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Outline

• The problem of genetic network identification

• A traditional approach: Boolean networks

• Identification of Ordinary Differential Equation (ODE) models
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The problem of genetic network 
identification
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Gene networks

(Wikipedia)
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Example: Gene network of E.coli

(Martinez-Antonio et al, J Mol Biol, 2008)
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About the statement of the identification 
problem
• Goal: Estimate a mathematical model of a network of genes from 
experimental observations of the system

•Why ? What model do we want ? What do we want from that model ?  

• The model should the describe structure and behavior of the network
•Structure: genes and their interconnection

•Behavior: inhibition vs. activation, dynamics

• Several different problems depending on the context
• What data ?

• What prior knowledge ?

• What use of the model ? 
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Scale

• Different levels of detail: 
• genes, but also mRNA, transcription factors, protein complexes...

• expression: binding, DNA unfolding, transcription, translation, ...

(Wikipedia)
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Information

• Modelling framework depends on available data...
• Type, quality, quantity

• System excitation, experimental conditions

 

• ... and on the use of the model
• Analysis (learning how cells function) & Prediction (response of an organism to 

perturbations/stimuli)

• Control (industrial exploitation, targeted chemicals for medical therapies...)

• Engineering of new functions (“Synthetic biology”)

DNA microarray

(Wikipedia)
GFP fusions (courtesy of Z.Lygerou)

Gene reporter systems (Ronen et al, PNAS 2002)
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Modelling tradeoffs

• Qualitative vs. quantitative
• Mechanistic vs. phenomenological
• Fitting accuracy vs. predictive 
  power (overfitting!)

(Johnson et al, Science, 2008)

light

• Complexity vs. identifiability
• Static vs. dynamic
• Black-box vs. grey-box vs.
  white-box

Example: 

circadian rhythm
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0The identification circle

• Model hypothesis:
• Choice of modelling framework

• Formulate model hypotheses

• Experiment design:
• Choose experimental setup

• Design most informative 
experiments

• Estimation:
• Execute experiment and get data

• Find model(s) that explains data

• Validation:
• Inspect results

• Evaluate predictive capability

Model
hypothesis

Estimation

Validation Experiment
design

Today's focus: formal statement of 
gene network inference problems

and solution with selected methods
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A traditional approach: 
Boolean networks
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2Boolean models

• Formalism to model regulatory effects (mutual activation, inhibition) 
from qualitative gene expression data 

• N Boolean variables representing n genes

• Boolean regulation function

• Dynamic Boolean networks (discrete time):

 

• Network structure captured by gene interaction graph

1

2

n

...
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3Motivation: Microarray data

• Gene expression profiling by DNA microarrays: 
• Isogenic cell populations placed in microscopic wells containing probes for 

specific mRNA molecules (genes)

•Combined with the use of fluorescence reporters, binding of mRNA-specific 
probes leads to fluorescence of the cells in the corresponding well

•Thousands of genes for wild-type and mutated cells can be observed in 
parallel, at low temporal resolution (one microarray prepared per 
measurement time) 

DNA microarray

(Wikipedia)
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Two words on inference of 
Boolean models

•  Example: mutual repression, one self-activation 

•  Goal of identification: reconstruct logical interactions among genes 
•Network “structure” (graph edges) and “dynamics” (regulation rules)

•From dynamical ON/OFF time series (system observed in transient) or from 
steady state ON/OFF data (system equilibrium for different perturbations)

•Established methods exist (e.g. REVEAL)

A

B

gene B

Boolean rules

X1 X2 b1 b2

0 0 0 1

0 1 0 1

1 0 1 0

1 1 0 0
gene A

Invariant states

Perturbation

Example trajectory

t 0 1 2 3 4 5 6 7 ...

X1 1 1 1 1 0 0 0 ...

X2 0 0 0 1 0 1 1 ...
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5REVerse Engineering ALgorithm 

• Based on information-theoretic concepts

 
● Functions of probability distribution of X
● Estimated from the observed trajectories of X
● Used to determine the effective inputs of a Boolean update map, e.g.

● Specific form of update map determined from the observed transitions

• May cope with noise (measurement error)
• Worst case: evaluation of all possible combinations of inputs

● Bound complexity with maximum allowable number of inputs

(Liang et al, 1998)
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6Simulation example
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7Discussion

•Vast literature on Boolean model analysis (Kauffman, …)

•Unsatisfactory description of quantitative phenomena, may lead to 
poor results

•Starting point for quantitative dynamical modelling
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Identification of ODE models
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9The model family

• Formalism to model average gene expression dynamics based on 
ensemble gene expression data from a population of cells

• Vector of concentrations:

• ODE model:

• Common situation: unregulated degradation, 

• Depending on the identification approach, specific (parametric) 
form for rate functions
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0

• Linear model plus saturation (Jaeger et al, Nature 2004):

• Piecewise affine models (Glass & Kauffman, 1973, de Jong, ... ):

Model family: examples

 (courtesy of G.Ferrari-Trecate)

SKIPPED



2
1The data

• Measurement model 

  (not always used in full detail)

• Data set

● Sometimes, corresponding synthesis rates f also known (observed or inferred)
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2The problem

• Identification: find “the best” model of the data in a family of alternatives 

• Typical formulation: optimization of a (problem-dependent) cost function

• Cost function describes the ability of a model to explain the data
● Minimization of the data fitting error, then validation
● Penalization of overly complicated models to avoid overfitting

• In general, cost function is non-convex
● Non-uniqueness of the solution
● Optimization heuristics are needed
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3Example: IRMA

Synthetic gene regulatory network in Yeast (Cantone et al., Cell 2009)
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4Linearization methods: Steady state

• Working assumption: 
●  all concentrations converge to an equilibrium
●  small, fixed perturbations modify the system equilibrium
●  perturbations are known, equilibria can be measured

• What perturbations ?
● Changes in concentration of chemicals in the medium
● Gene knockout/overexpression

• Idea: Infer local dynamics around unperturbed equilibrium from 
several known perturbations of the system

u=0

u=1
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5Linearized dynamics

• True dynamics without perturbation

• Linearization about equilibrium

• Perturbed equilibria
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6Identification of linearized model

• Perform repeated perturbation experiments until equilibrium

• Collect observed results in data matrices

• Solve the least-squares problem

• Solution well defined if B known and M large enough 
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7Discussion

• A is network regulation matrix, B is (known?) perturbation effect

• Explicit solution (Frobenius norm):

  warning: no zero elements ( Overfitting ! )

• Penalization of complexity: several strategies, e.g. “the Lasso”:
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8Linearization methods: Time Series Network Identification

• Assumes linear dynamics (system evolving near equilibrium)

• Allows for time-dependent (small) perturbation experiments

• Attempts to solve the equation

  with the following time-course data (from a single experiment)

• In practice derivatives not known, resort to discretized dynamics
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9Identification from time-series

• Discretized linear dynamics (uniform measurement sampling)

• Solution of the approximate equality

• Also identifies perturbation matrix

• Regularized solution via Principal Component Analysis (PCA) 

• Conversion to continuous-time network parameters 
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Identification of IRMA 
via TSNI: Results
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1Experimental validation: Example

 



3
2Discussion

• Returns a map of interactions and interaction strengths around 
nominal conditions

• In practice, linear assumption can be limiting: 
• Many interesting behaviors (e.g. switching) are inherently nonlinear

• To observe these, experiments “excite” nonlinear system dynamics

• Still, generalizations of the linear model (e.g. piecewise affine 
models, as we will see) can be interesting
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3Boolean-like methods

• Quantitative nonlinear modelling preserving the network “logics”

• Recall Boolean update map:

• Algebraic equivalent (Plahte et al, 1998): apply the transformation

• Boolean-like model: define ODE
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4Example (Boolean model)

Gene Expressed when Boolean model
1 G2 not expressed
2 G1 expressed or G4 not expressed
3 G4 expressed and G1 not expressed
4 G2 expressed
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5Example (Boolean-like ODE)

Gene More active when ODE model
1 G2 low
2 G1 high or G4 low
3 G4 high and G1 low
4 G2 high
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6Plausibility ?

• Experimental evidence that often (Gjuvsland et al, 2007)
● Transcription factors combine into Boolean-like input functions
● Sigmoidal functions relate transcription factor concentrations and 

transcription rates
● Post-transcriptional, transport, (and reaction) processes at equilibrium can 

be described by sigmoidal functions

• Still a phenomenological framework, but ...
● Easy to interpret biologically
● Quite accurate and flexible
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7Tractability ? 

• General Boolean-like model:

• Structure identification: based on data, decide
● The number of summands
● The sigmoids in each product
● The signs of the sigmoids

... combinatorial explosion and identifiability issues !!

• Parameter identification: parameters of each sigmoid, rates 

• Intractable problem. But, good starting point
● Structured expression
● Reduction to specific families of Boolean-like functions
● Approximation
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8Piecewise Affine models

● Idea: abstract nonlinearities sigmoids by hard thresholds (switches)

● Dynamical models with Boolean-type events

● Coarse approximation, but when applicable,powerful analysis (de 
Jong et al. 2004) & identification (Porreca et al, 2009) tools!

SKIPPED
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9Example: double-inhibition network

Courtesy of G.Ferrari-Trecate
(apologies for notational changes...)

SKIPPED



4
0PWA models: key features

SKIPPED
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1PWA models: key features cont'd

SKIPPED



4
2PWA model identification

SKIPPED
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3Data segmentation and classification

• Given one time series
• Variable sampling time
• Extends to multiple time series

• Use statistical procedures to
• Find segments with exponential behavior in each concentration profile
    (fit parameters and check that fitting residuals are compatible with noise)
• Partition data into sets with the same exponential modelSKIPPED



4
4Threshold reconstruction

• Find minimal sets of thresholds that separate data clusters (multicuts)
● Find all thresholds that separate two clusters 
● Define and exploit partial order relations among multicuts to find the minimal 

ones
● Combinatorial number of multicuts: exploit branch-and-bound optimization 

techniques to avoid exploring all possibilities

SKIPPED
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5Optimal models

• Search of minimal multicuts: complexity reduction

• Identifiability issues:
●  Cannot discriminate certain models on the basis of the data
     (pool of equivalent models providing alternative biological hypotheses) 
●  Cannot fix thresholds, only bounds can be established 

SKIPPED
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6Example: carbon starvation in E.coli

SKIPPED
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7Model and simulation

(Ropers et al., Biosystems, 2006)

SKIPPED



4
8Identification from simulated data

SKIPPED
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9Discussion

•Under the working hypotheses, effective method for structural and 
parametric identification of network dynamics

•Neat framework for identifiability and system analysis

•Hardly compatible with soft nonlinearities
• Requires generalization 

• Some concepts (invalidation of structural hypotheses) can be transported to 
certain smooth nonlinear models

SKIPPED
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0Models with unate structure

• Framework for systematic selection of plausible quantitative models 
• Unate functions: Boolean rules monotone in each input variable

• Transcription factors with unambiguous role on every given gene

• Most known rules (only experimentally observable rules? ↔ identifiability) 

• Boolean-like ODE model: preserves monotonicity properties
• Model:

• Sign pattern:
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Complexity

1 1 -1 1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 4
1 1 -1 0 1 -1 -1 0 3

Pattern 1 0 -1 0 2
1 0 0 0 0 0 -1 0 1

0 0 0 0 0

Superpatterns

Subpatterns

Sign patterns: definitions and properties

• Given data pairs: 
• Definition: p is inconsistent if the property

 
 is falsified for some k,l

• Definition: subpattern and superpattern

• Subpatterns of inconsistent patterns are also inconsistent
• Superpatterns of consistent patterns are also consistent
• Minimal consistent and maximal inconsistent patterns exist
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Invalidation of sign 
patterns: Example

[ Example of g with p=(-1,1) ]
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3Identification via sign patterns: rationale

Given protein concentrations & synthesis rates: 

• Step 1: Exploit monotonicity properties to invalidate sign patterns  
• Extract invalid sign patterns from data

• Infer the set of minimal consistent sign patterns

Next, given candidate unate model structures S(p) for every p:

• Step 2: Search best fitting model structure with valid sign pattern 
• Enumerate valid sign patterns p of increasing level of complexity

• For every valid p at the current level of complexity, fit (the parameters of) 
every model in S(p) to the data

• Return all models that pass a statistical test on the fitting residuals. If 
none, go to next complexity level.

In practice, S(p) shall be a subset of unate models with pattern p
• Exploitation of a priori knowledge

• Computational limitations
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4Algorithm 1: original version (full data)

• Protein concentrations & synthesis rates
• Time-course noisy data, known variance:
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5Comments

• Separate identification of regulation function of each gene
• Practicality requires use of a sub-hierarchy of unate structures 
• Hierarchical search of model structures of increasing complexity 

• Stops when a good model is found (statistical test on the model residuals)

• Favors simple over complicated models

• Returns pool of biological alternatives

• What is a statistically good model? 
• Under the null hypothesis that the estimated model is correct, the fitting 

residual is distributed as 

• Use this property to define confidence levels (threshold on the fitting 
residuals) on the model estimate

• Limitations: Nonconvex parameter fitting, Data requirements



5
6

Case study: unate models with canalizing 
structure

• Goal: use a priori knowledge to reduce the family of network structures

• Intuition: many Boolean expression rules are unlikely/uncommon

• Evidence: (Szallasi et al 1998, Kauffman et al 2004, ... )

out of 139 gene activation rules analyzed in (Harris et al., 2002), 99% are
“Canalizing Functions”, 95% are “Hierarchically Canalizing Functions”, 90% 
are “H0  H∪ 1”
● CFs: at least one (canalizing) 
     value of at least one (canalizing) 
     variable determines the value 
     of the function
● HCFs: when the canalizing 
     variable takes its non-canalizing 
     value, a second variable is 
     canalizing, etc. We focus on H0 U H1

Boolean rules

CF UnateH0  H∪ 1HCF

SKIPPED
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7The class H0 U H1

• Class H0: 

• Class H1: 

• Boolean-like ODE model with H0 U H1-structure:

Structure:

Parameters:
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8Identification of H0 U H1 models

• Given concentration and synthesis rate measurements

●    For known degradation rate, can compute synthesis rates from x:

• Estimate

● Structure:

● Parameters:

(Ronen et al 2002, Brown et al 2008,...)
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9Test on a repressilator system

SKIPPED



6
0Performance results

Index Range Description

Step 1
[0,1] Probability that the true p is deemed consistent
[0,1] Percentage of sign patterns eliminated from the search in Step 2

Step 2
[0,1] Probability that the true structure is In the pool of identified models
≥1 Average number of models in the pool

R eliability
S electivity
A ccuracy
D ispersion

SKIPPED
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1Simulated identification on E.coli model

● 6-gene carbon starvation 
response  network

● Model in exponential 
growth phase

● All but third equation 
have H0 U H1-structure 
(all have unate structure) 

(Ropers et al, Biosystems 2006)

SKIPPED
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2Identification scenario

● Simulated data collected every 10 min 

● Measurements over 1200 min
● Various noise levels
● Performance from 100 simulated runs
● Realistic parameters and initial cond.
● Dynamics excited in the experiment:

● All excited dynamics have H0 U H1-
structure

 Use this as a “reference” model

SKIPPED
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3Results on E.coli

SKIPPED
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4Algorithm 2: extension to partial data

• Assuming only protein concentrations are available:
1. Reconstruct missing information (synthesis rates, variances) 
2. Apply Algorithm 1 (unchanged)

• Option 1: Deconvolution

• Well established (Bayesian) methods for regularized estimates

• Severe over- and under-smoothing observed in practice

• Option 2 (our choice): Data fitting + BootstrappingSKIPPED
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5Residual resampling

• Randomized procedure to infer statistics of any functional of the regression curve

• Applicable to any type of regression curve (But sensitive to this choice!)

• Our implementation computes statistics of protein concentration and synthesis 
rate measurements from a single 
protein concentration dataset.

SKIPPED
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6Experiment on IRMA

Synthetic gene network 

in Yeast (Cantone et al., Cell 2009)
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7Mathematical model

• We attempt identification in the class of models with H0 U H1-structure
• Different but similar analytical form

• Test for flexibility of the approach

• Known delays can be accounted for

(Cantone et al., Cell 2009)
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8Results: full data

• Comparison with TSNI (Cantone et al., Cell 2009) 

• True protein concentrations (very few data points)
• Rates simulated from the model (“what-if” performance test)
• Evaluation of network reconstruction performance, but not of parameter fit

• PPV=TD/TD+FD and Se=TD/TD+FU (T=True, D=Detected, U=Undetected edges)

Porreca et al, Bioinformatics 2010
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9Results: partial data

• Additional assumptions (no self-regulation) 
• Loss of accuracy

• Parameter estimates (when applicable, 
not shown)

• Sign of interaction (possibly due to low 
data quality)

• Direction of regulation (bad!)
• Still better than TSNI...

To be compared with...
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0

Identification of stochastic models:
A quick view
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1Introduction: stochastic gene expression

• At the cell level, protein synthesis depends on random events
• Binding/unbinding of activators/repressors and RNApol to DNA, ...

• Environmental conditions (temperature, availability of free RNAP,... )

• Classical stochastic gene expression model:
• Describes the formation and degradation of single molecules

• Time resolution, no spatial resolution (homogeneous reaction volume) 
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2Regulation and noise

•  Example: regulated gene expression and protein degradation

• This modelling framework describes the random nature of the events 
internal to the gene expression mechanism (intrinsic noise)

• Random fluctuations of the event rates, due to changes external to 
the gene expression mechanism, are not modelled (extrinsic noise) 

[Many contributors: Paulsson, Elowitz, Alon, Arkin, ...]
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3Example: bistable switch

SKIPPED



7
4Simulated probability of the state

SKIPPED
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5The Chemical Master Equation 

• In general, for any system described via a discrete-valued 
continuous-time Markov chain, the following holds:

 

•  Infinite-dimensional linear equation in the probabilities p

•  In general, no closed-form but only approximate solutions
• Stochastic simulation (also known as the Gillespie algorithm)
• Analytical approximations (Langevin eq., Finite State Projection) 
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Identification of stochastic gene expression 
models from population snapshot data

• Consider a network with given structure and unknown parameters

• Assume that, for a given function h, the following data is available:

• (Parameter) identification is typically formulated as the optimization

for suitable distance(s) / fitting cost(s)

• Several hypotheses on model structure can be tested based on 
fitting result (Khammash & van Oudenaarten)
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7Population 

snapshot data: 
flow-cytometry

(Illustrations from wikipedia)
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8Population snapshot data: microfluidics

[Taniguchi et al., Science 329, 533 (2010)]
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9Example: Identification of lac operon in E.coli

•Parametric Markov chain model: 

•Parameter identification by matching fluorescence histograms

(Munsky, Trinh, and Khammash, MSB 2009)



8
0Fitting ...
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1… and validation

• But how are probability distributions computed from the model for 
changing inputs and parameter values ?



8
2Solving the CME: Finite State Projection

• The state of the system evolves on a lattice

• Each (discrete) state value has a probability 
that evolves over time

• Some (discrete) state values are traversed 
with larger probability over time

• Figure shows a simulated example for a 
system with two species

[  The material on Finite State Projection in these slides is borrowed from 

M.Khammash,“The Chemical Master Equation in Gene Networks: Complexity and Approaches”

available at:

http://www.cds.caltech.edu/~murray/wiki/images/d/d9/Khammash_master-15aug06.pdf   ]

SKIPPED

http://www.cds.caltech.edu/~murray/wiki/images/d/d9/Khammash_master-15aug06.pdf
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• Idea: How about focusing on the most likely states only ?

SKIPPED
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• Starting from the (infinite) matrix representation of the CME:

… one has the following result, where only the states indexed by the 
indexing vector J are retained (next slide):

SKIPPED
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SKIPPED



8
6The FSP algorithm

SKIPPED
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Identification from snapshot data: Other 
methods

• Moment matching: [e.g. work by J.Hespana]
• Instead of probabilities, consider vector of all moments z and a truncation z*

evolving according to the equations depending on the model parameters

and fit the equation for z* to the corresp. empirical statistics from many cells

• At stochastic steady state: [Taniguchi et al., Science 329, 533 (2010)]
• System evolves until stochastic equilibrium where p does not change
• Use asymptotic approximation with a Gamma distribution

to fit (combinations of the) model parameters 

SKIPPED
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8Discussion

• Evidence for fundamental role of intrinsic and extrinsic noise

  (e.g. Elowitz et al, Science, 2002)

• Vast literature on linear stochastic system identification useful but not 
sufficient

• Identification of stochastic models of genetic networks still in its 
infancy, first results on problem analysis and solution methods 

  (Munsky, Khammash et al 2009)

• More to exploit from data 
• Single-cell tracks reveal time correlation that cannot be observed in 

population snapshot data

• Methods exploiting time correlation being developed and applied
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Conclusions
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0

• Masses of data wait for being processed. Automated processing 
unavoidable

• Modern experimental techniques enable inference of quantitative 
dynamic models at population and (sometimes) single cell level, even 
more to come

• Numerous applications in medicine, (bio)chemical industry etc.

• A lot of work in progress for model identification methods

• Intriguing mathematical problems

• Nonstandard identification problems: a lot to use, a lot to invent
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... Thank you!

                                   eugenio.cinquemani@inria.fr
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