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• IBIS: systems biology group at INRIA/Université Joseph Fourier/CNRS 

– Analysis of bacterial regulatory networks by means of models and experiments 

– Biologists, computer scientists, mathematicians, physicists, … 
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http://ibis.inrialpes.fr 



Overview 

1. Gene regulatory networks in bacteria 

2. Deterministic modeling of gene regulatory networks 

3. Qualitative modeling of gene regulatory networks  

4. Stochastic modeling of gene regulatory networks 

5. Some current issues and perspectives 

 Towards integrated models of the cell: metabolism, gene expression, 

signalling 
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Towards integrated models of the cell 

• Introduction and motivation: what are integrated models of 

the cell and why are they necessary? 

 

• Examples of integrated models of the cell 

– Flux balance models 

– Kinetic models of cellular functions: towards whole-cell models 

– Resource allocation models 

 

• Conclusions and perspectives 
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Bacterial growth and metabolism 

• Bacteria are unicellular organisms geared towards 

growth and division 

 Escherichia coli cells have doubling times up to 20 min  

 

Stewart et al. (2005), PLoS Biol., 3(2): e45 

• Metabolism fuels growth by production of energy and building 

blocks for macromolecules, using nutriments from environment 

 ATP, amino acids, nucleotides, … 
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Bacterial growth and metabolism 

• Central carbon metabolism breaks 

down carbon sources for energy 

production and macromolecular 

synthesis 

 Glucose, acetate, lactose, … 

• Reactions are catalyzed by enzymes 

Fischer et al. (2004), Anal. Biochem., 325(2):308–16 
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Bacterial growth and metabolism 

• Bacterial metabolism is flexible, allowing cells to grow on 

different carbon sources 

Preferential utilisation: diauxic growth on glucose and lactose 

 

 

 

 

 

 

 

 

 

• Adaptation of bacterial physiology to different carbon sources 

 

 

 

Bettenbrock et al. (2006), J. Biol. Chem., 281(5):2578-84 
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• Coordination of adaptative responses of bacterial cell 

achieved by large and complex regulatory networks 
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Coordination of adaptative responses 

Kotte et al. (2010), Mol. Syst. Biol., 6: 355 

– Variety of molecular mechanisms… 

– … operating on different time-

scales… 

  

 

 



• Coordination of adaptative responses of bacterial cell 

achieved by large and complex regulatory networks 
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Coordination of adaptative responses 

Kotte et al. (2010), Mol. Syst. Biol., 6: 355 

– Variety of molecular mechanisms… 

– … operating on different time-

scales… 

– … involving numerous feedback 

loops across levels 

  

 

 



Towards integrated models of cell 

• Systems biology has addressed a huge variety of problems, 

using a large number of methods and formalisms 

• However, most studies focus on isolated, relatively small 

subsystems 

• Increasing awareness that for answering many interesting 

questions, one needs to consider integrated models of the 

cell: 

– Multiple levels of regulation: metabolism, gene expression, signal 

transduction,… 

– Multiple functions: motility, growth, replication, … 

– Explicit modelling of interactions with environment and ecosystem 

– … 
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Towards integrated models of the cell 

• Integrated models of the cell are emerging, but some 

interesting precursors exist 

Coarse-grained model of an E. coli cell 
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Domach et al. (1984), Biotechnol. Bioeng., 26(3):203-16 



Towards integrated models of the cell 

• Integrated models of the cell are emerging, but some 

interesting precursors exist 

• Several approaches for building integrated models of the 

cell: 

– Flux balance models 

– Kinetic models of cellular functions: towards whole-cell models 

– Resource allocation models 
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Kinetic modelling of metabolism 

• Kinetic models of form 

– Concentration variables 

– Reaction rates                             

– Stoichiometry matrix 

 

• Stochiometry matrix       describes structure of reaction 

network 

• Reaction rate     depends on concentrations of other cellular 

components 
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Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall 



Kinetic modelling of metabolism 

• Stochiometry matrix       describes structure of reaction 

network 

   Internal reactions and exchange reactions, reversible and irreversible 
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Schilling et al. (2000), J. Theor. Biol., 203(3):229-48 



Flux balance analysis (FBA) 

• Steady-state dynamics of metabolic network 

 

 

Steady-state reaction rates are called fluxes 

• Constraints on fluxes: upper and lower bounds 

 

– Bounds on fluxes derived from available information in literature, bounds 

may be infinite  

– For mathematical convenience, all fluxes must be positive  

– Reversible reaction modeled as pair of irreversible, positive fluxes 

 

 

 

 

 

 

 15 



Flux balance analysis (FBA) 

• Steady-state dynamics of metabolic network 

 

• Stoichiometry matrix and constraints define convex space of 

possible solutions: steady-state flux cone 
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Stelling (2004), Curr. Opin. Microbiol., 7:513-8 

– System of steady-state equations 

underdetermined: more reactions than 

concentrations variables. 

– Flux cone represents metabolic capabilities 

of network (possible flux distributions) 

 

 

 

 

 

 

 



Flux balance analysis (FBA) 

• Steady-state dynamics of metabolic network 

 

• Stoichiometry matrix and constraints define convex space of 

possible solutions: steady-state flux cone 

• FBA aims at finding solutions(s) maximising or minimising linear 

combination of fluxes: objective function 
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Stelling (2004), Curr. Opin. Microbiol., 7:513-8 

 

 

• Typical objective functions: biomass 

production, ATP production, … 

 

 

 

 



Flux balance analysis (FBA) 

• Steady-state dynamics of metabolic network 

 

• Stoichiometry matrix and constraints define convex space of 

possible solutions: steady-state flux cone 

• FBA aims at finding solutions(s) maximising or minimising linear 

combination of fluxes: objective function 
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• Constrained optimisation problem in mathematics 

– Use of LP (linear programming) for solving optimisation problem 

– COBRA toolbox for building and analysing FBA models 

 

 

 

 

 

 

Palsson (2006), Systems Biology: Properties of Reconstructed Networks, Cambridge University Press 

Orth et al. (2010), Nat. Biotechnol., 28(3):245-8 



Flux balance analysis (FBA) 

• Steady-state dynamics of metabolic network 

 

• Stoichiometry matrix and constraints define convex space of 

possible solutions: steady-state flux cone 
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Covert et al. (2003), J. Theor. Biol., 221(3):309-25 

• Refinement of flux cone using additional 

constraints 

 Thermodynamics, regulation of enzyme 

activity or expression, … 

 

 

 

 

 

 

 

  



Genome-scale models of E. coli metabolism 

• Genome-scale reconstruction of E. coli metabolism 

• FBA predictions of flux distributions maximising growth rate 

with acetate as carbon source 

– Projection of flux cone on acetate and oxygen uptake rates 

– Line of optimality indicates combinations of acetate and oxygen 

uptake rates yielding maximal growth rate 

– Experimental test of predicted line of optimality: experimental control 

of acetate uptake rate and measurement of oxygen uptake rate 
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Edwards et al. (2001), Nat. 

Biotechnol, 19(2):125-30 



• Genome-scale reconstruction of E. coli metabolism 

• FBA predictions of flux distributions maximising growth rate 

with acetate as carbon source 

• Good correspondence of FBA predictions and experimental 

data suggests that E. coli metabolic network is optimised to 

maximise growth rate on acetate  

Idem succinate 
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Edwards et al. (2001), Nat. 

Biotechnol, 19(2):125-30 

Genome-scale models of E. coli metabolism 



• Genome-scale reconstruction of E. coli metabolism 

• FBA predictions of flux distributions maximising growth rate 

with glucose as carbon source and fixed oxygen uptake rate 

• Effect on growth rate when deleting genes in central carbon 

metabolism  
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Edwards et al. (2000), Proc. Natl. Acad. Sci. USA, 97(10):5528-33 

Genome-scale models of E. coli metabolism 



• Genome-scale reconstruction of E. coli metabolism 

• FBA predictions of flux distributions maximising growth rate 

with glucose as carbon source and fixed oxygen uptake rate 
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• Good correspondence with data for gene deletions examined 

(86%), but less so for broader range of conditions (60%) 

    Observed growth rate lower than predicted growth rate 

• Not surprising: regulatory structure of wild-type cells may 

not be optimal in mutant backgrounds!   

 Regulatory structure selects wild-type flux distribution from possible 

flux distributions in flux cone 

• However, experiments show that E. coli undergoes adaptive 

evolution to achieve predicted optimal growth rate by FBA 

 

 

Ibarra et al. (2002), Nature, 420(6912):186-9 

Genome-scale models of E. coli metabolism 



• However, experiments show that E. coli undergoes adaptive 

evolution to achieve predicted optimal growth rate by FBA 

– Growth on glucose, glycerol, and α-ketoglutarate in various mutants 

– Measured substrate and oxygen uptake rates as input for 

computational predictions 
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Fong et al. (2004), Nat. Genet., 36(10):1056-8 

Genome-scale models of E. coli metabolism 



• Regulatory structure of wild-type cells may not be optimal in 

mutant backgrounds 
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• How do predictions 

change when including 

regulatory structure? 

• Genome-scale model of 

E. coli metabolism, 

including regulation of 

enzymatic genes 

 Boolean models relating 

expression of enzymatic 

genes to growth 

conditions 
Covert et al. (2004), Nature, 429(6987):92-6 

Genome-scale models of E. coli metabolism 



• Regulatory structure of wild-type cells may not be optimal in 

mutant backgrounds 
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• Genome-scale model of 

E. coli metabolism, 

including regulation of 

enzymatic genes 

• Prediction of growth rate 

in different mutants and 

growth conditions 

improved 

 60% vs 78% 

Covert et al. (2004), Nature, 429(6987):92-6 

Genome-scale models of E. coli metabolism 



• FBA models provide genome-scale picture of metabolism 

and yield experimentally-testable predictions 

– Predictions of flux distributions in different growth conditions and 

genetic backgrounds 

– Tool for metabolic engineering 

– In E. coli and other (less well-characterised) organisms 
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Feist and Palsson (2008), Nat. Biotechnol., 

26(6):659-67 

Conclusion FBA 



• But FBA has problems as well!  

– Practical question: which objective function works best for problem 

considered?  

– Fundamental question: what do microorganisms optimise? 

 

– Integration of regulatory mechanisms on metabolic and genetic 

level is not easy to achieve in FBA formalism 

 

– No predictions on dynamics of system 
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Conclusion FBA 

Schuetz et al. (2007), Mol. Syst. Biol., 3:119 



Kinetic modelling  

• Kinetic models of form 

– Concentration variables 

– Reaction rates                             

– Stoichiometry matrix 

 

• Stochiometry matrix       describes structure of reaction 

network 

• Reaction rate     depends on concentrations of other cellular 

components 
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Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall 



Kinetic modelling 

• Kinetic models of form 

– Concentration variables 

– Reaction rates                             

– Stoichiometry matrix 

 

• Stochiometry matrix       describes structure of reaction 

network 

• Reaction rate     depends on concentrations of other cellular 

components 

– Mass-action 

– Michaelis-Menten (reversible/irreversible) 
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Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall 



Kinetic modelling 

• Kinetic models of form 

– Concentration variables 

– Reaction rates                             

– Stoichiometry matrix 

 

• Stochiometry matrix       describes structure of reaction 

network 

• Reaction rate     depends on concentrations of other cellular 

components 

– Mass-action 

– Michaelis-Menten (reversible/irreversible) 

– Hill 

– Monod-Wyman-Changeux 
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Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall 



Kinetic modelling 

• Kinetic models of form 

– Concentration variables 

– Reaction rates                             

– Stoichiometry matrix 

 

• Stochiometry matrix       describes structure of reaction 

network 

• Reaction rate     depends on concentrations of other cellular 

components 

• In general, reaction rate functions are nonlinear and have 

many parameters, difficult to measure directly in vivo 

• Nevertheless, some examples of well-calibrated models! 
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Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall 



• Model of uptake of carbon sources (glucose, lactose, 

glycerol, …) by E. coli 

− Several dozens of equations and more than a hundred parameters, 

many of them unknown or unreliable 

− Mosty metabolic subsystem 

Bettenbrock et al. (2005), J. Biol. Chem., 281(5): 2578-2584 

Kinetic modelling of E. coli metabolism 
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• Estimation of parameter values from time-series data on 

metabolite concentrations in wild-type and mutant strains 

• Model has good predictive capability: growth kinetics well 

explained in variety of conditions 

 

Bettenbrock et al. (2005), J. Biol. Chem.,  281(5): 2578-2584 

Kinetic modelling of E. coli metabolism 
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Kinetic modelling of multi-scale networks 

• Metabolic networks are integrated with gene regulatory 

networks and signalling networks 

Complex multi-level system with feedback across different time-scales 

35 

• Fast response: adaptation of 

metabolic fluxes and metabolite 

pools (metabolic network) 

• Slow response: adaptation of 

enzyme and TF concentrations 

(gene regulatory network) 

• Feedback across genetic and 

metabolic levels: complex 

system on different time-scales 

Kotte et al. (2010), Mol. Syst. Biol., 6:355 
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Kinetic modelling of multi-scale networks 

• Kinetic model of form 

– Concentration variables 

– Reaction rates                             

– Stoichiometry matrix 

• Time-scale hierarchy motivates distinction between fast 

reaction rates                    and slow reaction rates              , 

such that 

 

 Typically, enzymatic and complex formation reactions are fast, 

protein synthesis and degradation are slow 
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• Separation of fast and slow reactions motivates a linear 

transformation                        of the variables 

 

    such that 

 

• We call                 slow variables and                      fast 

variables  

• Separation of fast and slow variables allows                      to be 

rewritten as coupled slow (genetic) and fast (metabolic) 

subsystems 

 

  

  

Kinetic modelling of multi-scale networks 
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• Separation of fast and slow reactions motivates a linear 

transformation                        of the variables 

 

    such that 

 

• We call                 slow variables and                      fast 

variables  

• Separation of fast and slow variables allows                      to be 

rewritten as coupled slow (genetic) and fast (metabolic) 

subsystems 

 Slow variables are typically total protein concentrations, fast variables 

metabolites and biochemical complexes 

 

  

Kinetic modelling of multi-scale networks 
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• Separation of fast and slow variables allows original model to 

be rewritten as coupled slow (genetic) and fast (metabolic) 

subsystems 

  

 

• Under quasi-steady-state approximation (QSSA), fast 

variables are assumed to instantly adapt to slow dynamics 

 

 

 

 

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall 

Kinetic modelling of multi-scale networks 



• Coupling of gene expression and metabolism into a single 

integrated model 

Kotte et al. (2010), Mol. Syst. Biol., 6: 355 

Multi-scale network of E. coli metabolism 
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• Kinetic model with 47 variables and 193 parameters 

 Parameters estimated from published experimental steady-state data 

sets for balanced growth on either glucose or acetate 

• How does cell sense depletion of carbon source, in order to 

adapt to uptake and assimilation of another carbon source? 

 

 

 

 

 

 

 

Multi-scale network of E. coli metabolism 
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Deutscher et al. (2006), Microbiol. Mol. Biol. 

Rev., 70(4):939-1031 

• Cell equiped with flux sensors  

Phosphorylation level of PTS is 

sensor of glucose uptake flux 

 

 

 

 

 

 



• Kinetic model with 47 variables and 193 parameters 

 Parameters estimated from published experimental steady-state data 

sets for balanced growth on either glucose or acetate 

• How does cell sense depletion of carbon source, in order to 

adapt to uptake and assimilation of another carbon source? 

• Cell equiped with flux sensors  

 

 

 

 

 

 

 

 

Multi-scale network of E. coli metabolism 

 42 

Bettenbrock et al. (2007), J. Bacteriol., 189(19):6891-6900  Deutscher et al. (2006), Microbiol. Mol. Biol. 

Rev., 70(4):939-1031 



• Kinetic model with 47 variables and 193 parameters 

 Parameters estimated from published experimental steady-state data 

sets for balanced growth on either glucose or acetate 

• Model analysis shows that adaptation to change in carbon 

source is achieved by distributed sensing of intracellular 

fluxes 

 

 

 

 

 

 

 

 

Kotte et al. (2010), Mol. Syst. Biol., 6: 355 

Multi-scale network of E. coli metabolism 
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• Adjustment of gene expression during growth transition 

involves specific flux sensors… 

• … but also global physiological effects 

– Physiological parameters with effect on transcription and translation 

– Availability of RNA polymerase and ribosome, size of metabolic pools,  

    gene copy number, … 

 

  

 

 

Gene expression and global physiology 

44 

Bremer and Dennis (1996), Escherichia Coli and Salmonella, ASM Press, 1553-69 



Gene expression and global physiology 

• Changes in global physiology important for control of enzyme 

synthesis 

 Global effect of gene expression machinery may in some situations 

dominate effect of more specific regulators 

45 

Berthoumieux et al. (2013), Mol. Syst. Biol., 9:634 



Gene expression and global physiology 

• Changes in global physiology important for control of enzyme 

synthesis 

 Global effect of gene expression machinery may in some situations 

dominate effect of more specific regulators 
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Berthoumieux et al. (2013), Mol. Syst. Biol., 9:634 



Whole-cell model M. genitalium 

• Metabolic networks are integrated with gene networks and 

signalling networks 

 Complex multi-level system with feedback across different time-

scales 

  

 

 

 

 

 

 

 

 Karr et al. (2012), Cell, 150(2): 389-401 
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Whole-cell model of 

Mycoplasma genitalium 



Whole-cell model M. genitalium 

• Whole-cell model represents huge modelling effort: 

– Whole-genome model including complete known metabolic, gene, and 

signalling networks 

 

 

 

 

 

 

 

 

 

– Variety of formalisms to model the 28 modules: FBA, kinetic ODE 

models, Boolean models, Markov chains, … 

– Cell cycle simulated for >100 cells, >30 mutants on 128-core machine 

  

 

 

Karr et al. (2012), Cell, 150(2): 389-401 
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Whole-cell model M. genitalium 

• Whole-cell simulation of M. genitalium cell cycle 
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Whole-cell model M. genitalium 

• Whole-cell simulations have provided new insights into 

robustness of cell-cycle duration 

 

 

 

 

 

 

 

Karr et al. (2012), Cell, 150(2): 389-401 

– High variability of replication 

initiation buffered by dNTP-

dependent duration of replication 

– This metabolic control of 

replication leads to decreased 

variability of cell-cycle length  
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Whole-cell model M. genitalium 

• Whole-cell simulations have provided new insights into 

global use and allocation of energy 

 

 

 

 

 

 

 

Karr et al. (2012), Cell, 150(2): 389-401 

– Transcription and translation most 

costly processes 

– Energy use largely independent of 

cell-cycle length 

– Usage of almost half of produced 

energy not accounted for!  
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Conclusions kinetic multi-scale models 

• Kinetic multi-scale models help analyse the dynamics of the 

interactions between multiple functions of the cell 

– Inclusion of different time-scales and different levels of regulation 

– Prediction of dynamics of complex nonlinear system with feedback 

loops across different levels 

– Models allow predictions to be confronted with experimental data and 

performance of thought experiments 

– Towards whole-cell models! 
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Conclusions kinetic multi-scale models 

• But kinetic models have problems as well! 

– Models difficult to construct, to debug and to maintain 

– Huge number of parameters, many unknown: parameter estimation 

is a difficult problem requiring many data of high quality 

– How do we extract fundamental insights on cell functioning from 

large, mechanistic models? 
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Conclusions kinetic multi-scale models 

• But kinetic models have problems as well! 

– Models difficult to construct, to debug and to maintain 

– Huge number of parameters, many unknown: parameter estimation 

is a difficult problem requiring many data of high quality 

– How do we extract fundamental insights on cell functioning from 

large, mechanistic models? 
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Kinetic modelling of metabolism 

• Kinetic models of form 

– Concentration variables 

– Reaction rates                             

– Stoichiometry matrix 

 

• Stochiometry matrix       describes structure of reaction 

network 

• Reaction rate     depends on concentrations of other cellular 

components 
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Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall 



Coarse-grained model of the cell 

• Minimal model of the cell based on coarse-grained 

description of growth-related processes 

Molecular pools and macroreactions  

 56 

Molenaar et al. (2009), Mol. Syst. Biol., 5:323 



Coarse-grained models of the cell 

• Question: how does cell allocate resources to different 

processes so as to optimize growth? 

Optimization problem similar to FBA 
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Molenaar et al. (2009), Mol. Syst. Biol., 5:323 



Coarse-grained models of the cell 

• Question: how does cell allocate resources to different 

processes so as to optimize growth? 

Optimization problem similar to FBA 
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Molenaar et al. (2009), Mol. Syst. Biol., 5:323 



Coarse-grained models of the cell 

• Question: how does cell allocate resources to different 

processes so as to optimize growth? 

Optimization problem similar to FBA 
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Molenaar et al. (2009), Mol. Syst. Biol., 5:323 



Coarse-grained models of the cell 

• Question: how does cell recognize time to trigger cell 

division? 

Kinetic model connecting cell cycle, metabolism, and growth in yeast 
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Spiesser et al. (2012), FEBS J., 279:4312-30 



Conclusions kinetic multi-scale models 

• Course-grained models help analyse the dynamics of the 

interactions between multiple functions of the cell 

– Minimal assumptions on molecular mechanisms at work 

– Models easier to calibrate and to explore 

– Focused on understanding qualitative trends rather than quantitative 

precision 

• However, models are usually valid only within limited range 

of conditions! 

 Implicit assumptions on environment 
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Conclusions 

• Adaptation of bacteria to their environment involves 

reorganisation of cellular physiology 

• Increasingly powerful methods have become available to 

experimentally quantify cellular adaptation 

Transcriptomics, proteomics, fluxomics, metabolomics, … 

• Adaptation process achieved by large and complex 

regulatory networks 

 Nonlinear dynamical systems with feedback across different time-

scales 

• Fundamental questions on network functioning remain 

unanswered and require integrated models of the cell 
Multiple functions, multiple regulatory levels, interactions with 

environment and ecosystem, … 
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Conclusions 

• Several approaches have been tried to develop and exploit 

integrated models of the cell 

– Flux balance models 

– Kinetic models of cellular functions: towards whole-cell models 

– Resource allocation models 

• Issues for development of such models: 

– Scope 

– Granularity 

– Mathematical methods 

– … 
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Conclusions 

• Several approaches have been tried to develop and exploit 

integrated models of the cell 

– Flux balance models 

– Kinetic models of cellular functions: towards whole-cell models 

– Resource allocation models 

• Issues for development of such models 

– Scope 

– Granularity 

– Mathematical methods 

– … 

• Most importantly, models are tools for a purpose: a different 

model for a different question 
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Most fundamental questions are still open 

• How does the multi-level feedback structure of the network 

give rise to dynamical properties of adaptive response?  
 Can we formulate general laws that explain a variety of phenomena on the 

molecular level? 

• How does repertoire of dynamical properties of the cell respond 

to challenges from ecosystem? 

Why have these properties been evolutionary conserved in environment? 

How do bacterial cells cooperate and evolve in consortia of microorganisms? 
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Internships in IBIS 

• Challenging problems for biologists, physicists, computer 

scientists, mathematicians, … 

• … in a multidisciplinary working environment 

• Contact: Hidde.deJong@inria.fr and ibis.inrialpes.fr 
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Courtesy Guillaume Baptist (2008) 

 



Merci ! 

www.inrialpes.fr/ibis 


