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Introduction

Epistatic interactions between mutations are thought to

play a crucial role in a number of evolutionary processes,

including adaptation (Weinreich et al., 2005; Bell, 2008)

and sex (Kondrashov, 1988; Kouyos et al., 2007; de

Visser & Elena, 2007). Experimental studies in a wide

variety of species, including eukaryotes (Wloch et al.,

2001; Kelly, 2005; Malmberg et al., 2005; Segre et al.,

2005; Jasnos & Korona, 2007; Dickinson, 2008), prok-

aryotes (Elena & Lenski, 1997, 2001; Remold & Lenski,

2004; Maisnier-Patin et al., 2005; Weinreich et al., 2006;

Cooper et al., 2008), and viruses (Bonhoeffer et al., 2004;

Sanjuan et al., 2004, 2005) have found evidence for

epistasis, but the average direction of epistasis (i.e.

synergistic or antagonistic) varies within (Elena & Lenski,

1997; Segre et al., 2005) and between (Sanjuan & Elena,

2006) species. The underlying causes of this variation are

not yet understood and an important goal of current

research in this area is to predict epistasis from first

principles. Two approaches have been taken to overcome

this problem. The first approach, derived from quantita-

tive genetics, has been to predict epistasis from the

distribution of fitness effects of single mutations using

Fisher’s geometric model of adaptation (Martin et al.,

2007). The second approach has been to predict epistasis

from biochemistry, using metabolic network analysis

(Segre et al., 2005; Sanjuan & Nebot, 2008) and meta-

bolic control theory (Szathmáry, 1993). This second

approach is especially appealing, because it offers the

potential to develop a mechanistic understanding of

epistasis based on the biochemical properties of organ-

isms, so that epistasis could potentially be predicted

directly from genome sequences.

In a seminal paper, Szathmáry (1993) showed that

metabolic control theory predicts that functional inter-

actions between genes can generate epistasis. Metabolic
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Abstract

Epistatic interactions between mutations are thought to play a crucial role in a

number of evolutionary processes, including adaptation and sex. Evidence for

epistasis is abundant, but tests of general theoretical models that can predict

epistasis are lacking. In this study, I test the ability of metabolic control theory

to predict epistasis using a novel experimental approach that combines

phenotypic and genetic perturbations of enzymes involved in gene expression

and protein synthesis in the bacterium Pseudomonas aeruginosa. These exper-

iments provide experimental support for two key predictions of metabolic

control theory: (i) epistasis between genes involved in the same pathway is

antagonistic; (ii) epistasis becomes increasingly antagonistic as mutational

severity increases. Metabolic control theory is a general theory that applies to

any set of genes that are involved in the same linear processing chain, not just

metabolic pathways, and I argue that this theory is likely to have important

implications for predicting epistasis between functionally coupled genes, such

as those involved in antibiotic resistance. Finally, this study highlights the fact

that phenotypic manipulations of gene activity provide a powerful method for

studying epistasis that complements existing genetic methods.
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control theory assumes a linear pathway made up of n

unsaturated enzymes with flux through the pathway, J,

equal to a ⁄ (1 ⁄ E1 + 1 ⁄ E2 + … 1 ⁄ En + b), where a and b

are constants and En is the activity of nth enzyme in the

pathway (Fig. 1a). Provided that fitness is correlated with

metabolic flux, as will be the case in a growing popula-

tion, metabolic control theory predicts that interactions

between mutations in different genes are always antag-

onistic (Szathmáry, 1993). A second, and more subtle

prediction, is that the strength of epistasis increases with

average mutational effect (Fig. 1b). These predictions can

be explained mechanistically as follows. The control of

flux through the pathway exerted by the ith enzyme can

be described by a control coefficient, ci, which describes

how flux through the pathway changes varies as a result

of the activity of enzyme, Ei, such that ci = dJ ⁄ dEi. A

fundamental property of pathways is that the sum of all

control coefficients is always equal to 1 (Klipp et al.,

2009), and this law of conservation of the control of flux

drives antagonistic epistasis. Imagine a hypothetical

pathway in which the control of flux is distributed

evenly among all enzymes. As the activity of enzyme i is

reduced, it exerts more and more control over flux

through the pathway, hence flux becomes increasingly

insensitive to perturbations of other enzymes in the

pathway. For example, if enzyme i acquires a highly

deleterious mutation so that it acts as a rate limiting step

for the pathway (i.e. ci = 1) then small effect mutations in

other enzymes in the pathway will have no effect on

flux.

To test the predictions of metabolic control theory, I

used a novel experimental approach involving pheno-

typic and genetic perturbations of a very well-character-

ized pathway, gene expression and protein synthesis, in

the opportunistic human pathogen Pseudomonas aerugin-

osa. Although the motivation for the development of

metabolic control theory was to understand the control

of flux in metabolic pathways, the theory itself does not

make any assumptions that are specific to any biological

features of metabolism – in fact the theory ignores many

features of metabolic biochemistry, such as feedback

control. In other words, this is a theory about how linear

processing chains respond to perturbation that is not

specific to metabolism in any way. Because of this

generality, metabolic control theory has been success-

fully used to model a number of processes in molecular

biology that are completely unrelated to metabolism,

such as signalling pathways and gene expression

(Kholdenko et al., 2000; Hofmeyr & Westerhoff, 2001,

Bruggeman et al., 2002; Klipp et al., 2009). This study is

motivated by the idea that gene expression and protein

synthesis can be considered as a simple chain of reactions

involving three substrates (DNA, RNA and protein) and

two reactions (transcription and translation). Although

this simplification neglects the many complexities of

transcription and translation, the advantage of this

simplification from an evolutionary perspective is that

flux through this pathway is correlated with reproductive

rate (i.e. fitness).

The experimental approach used to investigate epista-

sis in this study relies on the idea that phenotypic and

genetic perturbations provide complementary methods

for understanding the response of biological systems to

changes in their component parts, an idea that is central

to systems biology (Segre et al., 2005; Yeh et al., 2006;

Lehar et al., 2007; Yeh & Kishony, 2007); for example, if

deleterious mutations in different enzymes in a metabolic

pathway antagonize each other’s effects, it follows that

inhibitors of these enzymes should also antagonize each

other. The main advantage of using drug–drug interac-

tions to measure epistasis as opposed to conventional
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Fig. 1 A model of flux and epistasis in two enzyme pathway. This

figure shows flux (a) and epistasis (b) in a model of a two-enzyme

pathway with flux, J, equal to 1 ⁄ (1 ⁄ E1 + 1 ⁄ E2), where Ei is the

activity of ith enzyme. Epistasis is measured as e = ln (wx,y ) ln

(wx,2*w2,y), where x and y are the activity of enzymes 1 and 2

respectively, when enzyme activity is below the wild type level

(arbitrarily set at 2). A justification for the use of this measure of

epistasis is given in the results section.
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mutation–mutation interactions is that drug–drug inter-

actions allow precise and quantitative manipulation of

gene activity using dose-response curves over the entire

range of enzyme activity (Lehar et al., 2007; Yeh &

Kishony, 2007).

Methods and materials

Strains and culture conditions

Strains used in this study were P. aeruginosa PAO1 or

derivatives of PAO1 carrying a single nonsynonymous

mutation in rpoB, named according to the mutation in

each strain (A455T, A455G, A1592G, A1562G and

C1550T). Further details of RNAP mutants can be found

in (MacLean & Buckling, 2009). Cultures were propa-

gated in M9KB broth (10 g L)1 glycerol, 20 g L)1 prote-

ose peptone #3, 12.8 g L)1 Na2HPO4.7H2O, 3 g L)1

KH2PO4, 0.5 g L)1 NaCl, 1 g L)1 NH4Cl, 2 mMM MgSO4)

incubated at a constant temperature of 37 �C without

shaking.

Measuring fitness

To assay fitness, I measured the growth rate of cultures of

Pseudomonas in exponential growth phase by assaying

optical density at 600 nMM using an automated microplate

reader (Synergy HT Powerwave XS; Biotek, VT, USA).

Under the assay conditions used, optical density is

correlated with the log of cell density, so that the linear

rate of increase of optical density in exponential growth

phase provides an estimate of the growth rate, r, of each

culture, such that Nt = Noert. Fitness estimates were

standardized by diving each growth rate by the mean

growth rate of PAO1 in antibiotic-free culture medium.

Preliminary experiments involving direct competition

between PAO1 and RNAP mutants demonstrated that

this method provides fitness estimates that are highly

correlated (r > 0.95) with those obtained in traditional

pairwise competition experiments using genetic markers

(R.C. MacLean, unpublished).

Co-inhibittion with rifampicin and streptomycin

Overnight cultures of PAO1 were diluted 100 fold into

fresh M9KB supplemented with variable concentrations

of rifampicin (0, 2, 4, 8 or 16 mg L)1) and streptomycin

(0, 15, 30 or 60 mg L)1) and fitness was assayed over a

20–24 h period. I measured the fitness of four replicate

cultures of PAO1 in each pairwise combination of

antibiotics.

Streptomycin inhibition assay of PAO1 and RNAP
mutants

Overnight cultures of PAO1 and RNAP mutants were

diluted 100 fold into M9KB supplemented with

streptomycin at the following concentrations (0 mg L)1,

7.5 mg L)1, 15 mg L)1, 30 mg L)1, 60 mg L)1 and

120 mg L)1) and fitness was measured over a 24 h

period. I assayed the fitness of four replicate cultures of

each strain at each antibiotic concentration. Resistance

was calculated as IC50, the concentration of streptomycin

necessary to cause a 50% reduction in fitness, using

the following regression model: y ¼ ymin þ ymax � ymax=
ð1þ 10ðlog IC50�xÞ�HÞ, where y is fitness, x is the concen-

tration of streptomycin and H is parameter that estimates

the rate of decay in fitness with increasing streptomycin

concentration. Relative fitness was measured as ymax,

which provides an estimate of fitness in the absence of

antibiotics.

Mutagenesis assay

Overnight cultures of PAO1 and RNAP mutants were

diluted down and spread on M9KB plates. These plates

then immediately received a moderate mutagenic dose of

UV (15 s of exposure to a germicidal UV light) or a mock

no-UV control. Plates were then incubated overnight at

37 �C to allow colonies derived from single mutagenized

cells to form. The following day, cells from the 16 or 32

colonies closest to a randomly chosen point on the agar

plate were transferred to a microtiter plate containing

M9KB for a fitness assay. I measure the fitness of one

replicate culture from each colony. UV-induced mortality

rates were the same in all strains tested.

Results

To investigate the fitness consequences of phenotypic

perturbations of bacterial gene expression and protein

synthesis, I assayed the fitness of P. aeruginosa PAO1

across a gradient of rifampicin, which inhibits RNA

polymerase (Trinh et al., 2006), and streptomycin, which

inhibits the 30S subunit of the ribosome (Poehlsgaard &

Douthwaite, 2005). Gene interactions are often quanti-

fied as e1.2 = ln w1.2)ln (w1*w2), where w1.2 is relative

fitness in the presence of both mutations 1 and 2, and w1

and w2 are relative fitness in the presence of either

mutation 1 or mutation 2 (Martin et al., 2007; Gros et al.,

2009). With this definition epistasis is a relative deviation

from single-mutant effects and is therefore not directly

connected to the amplitude of the effect of single

mutations on fitness. If interactions are additive, e1.2 is

equal to 0; antagonistic epistasis occurs when e1.2 > 0 and

synergistic epistasis occurs when e1.2 < 0. If enzyme

inhibitors are used to compromise enzyme activity instead

of mutations, the same mathematical approach can be

used to quantify epistasis, except that w1 and w2 are now

fitness in the presence of either inhibitor 1 or 2 and w1.2 is

fitness in the presence of both inhibitor 1 and inhibitor 2.

Systematic co-inhibition experiments reveal that the

interaction between rifampicin and streptomycin is, on

average, antagonistic (Fig. 2a, mean eRif.Strep = 0.072,
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SEM = 0.032, n = 32, t31 = 2.21, P = 0.017). However,

the strength of antagonism between rifampicin and

streptomycin varies substantially depending on the con-

centration of each inhibitor (Fig. 2a). Much of this

variation can be explained by the fact that the interaction

between rifampicin and streptomycin becomes increas-

ingly antagonistic as expected fitness (i.e. w1*w2) declines

(Fig. 2b, slope = )0.46, SE = 0.094, t = 4.86, P £ 0.001,

r2 = 0.44). In other words, the overall tendency towards

antagonistic epistasis is driven by the fact that the

interaction between rifampicin and streptomycin

becomes highly antagonistic when large doses of either

or both drugs are administered. When expected fitness is

close to 1, e is approximately equal to 0, and in some cases

our estimate of e is less than 0. However, none of these

negative estimates are e are significantly different from

zero after correcting for multiple comparisons (P > 0.05).

If the antagonistic interaction between rifampicin and

streptomycin reflects a genuine functional antagonism

between the ribosome and RNA polymerase, genotypes

carrying deleterious mutations in RNA polymerase

should show reduced sensitivity to ribosomal inhibitors

and vice versa. To test this idea, I measured the strepto-

mycin inhibition kinetics of strains carrying mutations in

RNA polymerase and a wild-type control strain (Fig. S1).

Tolerance to streptomycin increases linearly with the

fitness cost of RNAP mutations (Fig. 3; r2 = 0.987,

t = 17.11, P < 0.001), demonstrating that deleterious

mutations in RNAP increase robustness to ribosomal

inhibition. Moreover, this antagonism becomes more

pronounced as flux through the pathway decreases, as

we would expect from theory (Fig. 1b) co-inhibition

experiments with streptomycin and rifampicin (Fig. 2b).

One possible alternative explanation for the antagonism

between perturbations of the ribosome and RNAP is that a

compromised RNAP increases robustness to deleterious

mutations at a genomic scale. If this were the case, then it

could be argued that the ribosomal-RNAP antagonism

demonstrated above was simply a by-product of increased

robustness that did not arise from the functional interac-

tion that occurs between RNAP and the ribosome in gene

expression. To test this possibility, I measured the fitness

cost of UV-induced spontaneous mutations in strains

carrying deleterious mutations in RNAP and a wild-type

control strain (Fig. S2). Across all strains, UV mutagenesis

decreased mean fitness (average relative fitness = 0.94,

SEM = 0.017, n = 72, t71 = 3.19, P = 0.002). However, I

failed to detect differences in the fitness cost of UV

mutagenesis between genotypes carrying deleterious

RNAP mutations and the wild-type control (Dunnett’s

test; P > 0.05 for all comparisons), demonstrating that

RNAP mutations do not change robustness to random

deleterious mutations at a genomic scale.

Discussion

This study reports two findings that are in agreement with

the predictions of metabolic control theory. First, this work

shows that there is a tendency for antagonistic epistasis

between perturbations of the ribosome and RNA poly-

merase. In support of this conclusion, a recently published

study found that epistasis between deleterious mutations

in RNA polymerase and the ribosome tends to be antag-

onistic (Trindade et al., 2009). Second, the strength of

epistasis correlates with the average magnitude of pertur-

bation; epistasis is weak to nonexistent for mild perturba-

tions and epistasis is highly antagonistic for harsh

perturbations. Interestingly, the same correlation between

mutational severity and epistasis emerges from theoretical

models of epistasis using either a discrete model of fitness

based on RNA secondary structure (Wilke & Adami, 2001)

or a continuous model based on stabilizing selection on a

pair of phenotypic traits (Gros et al., 2009). However, it is

difficult to relate the results of this study to these models

because there is nothing in common between the under-

lying biological assumptions of these models.

In summary, I argue that metabolic control theory can

successfully predict epistasis between genes involved in

the same pathway, or biological process. It is possible that

(a)

(b)

Fig. 2 Co-inhibition with streptomycin and rifampicin. Panel a

shows the mean relative fitness (n = 4) and eRif.Strep for cultures

of Pseudomonas aeruginosa PAO1 grown across a range of concentra-

tions of rifampicin and streptomycin. Panel b shows shows eRif.Strep

plotted against expected fitness. The solid line is a linear regression of

y on x, the dashed lines give the 95% confidence interval about this

regression and the dotted line shows eRif.Strep = 0.
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this source of epistasis makes only a very minor contribu-

tion to epistasis at the scale of the entire genome. For

example, in an organism with N pathways of equal length,

the probability that two random mutations occur at

random in the same pathway is (1 ⁄ N)2. Instead, I think

that metabolic control theory could emerge as an impor-

tant tool for predicting epistasis in functionally linked

modules of genes, such as metabolic pathways and

regulatory networks. As I have emphasized throughout

this article, metabolic control theory need not only apply

to metabolic pathways; this is a general theory that applies

to any set of genes that act in a linear and sequential

manner. For example, most of the major classes of

antibiotics that are currently in clinical use target a

pathway that links gene expression (rifamycins) with

protein synthesis (amino-glycosides) and DNA replication

(fluoroquinolones). Metabolic control theory predicts that

targeting different components of this pathway is a poor

strategy for antimicrobial chemotherapy, because carrying

a costly resistance mutation in one enzyme involved in this

pathway will both increase phenotypic resistance to

antibiotics that target other enzymes in the pathway

(Fig. 3), and reduce the genetic cost associated with

acquiring costly resistance mutations in other enzymes

in this pathway (Fig. 2, Trindade et al., 2009).

A number of experimental methods have been devel-

oped for quantifying epistasis using meiotic recombination

or direct genetic manipulation (Kouyos et al., 2007). The

drawback of these methods is that they are all labour

intensive, and until recently large-scale genome-wide

scale studies of epistasis were only possible in viruses

(Sanjuan et al., 2004). Recent work in this area has focused

on measuring epistasis by creating pairwise combinations

of knock-out mutations (Elena & Lenski, 1997; Jasnos &

Korona, 2007). Although this approach has led to a

substantial increase in the power of experimental studies

in this area, it is associated with two important drawbacks.

First, transformation and recombination are both muta-

genic processes, and it is difficult to control for the potential

creation of undesired second site mutations when con-

structing strains carrying combinations of mutations.

Second, the approach is somewhat artificial, in that most

spontaneous deleterious mutations probably lead to only

partial loss of gene activity (Eyre-Walker & Keightley,

2007) and this study suggests that using knock-out

mutations is likely to bias these studies in favour of

detecting antagonistic epistasis (Fig. 2).

In this study, I have used an alternative method for

studying epistasis using pairwise combinations of gene

inhibitors, in this case antibiotics. Of course this approach

suffers from its own limitations, such as the potential for

off-target effects, chemical interactions between inhibi-

tors, and the limited number of genes that can currently

be targeted using specific inhibitors. In this case, these

potential difficulties do not seem to be important: I have

shown that phenotypic and genetic manipulations of

RNAP inhibition mimic each others’ effects and a

recently published study (Trindade et al., 2009) provides

direct evidence of antagonistic epistasis between delete-

rious mutations in RNAP and the 30S subunit of the

ribosome, providing a good validation of this method.

What is exciting about this approach is that technological

progress in the development of synthetic small molecule

inhibitors and siRNA have the potential to dramatically

increase the power of this method, so that it might be

possible in the future to use inhibitor–inhibitor interac-

tions to quantify epistasis at a genome-wide scale.
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Additional Supporting Information may be found in the

online version of this article:

Figure S1 Plotted points show the mean relative fitness

(± SEM, n = 4) of cultures of RNAP mutants (panels B to

F) and the wild-type strain (panel A) across a concen-

tration gradient of streptomycin.

Figure S2 This figure shows the average relative fitness

(± SEM) of colonies derived from single cells that were

exposed to 15 s of UV mutagenesis in strains carrying

deleterious mutations in RNAP (A455G, A455T and

C1550T) and a wild-type control (PAO1).
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