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Abstract

Stochastic chemical kinetics describes the time evolution of a well-
stirred chemically reacting system in a way that takes into account
the fact that molecules come in whole numbers and exhibit some
degree of randomness in their dynamical behavior. Researchers are
increasingly using this approach to chemical kinetics in the analysis
of cellular systems in biology, where the small molecular populations
of only a few reactant species can lead to deviations from the predic-
tions of the deterministic differential equations of classical chemical
kinetics. After reviewing the supporting theory of stochastic chem-
ical kinetics, I discuss some recent advances in methods for using
that theory to make numerical simulations. These include improve-
ments to the exact stochastic simulation algorithm (SSA) and the
approximate explicit tau-leaping procedure, as well as the develop-
ment of two approximate strategies for simulating systems that are
dynamically stiff: implicit tau-leaping and the slow-scale SSA.
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1. INTRODUCTION

The most accurate way to depict the time evolution of a system of chemically re-
acting molecules is to do a molecular dynamics simulation, meticulously tracking
the positions and velocities of all the molecules, and changing the populations of the
species appropriately whenever a chemical reaction occurs. Chemical reactions in this
approach are viewed as distinct, essentially instantaneous physical events, and they
are generally of two elemental types: unimolecular, occurring as a result of processes
internal to a single molecule, and bimolecular, occurring as a result of a collision
between two molecules. (Trimolecular and higher order reactions are approximate
representations of sequences of two or more elemental reactions.)

From a classical mechanics viewpoint, one might suppose that such a system is
deterministic, in that a given initial state always leads to the same state at some
specified later time. There are three reasons why this is not so: First, even if the sys-
tem evolved deterministically with respect to the positions, velocities, and molecular
populations of the species, it would not evolve deterministically with respect to the
species populations alone. Second, quantum indeterminacy unavoidably enters; e.g.,
in a unimolecular reaction we can never know exactly when a molecule will trans-
form itself into a different isomeric form. Third, chemical systems are usually not
mechanically isolated; rather, they are in contact with a heat bath, whose essentially
random perturbations keep the system in thermal equilibrium at some temperature.

In view of the fact that molecular populations in a chemically reacting system
are integer variables that evolve stochastically, it is remarkable that chemical kinetics
has traditionally been analyzed using a mathematical formalism in which continuous
(real) variables evolve deterministically: Traditional chemical kinetics holds that in a
well-stirred, thermally equilibrated chemical system, the number of molecules X; of
each chemical species S; (i =1, ..., N ) evolves in time according to a set of coupled
ordinary differential equations (ODEs) of the form

d;:ﬁ(Xl,...,XN) @i=1,...,N) 1)
where the functions f; are inferred from the specifics of the various reactions. This
set of equations is called the reaction-rate equation (RRE). It is usually expressed in
terms of the concentration variables Z; = X;/ Q, where Q is the system volume, but
that scalar transformation is not important here. Even more remarkable is that for
systems of test-tube size or larger, the RRE seems to work quite well. But if the system
is small enough that the molecular populations of at least some of the reactant species
are not too many orders of magnitude larger than one, discreteness and stochasticity
may play importantroles. Whenever that happens, and it often does in cellular systems
in biology (1-7), Equation 1 does not accurately describe the system’s true behavior.

Stochastic chemical kinetics attempts to describe the time evolution of a well-
stirred chemically reacting system in a way that takes honest account of the system’s
discreteness and stochasticity. In this chapter I briefly review the theoretical foun-
dations of stochastic chemical kinetics and then describe some recent advances in
numerical-simulation strategies that are supported by this theory.

Gillespie



Annu. Rev. Phys. Chem. 2007.58:35-55. Downloaded from arjournals.annualreviews.org

by Universite de Montreal on 09/26/07. For personal use only.

2. STOCHASTIC CHEMICAL KINETICS: THE CHEMICAL
MASTER EQUATION AND THE STOCHASTIC

SIMULATION ALGORITHM
Let us consider a well-stirred system of molecules of N chemical species {Si, .. ., Sx},
which interact through M chemical reactions {Ry, ..., Ry}. We assume that the sys-

tem is confined to a constant volume €2 and is in thermal (but not chemical) equilib-
rium at some constant temperature. We let X;(z) denote the number of molecules
of species S; in the system at time z. Our goal is to estimate the state vector
X(1) = (X1(@), . .., Xn(2)), given that the system was in state X(#) = X at some initial
time 7.

The justification for the tacit assumption that we can describe the system’s state
by specifying only the molecular populations, ignoring the positions and velocities of
the individual molecules, lies in the conditions responsible for the system being well
stirred. The fundamental assumption being made is that the overwhelming majority
of molecular collisions that take place in the system are elastic (nonreactive), and
further that the net effect of these elastic collisions is twofold: First, the positions of
the molecules become uniformly randomized throughout Q; second, the velocities
of the molecules become thermally randomized to the Maxwell-Boltzmann distri-
bution. To the extent that this happens, we can ignore the nonreactive molecular
collisions, the simulation of which would occupy most of the computation time in a
molecular dynamics simulation, and concern ourselves only with events that change
the populations of the chemical species. This simplifies the problem enormously.

The changes in the species populations are of course a consequence of the chemical
reactions. Each reaction channel R; is characterized mathematically by two quantities.
The first is its state-change vector v; = (vy}, ..., vyj), where v; is the change in the
S; molecular population caused by one R; reaction, so if the system is in state x and
one R; reaction occurs, the system immediately jumps to state x 4 v;. The other
characterizing quantity for R; is its propensity function «;, which is defined so that

a;(x)dt 2 the probability, given X(r) = x, that one R; reaction will occur

somewhere inside Q in the next infinitesimal time interval [z,  + dt). )

Definition 2 can be regarded as the fundamental premise of stochastic chemical ki-
netics because everything else in the theory follows from it via the laws of probability.
The physical rationale for Definition 2 for unimolecular and bimolecular reactions
can be briefly summarized as follows.

If R; is the unimolecular reaction S; — product(s), the underlying physics, which
is usually quantum mechanical, dictates the existence of some constant ¢;, such that
¢c;dt gives the probability that any particular S; molecule will so react in the next
infinitesimal time Jz. It then follows from the laws of probability that if there are
currently x; S; molecules in the system, the probability that some one of them will
undergo the R; reaction in the next dt is x; - ¢;dt. Thus the propensity function in
Equation 2 is #;(x) = c ;).

If R; is a bimolecular reaction of the form S; + S; — product(s), kinetic theory
arguments and the well-stirred condition together imply the existence of a constant ;,
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such that ¢;dr gives the probability that a randomly chosen pair of S; and S; molecules
will react according to R; in the next infinitesimal time d# (8-11). The probability
that some one of the x1x; S$;-S; pairs inside Q will react according to R; in the next
dt is therefore x;x; - ¢;dt, and that implies that the propensity function in Equation 2
is a;(x) = ¢;xx,. If instead the bimolecular reaction had been S; +S; — product(s),
we would have reckoned the number of distinct S; molecular pairs as %xl (21 — 1), and
so obtained for the propensity function #;(x) = cj%xl(xl —1).

Evaluating ¢; completely from first principles is a challenging task, requiring spe-
cific assumptions to be made about how the reaction R; physically occurs. Unimolecu-
lar ¢; s and bimolecular ¢; s are quite different from each other. For example, whereas
aunimolecular ¢; is independent of the system volume €2, a bimolecular ¢; is inversely
proportional to 2, reflecting the fact that two reactant molecules will have a harder
time finding each other inside a larger volume. It turns out that for a unimolecular
reaction, ¢; is numerically equal to the reaction-rate constant &; of conventional deter-
ministic chemical kinetics, whereas for a bimolecular reaction, ¢; is equal to &;/ Q if the
reactants are different species, or 2&;/ Q if they are the same species (8-11). However,
these results should not be taken to imply that the mathematical forms of the propen-
sity functions are just heuristic extrapolations of the reaction rates of deterministic
chemical kinetics. The propensity functions are grounded in molecular physics, and
the formulas of deterministic chemical kinetics are approximate consequences of the
formulas of stochastic chemical kinetics, not the other way around.

Although the probabilistic nature of Equation 2 precludes making an exact pre-
diction of X(#), we might hope to infer the probability

P(x, t|x0, f) 2 Prob {X() = x, givenX(p) = x¢}. 3)

It is not difficult to derive a time-evolution equation for P(x, ¢ |xo, #y) by applying
the laws of probability to the fundamental premise (Equation 2). The result is the
chemical master equation (CME) (10-12):
M
TG =) )Pt 0.0 —a P )
i=
In principle, the CME completely determines the function P(x, ¢ | xo, #). But a close
inspection reveals that the CME is actually a set of coupled ODEs, with one equation
for every possible combination of reactant molecules. Itis therefore not surprising that
the CME can be solved analytically for only a few simple cases, and even numerical
solutions are prohibitively difficult in other cases.

It is also difficult to infer anything about the behavior of averages such as
(X)) = >, h(x)P(x, | X0, 1) if any of the reaction channels are bimolecular. For
example, if we multiply the CME (Equation 4) through by x and then sum over all x,
we get

dX@) &
. =;vj<aj<X<r>>>. )

If all the reactions were unimolecular, the propensity functions would all be linear
in the state variables, and we would have (2; (X(r))) = 2; ((X(2))), so Equation 5 would
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reduce to a closed ODE for the first moment (X(z)). Butif any reaction is bimolecular,
the right-hand side of Equation 5 will contain at least one quadratic moment of the
form (X;(#)Xi(?)), and Equation 5 would then be merely the first of an infinite, open-
ended set of equations for all the moments.

In the hypothetical case in which there are no fluctuations—i.e., if X(#) were a
deterministic or sure process—we would have (h(X(2))) = b(X(2)) for all functions 5,
and Equation 5 would then reduce to

ax@) M

= 2 via(X(©). ©)

j=1

This is precisely the RRE (Equation 1), with the functions f;(X)= Zj v;a;(X) now
explicitly rendered. As a set of coupled ODEs, Equation 6 characterizes X(z) as a
continuous, deterministic process. But while this shows that the RRE would be valid
if all fluctuations could be ignored, it does not provide any justification for doing that.
Below I discuss how, and under what conditions, the discrete, stochastic CME de-
scription approximately gives rise to the continuous, deterministic RRE description.

Because the CME (Equation 4) can rarely be solved for the probability density
function of X(¢), perhaps we should look for a way to construct numerical realizations
of X(2), i.e., simulated trajectories of X(z) versus z. This is not the same as solving the
CME numerically, as that would give us the probability density function of X(¢) in-
stead of a random sample of X(z). The key to generating simulated trajectories of X(z)
is not the function P(x, # | X, #y), but rather a new probability function p(z, j |x, 1),
which is defined as follows:

p(r,jlx t)dt 2 the probability, given X(#) = x, that the next reaction in the
system will occur in the infinitesimal time interval
[t+7,t+ 1 +dr), and will be an R; reaction. @)

Formally, this function is the joint probability density function of the two random
variables time to the next reaction (v) and index of the next reaction (), given that the
system is currently in state x. Itis not difficult to derive an exact formula for p(z, j | x, 7)
by applying the laws of probability to the fundamental premise (Equation 2). The
resultis (8-11)

p(T. j 1% 1) = 4(x) exp(—ao(x) 7), ®)

where
L
a0®) =Y 2. ()
=1

Equation 8 is the mathematical basis for the stochastic simulation approach. Itimplies
that 7 is an exponential random variable with mean (and standard deviation) 1/a¢(x),
while ; is a statistically independent integer random variable with point probabilities
aj(x)/a(x). There are several exact Monte Carlo procedures for generating samples
of v and j according to these distributions. Perhaps the simplest is the so-called
direct method, which follows by applying the standard inversion generating method
of Monte Carlo theory (11): We draw two random numbers 7 and 7, from the uniform
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distribution in the unit interval, and take

1 1
T = 7@ In (E)i (10a)

J
the smallest integer satisfying Z A > 17 ao(X). (10b)
j'=1

~.
Il

With this generating method (or any mathematically equivalent one), we have the
following stochastic simulation algorithm (SSA) for constructing an exact numerical
realization of the process X(z) (8, 9):

0. Initialize the time 7 =) and the system’s state x = Xg.

. With the system in state x at time ¢, evaluate all the #;(x) and their sum #,(x).
. Generate values for 7 and ; using Equations 10a,b (or their equivalent).

. Effect the next reaction by replacing # <t + 7 and x < x+ ;.

. Record (x, ) as desired. Return to Step 1, or else end the simulation.

[ T R S

The X(z) trajectory produced by the SSA may be thought of as a stochastic ver-
sion of the trajectory that would be obtained by solving the RRE (Equation 6). But
note that the time step 7 in the SSA is exact and not a finite approximation to some
infinitesimal 4z, as is the time step in a typical ODE solver. If it is found that every
SSA-generated trajectory is practically indistinguishable from the RRE trajectory,
then we may conclude that microscale randomness is ignorable. But if the SSA tra-
jectories are found to deviate significantly from the RRE trajectory, or from each
other, then we must conclude that microscale randomness is not ignorable, and the
deterministic RRE does not provide an accurate description of the system’s true
behavior.

Because the SSA and the CME are each derived without approximation from
the fundamental premise (Equation 2), they are logically equivalent to each other.
But even when the CME is intractable, the SSA is easy to implement; indeed, as
a numerical procedure, the SSA is simpler than most procedures that are used to
numerically solve the RRE (Equation 6). The catch is that the SSA is often very
slow, essentially because it insists on simulating every individual reaction event. The
mathematical reason for this slowness can be traced to the factor 1/z¢(x) in Equation
10a, which will be small if any reactant population is large.

To illustrate the foregoing ideas, consider the simple reaction

S—5 0. (11)

The propensity function for this reaction is #(x) =cx, and the state-change vector is
v=—1. The RRE (Equation 6) reads d X/dt = —c X, and the solution to this ODE
for the initial condition X(0) =y is

X(t) = woe™"(RREsolution). (12)
The CME (Equation 4) reads

%P(x, t|xo, 0) =a(x + )P+ 1,1 |x9, 0) — a(x)P(x, £ | x9, 0).

Gillespie



Annu. Rev. Phys. Chem. 2007.58:35-55. Downloaded from arjournals.annualreviews.org
by Universite de Montreal on 09/26/07. For personal use only.

100
S—0
c=1, X(0)=100
80|
60|
XM
40+
20 | b §
O 1 1 1 ey ——
0 1 2 3 4 5 6

Because P(xg + 1,2 |x9,0)=0, we can solve this equation exactly by successively
putting x =xg, 9 — 1, ..., 0. The result is

1
P(r. t]a0,0) = ——2 e 91(1 — e M0 (x =0, ..., x), (13)
x!(g — x)!
which we recognize as the probability density function for the binomial random
variable with mean and standard deviation
(X(®) = xe™, (142)
sdev{X(?)} = Vape (1 —e ). (14b)
Note that (X(t)) is identical to the solution (Equation 12) of the RRE; this will always

be so if all the propensity functions are linear in the populations, but not otherwise.
The SSA for this reaction is simple: In state x at time #, we draw a unit-interval

uniform random number 7, increase ¢ by v =(1/ax)In(1/r), decrease x by 1, and
then repeat. Figure 1 shows numerical results for ¢ =1 and xy = 100.

3. ELABORATIONS ON AND IMPROVEMENT'S
TO THE STOCHASTIC SIMULATION ALGORITHM

The version of the SSA described above is the one originally presented in References
8 and 9. A number of earlier works applied similar if not equivalent procedures to
specific model systems (13-19) but paid little attention to developing the supporting
theory. In this section I focus on some later elaborations on and improvements to the
SSA.
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Figure 1

Simulating the simple
isomerization reaction
(Equation 11). The thin
light blue line shows the
solution (Equation 12) of
the reaction-rate equation
(RRE). The two dashed
gray lines show the
one-standard-deviation
envelope

(X(t)) £ sdev {X(t)} of
Equations 14a,b as
predicted by the solution of
the chemical master
equation (CME) (Equation
13). The red and blue jagged
curves show the trajectories
produced by two separate
runs of the stochastic
simulation algorithm (SSA).
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One elaboration of the SSA already noted in Reference 8 is an alternative to the
direct method (Equation 10) for generating values of 7 and ;. Called the first-reaction

method, it begins by drawing M random numbers 74, ..., 7 from the unit-interval
uniform distribution and computing
— () =10 (152)
T = n|— =1,..., H a
4 ﬂj/(X) 7’:7-/

then it takes

7 = the smallest of the {z;/} (15b)
j = the index of the smallest {z;}
Heuristically, 7y, . . ., Tasare putative times to the next firings of the respective reaction

channels; however, we accept only the earliest of those and discard the rest. It can be
proved (8) that this procedure, like the direct method, generates values for t and
in exact accord with the joint density function (Equation 8). However, if the system
has many reaction channels, this method will be computationally less efficient than
the direct method.

A generalization of the direct and first-reaction methods that includes both as spe-
cial cases is L. Lok’s (unpublished manuscript) first-family method. The M reactions
are partitioned into L families { F}, . .., F.} and then relabeled so that the } reactions
in family Fy are {R], ..., R}, }. Each family F is then viewed as a pseudoreaction with

M /

propensity function z)(x)= 3" ;—14;(x). To generate the time 7 to the next reaction

event and the index pair (/, 7) that identifies that reaction, we draw L + 1 random

numbers 71, ..., 7., from the uniform distribution in the unit interval. We use the
first L of these to compute
1 1 ,
r;«:l,—ln — =1,...,Ly (16a)
a (x) Ty

then we take

7 = the smallest of the {7/} (16b)
! = the index of the smallest {t;/}|’
and finally
J
j = the smallest integer satisfying a;,(x) > 7y ah(x). (16¢)
i=1

Heuristically, Equations 16a,b generate the time step 7 to, and the index/ of, the next
firing family, and Equation 16c¢ then decides which reaction in [ actually fires. It can
be proved (L. Lok, unpublished manuscript) that this procedure generates values for
rand j =(/, j) in exact accord with the joint density function (Equation 8). It reduces
to the direct method if all the reactions are taken to be members of one family, and it
reduces to the first-reaction method if each reaction is taken to be a family unto itself.
For intermediate partitionings, the method may afford bookkeeping advantages when
M s large.

A reformulation of the SSA that, for large Nand M, significantly increases its speed
as compared with the direct method is Gibson & Bruck’s (20) next-reaction method.
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Essentially a heavily revised version of the first-reaction method, the next-reaction
method saves the putative next firing times of all reaction channels in an indexed
binary tree priority queue, which is constructed so that the firing time of each parent
node is always earlier than the firing times of its two daughter nodes. The time and
index of the next occurring reaction are therefore always available at the top node of
the queue. The indexing scheme and the binary-tree structure of the queue facilitate
updating the queue as a result of changes caused by occurring reactions. With added
effort, we can even make the next-reaction method consume only one uniform random
number per additional reaction event, in contrast to the two required by the direct
method. Although the next-reaction method can be significantly faster than the direct
method, it is much more challenging to code. For more details, see References 20
and 21.

Lok & Brent (22) have developed a stochastic simulation software package called
Moleculizer that uses a slightly simplified version of the next-reaction method, but
with a unique twist: Reaction channels and species are introduced only when they are
needed, and removed when they are not needed. The target application for Mole-
culizer is the simulation of the pheromone-response mechanism in yeast, a chemical
system that entails a potentially enormous number of species and reaction channels.
Lok showed that, at least when using the SSA, it is not necessary to introduce all
the reactions and species at the beginning of a simulation, and for the yeast system
in particular, a just-in-time introduction of the reactions and species makes feasible
an otherwise infeasible simulation. Lok also observes that this just-in-time strategy
cannot be used with the RRE, which is noteworthy because the RRE too becomes
unwieldy when enormous numbers of species and reaction channels are involved; thus
we have yet another reason for using stochastic simulation instead of deterministic
simulation on biological systems. For further discussion of these points, see Reference
22.

Cao etal. (21) recently introduced a modified direct method that often makes the
direct method competitive in speed with the next-reaction method. These authors
observed that if the reaction channels are indexed so that reactions R; with larger
propensity functions are assigned lower index values j, then the average number of
terms summed in the computation (Equation 10b) is minimized. The consequent
gain in speed can be significant for systems with many reactions and a wide range of
propensity function values, a common circumstance in biological models. The modi-
fied direct method starts off with a relatively short prerun using the direct method in
which the average sizes of the propensity functions are assessed. Then it reindexes the
reactions accordingly and resumes the simulation, at a usually much-greater speed.
See Reference 21 for details.

McCollum et al. (23) have recently proposed a further improvement on the direct
method in what they call the sorting direct method. Similar to the modified direct
method, the sorting direct method seeks to index the reaction channels in order of
decreasing values of their propensity functions so as to optimize the search in Equation
10b. But the sorting method does this dynamically, and without the need for a prerun,
by using a simple bubble-up tactic: Whenever a reaction channel fires, the index of
the firing channel is interchanged with the index of the next lower indexed channel
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(if there is one). Doing this repeatedly tends to establish the desired index ordering.
This tactic not only eliminates the prerun of the modified direct method, but it also
accommodates any changes in the relative sizes of the propensity functions that might
develop as the simulation proceeds.

H. Li & L.R. Petzold (unpublished manuscript) have recently proposed the log-
arithmic direct method, another novel twist on the direct method. Its strategy is to
collect and store the partial sums of the propensity functions during the computa-
tion of the full sum 4, in Equation 9. The value of j in Equation 10b can then be
found rapidly by conducting a binary search over those partial sums. Although the
logarithmic direct method (24) may not always result in as great a speed gain as the
sorting direct method (23) or the optimized direct method (21), it can avoid a po-
tential accuracy problem that may afflict those other two methods. Arranging the
reaction indices in order of decreasing size of the propensity functions does make
the linear search Equation 10b go faster, but it also makes that search potentially less
accurate; e.g., if we were carrying k decimals in the sum on the left side of Equation
10b and the highest-indexed propensity function happened to be % orders of mag-
nitude smaller than #,;, then numerical truncation results in Rj; never firing at all.
For maximal numerical accuracy in executing Equation 10b, reactions with smaller
propensity functions should be assigned lower index values—just the opposite of what
the modified and sorting direct methods do. The logarithmic direct method is not
susceptible to this problem because it does not depend on any ordering scheme for
the reaction indices; indeed, with the logarithmic direct method, the ordering could
deliberately be arranged to achieve maximum accuracy. It might also be possible to
overcome the inaccuracy problem by using Lok’s first-family method, grouping reac-
tions with very small propensities together into a family F and all the other reactions
into a family F>: Most of the time the selection in Equation 16b falls to family F,
but on those rare occasions when it falls to F, the subsequent search in Equation
16¢ is accomplished without involving the larger-valued propensity functions, so no
truncation errors arise.

Improvements to the SSA along the lines described above are certainly beneficial,
but any procedure that simulates every reaction event one at a time, no matter how
efficiently it does that, will simply be too slow for many practical applications. This
prompts us to look for ways to sacrifice some of the exactness of the SSA in return for
greater simulation speed. One way of doing that is to use an approximate simulation
strategy called tau-leaping.

4. TAU-LEAPING: THE BRIDGE
TO THE REACTION-RATE EQUATION

With the system in state x at time 7, let us suppose there exists a r > 0 that satisfies
the following leap condition: During [z, # + 7), no propensity function is likely to
change its value by a significant amount. With #;(x) remaining essentially constant
during [¢, ¢ + 1), it then follows from the fundamental premise (Equation 2) that the
number of times reaction channel R; fires in [z, # + 7) is a Poisson random variable
with mean (and variance) #;(x) t. Therefore, to the degree that the leap condition is
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satisfied, we can approximately leap the system ahead by a time t by taking (25, 26)

M
X(t+1)=x+ Y Pg;x1)v;, (17)
j=1
where x = X(#), and P;(s;) is a statistically independent Poisson random variable with
mean (and variance) 7;.

Equation 17 is the basic tau-leaping formula. In the next section below I discuss
how we can use it to perform faster stochastic simulations. But for now, let us suppose
that 7 is not only small enough to satisfy the leap condition, but also large enough
that the expected number of firings of each reaction channel R; during 7 is > 1:

ajx)t > 1 forall j =1,..., M. (18)

Then, denoting the normal (Gaussian) random variable with mean 7z and variance o2

by N'(mn, 0?), and invoking the mathematical fact that a Poisson random variable with
a mean and variance that is 31 can be approximated as a normal random variable
with that same mean and variance, we can further approximate Equation 17 as

M M
Xt+1)=x+ Z./\G(aj(x)n a4j(x)T)V; =X+ Z [ﬂj(x)r + ,/a;(x) TN, 1)] v;.
j=1 j=1

The last step here invokes the well-known property of the normal random variable
that N'(m, 0?) =m + o N(0, 1). Collecting terms gives us what is known as the chem-
ical Langevin equation (CLE) or Langevin leaping formula (25),

M M
X(t+1)=x+ Y vie()T + Y v [0 N0, DV, (19)
j=1 j=1

where x = X(z), and each N;(0, 1) is a statistically independent normal random vari-
able with mean 0 and variance 1. Again, this equation is valid only to the extent
that during 7, no propensity function changes its value significantly, yet every reac-
tion channel fires many more times than once. It is usually possible to find a 7 that
satisfies these opposing conditions if all the reactant populations are sufficiently large.

In the theory of continuous Markov processes, it can be shown that the CLE
(Equation 19) can also be written in the white-noise form (25, 27)

M M
d};t(t) = 2 Vg X@) + Y v/ X@) (o). 20)
Jj=1 j=1

Here the I['j(z) are statistically independent Gaussian white-noise processes, satisfying
(Lj(2) Tje(t")) = 8 8(r—t"), where the first delta function is Kronecker’s and the second
is Dirac’s. Equation 20 is just another way of writing Equation 19; the two equations
are mathematically equivalent. Equations of the form of Equation 20, with the right
side the sum of a deterministic drift term and a stochastic diffusion term proportional

to Gaussian white noise, are known as Langevin equations or stochastic differential
equations. In most occurrences of Langevin equations in science and engineering
applications, the form of the stochastic diffusion term is postulated ad hoc; here,
however, it has been derived. Continuous Markov process theory also implies that
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the probability density function P(x, # | xo, ) of the random variable X(z) in the CLE
Equations 19 and 20 obeys a well-defined partial differential equation called the
chemical Fokker-Planck equation (CFPE). References 25, 27, and 28 give a derivation
and discussion of the CFPE.

The thermodynamic limit is defined as the limit in which the species popula-
tions X; and the system volume 2 all approach infinity, but in such a way that the
species concentrations X;/ €2 stay constant. As this limit is approached, all propensity
functions grow in direct proportion to the size of the system. This is obvious for a uni-
molecular propensity function of the form c;x;; for a bimolecular propensity function
of the form ¢y, this follows because ¢; is inversely proportional to 2. Therefore, as
the thermodynamic limit is approached, the term on the left side of the CLE (Equa-
tion 20) and the first term on the right side both grow like the system size, whereas
the second term on the right grows more slowly as the square root of the system size.
In the full thermodynamic limit, the last term becomes negligibly small compared
with the other terms, and the CLE (Equation 20) reduces to the RRE (Equation 6).
Thus we have derived the RRE from the fundamental stochastic premise (Equation
2). The approximations made in this derivation are schematized in Figure 2, which
summarizes the theoretical structure of stochastic chemical kinetics (29).

5. THE EXPLICIT TAU-LEAPING
SIMULATION ALGORITHM

The basic tau-leaping formula (Equation 17) suggests an obvious strategy for approx-
imately doing stochastic simulations: In the current state x, we first choose a value
for 7 that satisfies the leap condition. Next, we generate for each j a sample &; of the
Poisson random variable with mean #;(x) 7, by using, for example, the numerical pro-
cedure described in Reference 30. (Because the Poisson random numbers 4y, . .., &y
are statistically independent, they could be generated simultaneously on M parallel
processors, which would result in a substantial gain in computational speed.) Finally,
we update the state from x to x+ ) k;v;. If the values generated for the %; are suffi-
ciently large, this approximate procedure will be faster than the exact SSA. Butseveral
practical issues need to be resolved to effectively implement this strategy: First, how
can we estimate in advance the largest value of ¢ that satisfies the leap condition?
Second, how can we ensure that the generated k;-values do not cause some R; to fire
so many times that the population of some reactant is driven negative? Finally, how
can we arrange it so that tau-leaping segues efficiently to the SSA?

The method originally suggested in Reference 26 for estimating the largest value
of t that satisfies the leap condition has undergone two successive refinements (31,
32). The latest t-selection procedure (32) is not only more accurate than the earlier
procedures, but also faster, especially if M is large. It computes the largest value of t
for which the estimated fractional change A 4;/a; in each propensity function during
7 is bounded by a user-specified accuracy-control parameter ¢ (0 < ¢ < 1). However,
it does this in an indirect way: It chooses 7 so that the estimated fractional change
Arx;/x; in each reactant population is bounded by an amount &, =¢;(¢, x;) (except
that no «; is required to change by an amount less than one), where the functions
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a;dt = probability that R;will fire in next dt

Xi/2 = const;, Vi

-y
: ]

Figure 2

Logical structure of stochastic chemical kinetics. Everything follows from the fundamental
premise at the top via the laws of probability theory. Inference routes that are exact are shown
by solid arrows. Inference routes that are approximate are shown by dotted arrows, with the
condition justifying the approximation indicated in braces immediately to the right.
Solid-outlined boxes are exact results: the chemical master equation (CME) and the stochastic
simulation algorithm (SSA). Dashed-outlined boxes are approximate results: the tau-leaping
formula, the chemical Langevin equation (CLE), the chemical Fokker-Planck equation
(CFPE), and the reaction-rate equation (RRE). The condition justifying the arguments leading
from the fundamental premise to tau-leaping is called the leap condition, and the condition
justifying the arguments leading from the CLE to the RRE is called the thermodynamic limit.

&; have been chosen so that A.z;/a; for every j is then bounded by the stipulated
amount ¢. As is shown in Reference 32, the algebraic forms of the functions &,(e, x;)
that accomplish this are quite simple, and they can easily be inferred by inspection at
the outset of the simulation. Enforcing the bound

|Acx;| < max {e;x;, 1} @n
is accomplished by first noting from the basic tau-leaping formula (Equation 17) that

ALx; = Zj 73](”]'.[)”{7"

Because the statistically independent Poisson random variables Pj(#;7) have means
and variances #;7, the means and variances of A.x; are

(Arx;)) = Zj vj(a;T), var{A;x;} = Zj vl-jz.(ﬂjt). (22)
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Condition 21 is deemed to be adequately fulfilled if it is satisfied by both (A, ;) and
var{A.x;}. The resulting set of inequalities yields an efficient, explicit formula for
the largest permissible value of 7 (32).

As for keeping the generated random numbers %; from driving the R; reactant
populations negative, several strategies have been proposed. Tian & Burrage (33)—
and, independently, Chatterjee et al. (34)—proposed approximating the unbounded
Poisson random numbers &; with bounded binomial random numbers. But it turns
out that it is usually not the unboundedness of the Poisson £;’s that produces negative
populations, but rather the lack of coordination in tau-leaping between different
reaction channels that separately decrease the population of a common species. Cao
et al. (35) have proposed a different approach that resolves this difficulty and also
establishes a smooth connection with the SSA. In their approach, we first identify as
critical all those reactions with nonzero propensities thatare currently within . firings
of exhausting one of its reactants, 7. being a user-specified integer. All other reactions
are called noncritical. The noncritical reactions are handled by the regular Poisson
tau-leaping method, and a maximum leap time 7’ is computed for them using the
procedure described in the preceding paragraph. For the critical reactions, we use
the direct method formulas Equations 10a,b to estimate the time " to, and index j. of,
the next critical reaction. The actual time step 7 is then taken to be the smaller of 7’ and
7”; if the former, no critical reaction fires, and if the latter, only one critical reaction
(R;,) fires. Because the total number of critical reactions firing during 7 is never greater
than one, it is impossible for any critical reaction to drive any population negative.

If n. is taken so large that every reaction becomes critical, the foregoing procedure
reduces to the exact SSA. This is fortunate because although tau-leaping theoretically
becomes exact (and hence equivalent to the SSA) as t — 0, it also becomes grossly
inefficient in that limit. This is because when 7 is small, the Poisson random numbers
kj ="P;(a;7) usually all are zero, resulting in a small tau-leap with no reactions firing.
It is not efficient to do tau-leaping when  is less than a few multiples of 1/4(x), the
expected next time step in the SSA. But by using a reasonable value for . (e.g., between
5 and 50), along with a reasonable value of ¢ (e.g., between 0.01 and 0.06), large leaps
are taken whenever possible, and a gradual transition to the SSA occurs automatically
as needed for accuracy. Finally, if we write the code for generating a Poisson random
number with mean (and variance) 7 so that when 7z >> 1, it generates instead a normal
random number with mean and variance 7z, then a smooth transition from tau-leaping
to the more computationally efficient Langevin leaping will occur automatically.

Reference 32 gives a more detailed description of the current explicit tau-leaping
procedure. Tests indicate that for many systems in which the molecular populations
of at least some of the reactant species are large, it produces significantly faster sim-
ulations than the SSA with only a slight loss of accuracy.

6. SIMULATING STIFF SYSTEMS

A system of ODEs is said to be stiff if is characterized by well-separated fast and slow
dynamical modes, the fastest of which is stable. The solution space of a stiff ODE has
a slow manifold, on which the state point moves slowly, and off which the state point
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moves rapidly toward the slow manifold. Researchers have devoted much effort over
the years to understanding and overcoming the computational problems posed by
stiff ODEs (36) because such equations arise in many practical contexts. Stiff RREs
in particular are quite commonplace.

Stiffness is just as computationally troublesome in the stochastic context. When
the SSA simulates a stiff system, it moves along as usual, one reaction at a time,
oblivious to the stiffness. But because the great majority of the reactions are the
usually uninteresting fast ones, the simulation proceeds slowly from a practical point
of view. The explicit tau-leaping algorithm also performs as advertised on stiff systems.
But because the t-selection procedure that keeps the algorithm accurate restricts ©
to the timescale of the system’s fastest mode, then even those leaps seem frustratingly
small. I conclude by describing two recently developed strategies for simulating stiff
chemical systems: the implicit tau-leaping algorithm and the slow-scale SSA (ssSSA).

6.1. The Implicit Tau-Leaping Algorithm

A well-known strategy for numerically solving a stifft ODE dx/dt = f(x) is to replace
the explicit updating formula o, =, + f(x,) Az with an implicit formula, such as
Xepar =% + (x5 ar) A7 (36). The latter equation of course has to be solved to obtain
Xr4a; at each time step. But even when that can only be done numerically (Newton
iteration is usually used), the extra effort is usually more than compensated by the
ability to use much-larger values of Az for the same degree of accuracy.

The tau-leaping formula (Equation 17), where x =X(z), is obviously an explicit
updating formula. To make it implicit by replacing x in the argument of the Poisson
random variable with X(¢+ 1), however, raises some serious questions in the context of
Markov process theory, where updates are supposed to be past-forgetting; moreover,
even if that replacement could be justified theoretically, there appears to be no way to
solve the resulting equation for X(z + 7). Rathinam et al. (37) have proposed a partial
implicitization, in the following implicit tau-leaping formula:

M
X(t+71)=x+ Z [Pi(aj(x)7) — 2;(x)T + a;X(t + 1))T]V;. 23)

j=1
In this formula, the mean of the Poisson random variable Pj(#;(x)r) is subtracted
out and replaced by its value at the later time # + 7, but the variance has been left
unchanged. The advantage of this formula is that, once the Poisson random numbers
have been generated using the current state x, the equation can then be solved for
X(# + 7) using the same (deterministic) numerical techniques developed for implicit
ODE solvers (36). Noninteger values for the components of X(¢+ 1) can be avoided by
rounding the quantity in brackets in Equation 23 to the nearest nonnegative integer

and then recomputing X(¢ + 1) directly from Equation 23 (37).

Tests of this implicit tau-leaping strategy show that it produces significantly faster
simulations than the explicit tau-leaping formula (Equation 17) for stff systems,
but with one major qualification: Formula 23 excessively damps the fluctuations in
the fast components of X(#). Rapid fluctuations of the state point transverse to the
slow manifold naturally occur in a stochastically evolving system, as can be seen in
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simulations made with the exact SSA. But Equation 23 suppresses these fluctuations.
However, we can restore the properly fluctuating fast variables whenever desired by
taking a succession of much shorter explicit tau-leaps or SSA steps, a tactic called
downshifting. For more details, see Reference 37.

Cao & Petzold (38) subsequently proposed a trapezoidal implicit tau-leaping for-
mula, which has the same form as Equation 23 except that a factor of 1, appears in
front of each of the last two terms in the brackets. Tests suggest that the trapezoidal
formula often gives more accurate results than Equation 23 for a given value of 7.

6.2. The Slow-Scale Stochastic Simulation Algorithm

A different approach to stochastically simulating stiff chemical systems is one that
was inspired by the well-known Michaelis-Menten approximation in deterministic
chemical kinetics (39). Several different ways of realizing this approach have been
proposed (40-48), but all are rooted in the same basic idea of eliminating the fast
entities through a kind of quasi-steady-state approximation (41). Arguably the clearest
articulation of this approach, at least as regards its theoretical justification within
stochastic chemical kinetics, is the ssSSA of References 42 and 45.

The ssSSA proceeds in a series of steps, the first of which is to make a provisional
partitioning of the reaction channels R= {Ry, ..., Ry} into fast and slow subsets,
Rf and R°. Assigned to R are those reactions whose propensity functions tend to
have the largest values. All the other reactions are assigned to R®. If it is not obvious
how to make this partitioning, then it may be that the system is not really stiff, and
therefore not a candidate for the ssSSA. In any case, this provisional partitioning of
the reactions will later be subjected to an acceptance test.

The second step is to partition the species S= {5, ..., Sy} into fast and slow
subsets, Sfand S, according to the following rule: Any species whose population gets
changed by a fast reaction is classified as a fast species; all other species (if there are
any) are classified as slow. This rule induces a partitioning of the process X() into a
fast process X'(¢) and a slow process X*(¢). Note the subtle but important asymmetry
that a fast species can get changed by a slow reaction, but a slow species cannot get
changed by a fast reaction.

The third step defines the virtual fast process X'(r) as the fast species popu-
lations evolving under only the fast reactions Rf; i.e., Xf(#) is Xf(t) with all the
slow reactions switched off. The virtual fast process X'(r) is a Markov process,
whereas the real fast process X(z) is generally non-Markovian, and hence practically
intractable.

Next we require that two stochastic stiffness conditions be satisfied: First, Xf(t)
must be stable, in that it approaches as t — oo a well-defined time-independent ran-
dom variable Xf(c0). This is the counterpart to the deterministic stiffness requirement
that the fastest dynamical mode be stable. Second, the approach Xf(#) — Xf(co) must
be effectively accomplished in a time that is small compared with the expected time
to the next slow reaction. This is a more precise specification of the degree of sepa-
ration that must exist between the timescales of the fast and slow reactions. If we find
these two stiffness conditions are satisfied, then our original classification of the fast
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reactions is deemed acceptable; otherwise we must try another set of fast reactions,
or else we must conclude that the system is not really stiff, and the ssSSA cannot be
applied.

With the stochastic stiffness conditions satisfied, we now invoke the slow-scale
approximation—a result that can be mathematically derived from the fundamental
premise (Equation 2) (42). The slow-scale approximation states, in essence, that we
can ignore the fast reactions and simulate the system one slow reaction at a time,
provided we replace the propensity function of each slow reaction by its average with
respect to the asymptotic virtual fast process Xf(c0). More precisely, if P(y', oo | xf, x°)
is the probability that Xf(co) =y’ given that X(¢) = (x', x°), then the propensity func-
tion a; (x, x°) of each slow reaction R at time ¢ can be approximated on the timescale
of the slow reactions by

ﬁ;(xf, X’) = Z Z3(yf, oo | xf, x°) ﬂ;(yf, x°). (24)
yf

The ssSSA thus proceeds by simulating, in the manner of the SSA, the slow reactions
using the propensity functions (Equation 24) and ignoring the fast reactions. We can
exhibit the populations of the fast species whenever desired by Monte Carlo sampling
the probability function P.

The approaches of References 43, 44, 47 and 48 differ from the ssSSA approach
described above in the way the averages (Equation 24) are computed and the way in
which the fast-species populations are generated. All rely on making relatively short
SSA runs of the virtual fast process between the slow reactions.

Although the ssSSA can be challenging to implement, it has been successfully
applied to a number of simple stiff systems (42), as well as the prototypical Michaelis-
Menten system (45) that is so ubiquitous in enzymatic reactions. These applications
showed increases in simulation speed over the exact SSA of two to three orders of
magnitude with no perceptible loss of simulation accuracy.

7. OUTLOOK

The robustness and efficiency of both the SSA and the explicit tau-leaping algorithm
have been considerably improved in the past few years, and those procedures seem
to be nearing maturity. However, there is still room for improvement on the stiffness
problem. Such improvement may come in the form of refinements to the implicit
tau-leaping procedure and the ssSSA, and a clarification of the theoretical connection
between those two approaches for dealing with stiff systems. Also needed are robust,
adaptive strategies for deciding during a simulation when to use which simulation
method. There is also a need for a better understanding of several foundational
issues, such as how the reaction constants ¢; are to be derived in the context of
diffusional kinetics, and what are the effects of the molecular-crowding conditions
usually presentin living cells. Finally, the problem of how best to simulate systems that
are not well stirred, a problem that is not addressed in this review, holds a great many
challenges.
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SUMMARY POINTS

1. The SSA is a procedure for numerically simulating well-stirred chemically
reacting systems by stepping in time to successive molecular reaction events
in exact accord with the premises of the CME.

2. The ability of the SSA to take proper account of the discrete, stochastic na-
ture of chemical reactions makes it better suited to cellular chemical kinetics
than the traditional RRE because in cellular systems the small numbers of
molecules of some key reactants can amplify the effects of discreteness and
randomness.

3. Because the SSA simulates every successive molecular reaction event that
occurs in the system, it is often too slow for practical simulation of realistic
cellular systems.

4. An approximate speedup to the SSA is provided by tau-leaping, in which
time is advanced by a preselected amount t and the numbers of firings of the
individual reaction channels are approximated by Poisson random numbers.

5. Ifthe expected number of firings of each reaction channel during a tau-leap is
much greater than one, the Poisson random numbers are well approximated
by normal random numbers, and the result is equivalent to a Langevin-type
equation called the CLE.

6. In the thermodynamic (macroscopic) limit, the noise terms in the CLE
become negligibly small and the CLE reduces to the conventional RRE,
thereby establishing deterministic chemical kinetics in the context of
stochastic chemical kinetics.

7. For stiff systems—which evolve on both fast and slow timescales with the
fastest modes being stable—accuracy in tau-leaping requires 7 to be small
on the fastest timescale, which makes even tau-leaping seem too slow.

8. Two acceleration procedures for stiff systems are implicit tau-leaping, which
mirrors the implicit Euler method in ODE theory, and the ssSSA, in which
the fast reactions are skipped over and only the slow reactions are directly
simulated using specially modified propensity functions.
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