Nature, 406(6792): 188-92 
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Robustness of gene expression patterns  

• Spatial expression pattern of segment polarity genes robustly 

reproduced over large ranges of parameter values  

– 0.5% of sampled parameter combinations leads to solution compatible 

with data  

von Dassow et al. (2000), Nature, 406(6792): 188-92 
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Robustness of gene expression patterns  

• Robustness of model predictions to variations in parameter 

values confirmed for other developmental networks 

 Neurogenic network, determining neuroblasts in embryos and sensory 

organ precursor cells in imaginary disks 

Meir et al. (2002), Curr. Biol., 12(10): 778-86 



Logical model of Drosophila segmentation 

• Logical model of segment polarity network: variables take 

values 0/1 and Boolean functions to update variables 

58 

Albert and Othmer (2003), J. Theor. Biol., 223(1):1-18 



Logical model of Drosophila segmentation 

• Logical model of segment polarity network: variables take 

values 0/1 and Boolean functions to update variables 

• Logical models are based on topology of network only (no 

parametrization), but are capable of reproducing 

experimental data: robustness 
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Albert and Othmer (2003), J. Theor. Biol., 223(1):1-18 

Observed initial state 

(before stage 8) 

Predicted steady 

state state (during 

stages 9-11) 



Logical model of Drosophila segmentation 

• Logical model of segment polarity network: variables take 

values 0/1 and Boolean functions to update variables 

• Logical models are based on topology of network only (no 

parametrization), but are capable of reproducing 

experimental data: robustness 

• Generalized logical models allow variables with several 

discrete values (more complicated update rules) 
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Sánchez et al. (2008), Int. J. Dev. Biol., 52(1):1059-75 



Parameter estimation from Drosophila data 

• Measurement of protein concentrations of gap genes during 

development of Drosophila embryon 
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Jaeger et al. (2004), Nature, 430(6997):368-71 



Parameter estimation from Drosophila data 

• Neural-network-like model of connections between gap 

genes 

– Model with 58 nuclei and 7 variables (proteins) per nucleus 

– Free diffusion of proteins because at early stages of development 

embryon is syncytium (multinucleate cell) 

– Sigmodial response functions 

– Connectivity pattern encoded in parameter matrix T, so parametric 

and structural identification 

 

 

62 

Jaeger et al. (2004), Nature, 430(6997):368-71 



Parameter estimation from Drosophila data 

• Neural-network-like model of connections between gap 

genes 

• Brute-force parameter estimation by fitting model to data 

Parallelized simulated annealing 
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Jaeger and Reinitz (2006), BioEssays, 

28(11):1102-11 



Shifts in gap gene domains 

• What is function of cross-inhibition between gap genes?  

Model predicts that they are important for shift in gap gene domains 

after their initial establishment 
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Data Model predictions 



Conclusions 

• Several strategies to deal with lack of quantitative 

information 

• Model predictions often robust to changes in parameter 

values and to simplification/reduction of equations 

Model robustness reflects robustness of biological system? 

• High-quality experimental data is becoming increasingly 

available, favoring estimation of parameter values from 

expression data 

 Quantitative models can make precise predictions of subtle dynamic 

phenomena 
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Merci ! 

www.inrialpes.fr/ibis 


