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Overview

Gene regulatory networks in bacteria
Deterministic modeling of gene regulatory networks
Qualitative modeling of gene regulatory networks

Stochastic modeling of gene regulatory networks
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Some current issues and perspectives

Towards integrated models of the cell: metabolism, gene expression,
signalling




Towards integrated models of the cell

 Introduction and motivation: what are integrated models of
the cell and why are they necessary?

« Examples of integrated models of the cell

— Flux balance models
— Kinetic models of cellular functions: towards whole-cell models

— Resource allocation models

« Conclusions and perspectives




Bacterial growth and metabolism

« Bacteria are unicellular organisms geared towards
growth and division
Escherichia coli cells have doubling times up to 20 min

Stewart et al. (2005), PLoS Biol., 3(2): €45

« Metabolism fuels growth by production of energy and building
blocks for macromolecules, using nutriments from environment

ATP, amino acids, nucleotides, ...
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Bacterial growth and metabolism
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Bacterial growth and metabolism

« Bacterial metabolism is flexible, allowing cells to grow on
different carbon sources

Preferential utilisation: diauxic growth on glucose and lactose
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Bettenbrock et al. (2006), J. Biol. Chem., 281(5):2578-84

« Adaptation of bacterial physiology to different carbon sources




Coordination of adaptative responses

» Coordination of adaptative responses of bacterial cell
achieved by large and complex regulatory networks

— Variety of molecular mechanisms... N

sources

— ... operating on different time-
scales...

Kotte et al. (2010), Mol. Syst. Biol., 6: 355




Coordination of adaptative responses

» Coordination of adaptative responses of bacterial cell
achieved by large and complex regulatory networks

— Variety of molecular mechanisms... N

— ... operating on different time- |
scales...

— ... Involving numerous feedback
loops across levels

Kotte et al. (2010), Mol. Syst. Biol., 6: 355




Towards integrated models of cell

« Systems biology has addressed a huge variety of problems,
using a large number of methods and formalisms

« However, most studies focus on isolated, relatively small
subsystems

* Increasing awareness that for answering many interesting
questions, one needs to consider integrated models of the
cell:

— Multiple levels of regulation: metabolism, gene expression, signal
transduction, ...

— Multiple functions: maotility, growth, replication, ...
— Explicit modelling of interactions with environment and ecosystem




Towards integrated models of the cell

* Integrated models of the cell are emerging, but some
Interesting precursors exist
Coarse-grained model of an E. coli cell
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FIGURE 7 An idealized sketch of the model of E. coli B/rA growing in a glucose-ammonium salts
medium with glucose or ammonia as the limiting nutriecnt. At the time shown the cell has just
completed a round of DNA replication and initiated cross-wall formation and a new round of DNA
replication. Solid lines indicate the flow of material, while dashed lines indicate flow of informarion.
Reproduced with permission from Shuler and Domach, 1983.

A, =ammonium ion M:, = messenger RNA
A, =glucose {and associated compounds in M, =DNA
the cell} M, =non-protein part of cell envelope (as-
W =waste products {CO,;, H,O, and ace- sume 16 7% peptidoglycan, 47.6%
tate) formed from energy metabolism lipid, and 35.7% polysaccharide)
during aerobic growth M = glycogen
P, = amino acids PG = ppGpp
P, = ribonucleotides E,, Ey = molecules mvolved in directing cross-
P, = deoxyribonucleotides wall formation and cell envelope
P, = cell envelope precursors synthesis—the approach used in the
M, = protein (both cytoplasmic and en- prototype model was used here but
velope) more recent experimental support s
D h t I 1 984 B h . M, =immature “stable™ RN? LN arailnble
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Towards integrated models of the cell

* Integrated models of the cell are emerging, but some
Interesting precursors exist

« Several approaches for building integrated models of the
cell:

— Flux balance models
— Kinetic models of cellular functions: towards whole-cell models
— Resource allocation models




Kinetic modelling of metabolism

» Kinetic models of form & = N v(x)
— Concentration variables = € R}

— Reactionrates v : R} — RY
— Stoichiometry matrix N € Z™*9

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall

« Stochiometry matrix N describes structure of reaction
network

 Reaction rate v depends on concentrations of other cellular
components




Kinetic modelling of metabolism
« Stochiometry matrix N describes structure of reaction

network
Internal reactions and exchange reactions, reversible and irreversible
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Flux balance analysis (FBA)

« Steady-state dynamics of metabolic network
Nuv=20

Steady-state reaction rates are called fluxes
« Constraints on fluxes: upper and lower bounds
ol <o <ot

— Bounds on fluxes derived from available information in literature, bounds
may be infinite

— For mathematical convenience, all fluxes must be positive v > 0

— Reversible reaction modeled as pair of irreversible, positive fluxes




Flux balance analysis (FBA)

« Steady-state dynamics of metabolic network
Nuv=20

« Stoichiometry matrix and constraints define convex space of
possible solutions: steady-state flux cone

— System of steady-state equations
underdetermined: more reactions than
concentrations variables.

— Flux cone represents metabolic capabilities
of network (possible flux distributions)

Flux 2

Flux 1
Stelling (2004), Curr. Opin. Microbiol., 7:513-8




Flux balance analysis (FBA)

« Steady-state dynamics of metabolic network
Nuv=20

« Stoichiometry matrix and constraints define convex space of
possible solutions: steady-state flux cone

 FBA aims at finding solutions(s) maximising or minimising linear
combination of fluxes: objective function

7 =cto c € R"

Flux 2

« Typical objective functions: biomass
production, ATP production, ...

Flux 1
Stelling (2004), Curr. Opin. Microbiol., 7:513-8




Flux balance analysis (FBA)

Steady-state dynamics of metabolic network
Nuv=20

« Stoichiometry matrix and constraints define convex space of
possible solutions: steady-state flux cone

 FBA aims at finding solutions(s) maximising or minimising linear
combination of fluxes: objective function

* Constrained optimisation problem in mathematics

— Use of LP (linear programming) for solving optimisation problem
— COBRA toolbox for building and analysing FBA models

Palsson (2006), Systems Biology: Properties of Reconstructed Networks, Cambridge University Press
Orth et al. (2010), Nat. Biotechnol., 28(3):245-8




Flux balance analysis (FBA)

Steady-state dynamics of metabolic network

Nv=0

Stoichiometry matrix and constraints define convex space of
possible solutions: steady-state flux cone

Refinement of flux cone using additional
constraints

Thermodynamics, regulation of enzyme
activity or expression, ...
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Genome-scale models of E. coli metabolism

« Genome-scale reconstruction of E. coli metabolism

* FBA predictions of flux distributions maximising growth rate
with acetate as carbon source

— Projection of flux cone on acetate and oxygen uptake rates

— Line of optimality indicates combinations of acetate and oxygen
uptake rates yielding maximal growth rate

— Experimental test of predicted line of optimality: experimental control
of acetate uptake rate and measurement of oxygen uptake rate
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Genome-scale models of E. coli metabolism

« Genome-scale reconstruction of E. coli metabolism

* FBA predictions of flux distributions maximising growth rate
with acetate as carbon source

* (Good correspondence of FBA predictions and experimental
data suggests that E. coli metabolic network is optimised to
maximise growth rate on acetate

ldem succinate
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Genome-scale models of E. coli metabolism

« Genome-scale reconstruction of E. coli metabolism

* FBA predictions of flux distributions maximising growth rate
with glucose as carbon source and fixed oxygen uptake rate

« Effect on growth rate when deleting genes in central carbon
metabolism

1.4 -

12

o 8 8 g
§g%§2§iiat%§iifﬁgs¥35%§&§ts!§ii§§§

-
i

0.8 - i}sgi

0.6 -

0.4 -
0.2 Q
%232232(

I).(IIJ

fba

znmmn/Z

Edwards et al. (2000), Proc. Natl. Acad. Sci. USA, 97(10):5528-33

- UNIVERSITE i ‘
I 6 - ‘ JOSEPH FOURIER
m‘- ‘SCTENCES TECHNOLOGE NEDECIVE




Genome-scale models of E. coli metabolism

« Genome-scale reconstruction of E. coli metabolism

* FBA predictions of flux distributions maximising growth rate
with glucose as carbon source and fixed oxygen uptake rate

* (Good correspondence with data for gene deletions examined
(86%), but less so for broader range of conditions (60%)

Observed growth rate lower than predicted growth rate

* Not surprising: regulatory structure of wild-type cells may
not be optimal in mutant backgrounds!

Regulatory structure selects wild-type flux distribution from possible
flux distributions in flux cone

 However, experiments show that E. coli undergoes adaptive
evolution to achieve predicted optimal growth rate by FBA

Ibarra et al. (2002), Nature, 420(6912):186-9 ‘




Genome-scale models of E. coli metabolism

 However, experiments show that E. coli undergoes adaptive
evolution to achieve predicted optimal growth rate by FBA
— Growth on glucose, glycerol, and a-ketoglutarate in various mutants

— Measured substrate and oxygen uptake rates as input for
computational predictions

T T T T
(1] 0.2 0.4 0.6 0.8 1
Predicted growth rate (1)

Fong et al. (2004), Nat. Genet., 36(10):1056-8




Genome-scale models of E. coli metabolism

« Regulatory structure of wild-type cells may not be optimal in
mutant backgrounds

 How do predictions
change when including
regulatory structure?

« Genome-scale model of
E. coli metabolism,
including regulation of
enzymatic genes

Boolean models relating
expression of enzymatic
genes to growth

conditions Covert et al. (2004), Nature, 429(6987):92-6
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Genome-scale models of E. coli metabolism

« Regulatory structure of wild-type cells may not be optimal in
mutant backgrounds

« Genome-scale model of
E. coli metabolism,
including regulation of
enzymatic genes

* Prediction of growth rate :
in different mutants and ¢, 8
growth conditions
improved

60% vs 78% Y lll\l IN“I\IWI

Covert et al. (2004), Nature, 429(6987):92-6
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Conclusion FBA

 FBA models provide genome-scale picture of metabolism
and yield experimentally-testable predictions

— Predictions of flux distributions in different growth conditions and
genetic backgrounds

— Tool for metabolic engineering
— In E. coli and other (less well-characterised) organisms
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Conclusion FBA

« But FBA has problems as well!
— Practical question: which objective function works best for problem
considered?
— Fundamental question: what do microorganisms optimise?
Schuetz et al. (2007), Mol. Syst. Biol., 3:119

— Integration of regulatory mechanisms on metabolic and genetic
level is not easy to achieve in FBA formalism

— No predictions on dynamics of system




Kinetic modelling

» Kinetic models of form & = N v(x)
— Concentration variables = € R}

— Reactionrates v : R} — RY
— Stoichiometry matrix N € Z™*9

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall

« Stochiometry matrix N describes structure of reaction
network

 Reaction rate v depends on concentrations of other cellular
components




Kinetic modelling

» Kinetic models of form & = N v(x)
— Concentration variables = € R}

n

— Reactionrates v : R} — RY

— Stoichiometry matrix N € Z™*9

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall

« Stochiometry matrix N describes structure of reaction
network

 Reaction rate v depends on concentrations of other cellular

components s <V 5
— Mass-action
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Kinetic modelling

» Kinetic models of form & = N v(x)
— Concentration variables = € R}

n

— Reactionrates v : R} — RY

— Stoichiometry matrix N € Z™*9

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall

« Stochiometry matrix N describes structure of reaction
network

 Reaction rate v depends on concentrations of other cellular
components

— Mass-action

— Michaelis-Menten (reversible/irreversible)
— Hill

— Monod-Wyman-Changeux



Kinetic modelling

» Kinetic models of form & = N v(x)
— Concentration variables = € R’}
— Reactionrates v : R} — RY

— Stoichiometry matrix N € Z™*9

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall

« Stochiometry matrix N describes structure of reaction
network

 Reaction rate v depends on concentrations of other cellular
components

* In general, reaction rate functions are nonlinear and have
many parameters, difficult to measure directly in vivo

* Nevertheless, some examples of well-calibrated models!




Kinetic modelling of E. coli metabolism

* Model of uptake of carbon sources (glucose, lactose,

glycerol, ...) by E. coli

— Several dozens of equations and more than a hundred parameters,

many of them unknown or unreliable
— Mosty metabolic subsystem
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Bettenbrock et al. (2005), J. Biol. Chem., 281(5): 2578-2584




Kinetic modelling of E. coli metabolism

Estimation of parameter values from time-series data on
metabolite concentrations in wild-type and mutant strains

Model has good predictive capability: growth kinetics well
explained in variety of conditions
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Bettenbrock et al. (2005), J. Biol. Chem., 281(5): 2578-2584




Kinetic modelling of multi-scale networks

 Metabolic networks are integrated with gene regulatory
networks and signalling networks
Complex multi-level system with feedback across different time-scales

{Changing) carbon

 Fast response: adaptation of
metabolic fluxes and metabolite
pools (metabolic network)

. /; ~ L ; & « Slow response: adaptatiop of
) b & enzyme and TF concentrations
= Gl (gene regulatory network)

b [ g  Feedback across genetic and
g metabolic levels: complex
=0 |1 system on different time-scales

uction

Protein Transcriptional




Kinetic modelling of multi-scale networks

» Kinetic model of form & = N v(x)
— Concentration variables * € RY
— Reactionrates v : Rl — R?
— Stoichiometry matrix N € Z™*4

* Time-scale hierarchy motivates distinction between fast
reaction rates v/ € R?P and slow reaction rates v5 € RP,
such that v = [ o]

Typically, enzymatic and complex formation reactions are fast,
protein synthesis and degradation are slow




Kinetic modelling of multi-scale networks

» Separation of fast and slow reactions motivates a linear
transformation 1' € Z" x Z"™ of the variables

x® N 0

+ We call ° € R? slow variables and z/ € R%™™ fast
variables

« Separation of fast and slow variables allows © = N v(x) to be
rewritten as coupled slow (genetic) and fast (metabolic)
subsystems

it = N¥vs(z%, z))

il = N¥ (2%, 2y + N ol (2%, )y = NT ol (2%, 2]

- e




Kinetic modelling of multi-scale networks

» Separation of fast and slow reactions motivates a linear
transformation 1' € Z" x Z"™ of the variables

x® N 0

We call 2* € R7 slow variables and z/ € R}™™ fast
variables

Separation of fast and slow variables allows £ = N v(x) to be
rewritten as coupled slow (genetic) and fast (metabolic)
subsystems

Slow variables are typically total protein concentrations, fast variables
metabolites and biochemical complexes




Kinetic modelling of multi-scale networks

« Separation of fast and slow variables allows original model to
be rewritten as coupled slow (genetic) and fast (metabolic)
subsystems

i = N*vs(2, 2))
il = N¥ 032, 2h) + N ol (0%, 2f) = NP ol (0%, 2]

* Under quasi-steady-state approximation (QSSA), fast
variables are assumed to instantly adapt to slow dynamics

il =0 = N ovl/(2%,27) =0

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall




Multi-scale network of E. coli metabolism

* Coupling of gene expression and metabolism into a single
integrated model = N o* (2%, )

N vl (25, 27) =0

(Changing) carbon
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Multi-scale network of E. coli metabolism

Kinetic model with 47 variables and 193 parameters

Parameters estimated from published experimental steady-state data
sets for balanced growth on either glucose or acetate

How does cell sense depletion of carbon source, in order to
adapt to uptake and assimilation of another carbon source?

Cell equiped with flux sensors

Phosphorylation level of PTS is
sensor of glucose uptake flux
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Multi-scale network of E. coli metabolism

Kinetic model with 47 variables and 193 parameters

Parameters estimated from published experimental steady-state data
sets for balanced growth on either glucose or acetate

How does cell sense depletion of carbon source, in order to
adapt to uptake and assimilation of another carbon source?

Cell equiped with flux sensors
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Multi-scale network of E. coli metabolism

« Kinetic model with 47 variables and 193 parameters
Parameters estimated from published experimental steady-state data
sets for balanced growth on either glucose or acetate

* Model analysis shows that adaptation to change in carbon

source is achieved by distributed sensing of intracellular
fluxes
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Kotte et al. (2010), Mol. Syst. Biol., 6: 355




Gene expression and global physiology

« Adjustment of gene expression during growth transition
involves specific flux sensors...

« ... but also global physiological effects

— Physiological parameters with effect on transcription and translation

— Availability of RNA polymerase and ribosome, size of metabolic pools,
gene CO py number’ e TABLE 3 Parameters pertaining to the macromolecular synthesis rates in exponentially growing E. coli B/r as a function of

growth rate at 37°C
At T (min) and |1 {doublings per h):
. Observed
Parameter Symbol Units 100 .60 .40 .30 7,24 parameter(s) Footnote
w06 u, 1.0 W 1.5 M, 2.0 M. 2.5
RMA polymera?ye protein/total o % 0.90 L10 1.30 1.45 1.55 op a
RNA polymerase molecules/cell  Np 107 RMAP/cell 1.5 2.8 5.0 8.0 114 Qo Po b
RNA polymerase activity B, 17 20 21 24 30 T3 Tis o G G 2 Np c
Active RNA polymerase per oell !‘; RNAP/cell 205 , 3
rifre
tal RN A synthesized
Active RNA polymerase W % 24 36 56 68 79 rilre e
synthesizing stable RNA i
rRNA chain elongatmn & Nuel./s 85 85 85 85 85 Indirect f
mRNA chain elongation Em ngc] /s 39 45 50 52 55 Indirect ﬁ
Rate of stable RNA synthe- rs 107 nucl/min/cell 3.0 9.9 29.0 66.4 132.5 Rc
sis/cell
Rate of mRMNA synthesis/cell Tm 10° nucl./min/cell 4.3 9.2 13.7 18.7 234 15 tilme i
ppGpp concentration pPGpp/M  pmol/O)] 55 38 22 15 10 ppGpp /M j
peGpp/P pmol/10-'aa 8.5 6.6 4.2 2.9 2.0 ‘i
r-Protein per total protein [ % 2.0 11.4 14.8 17.5 211 PM Rut
9 11 13.5 18.0 2L.6 I
Ribosome activity Br % 80 80 80 80 BO Ind]rect m
Peptide chain elongation ¢ aa ;esidues!s 12 16 18 20 21 Indirect H
Ribosomes/cell N 10; ribosomesjcell 6.8 13.5 26.3 45,1 720  Roffi [
tRINA/cell N: 107 tRNA/cell 63 125 244 419 669 P
rr genes/cell Nirn Avg no./cell 124 15.1 200 269 35.9 Y gq
r171 genes/genome Neend G Avg no./genome 7.9 8.2 8.6 9.0 25 C r
Initiation rate at rrn gene iren Initiations/min/gene 4 10 23 39 58 Nr, Neen H
Distance of ribosomes on Rum/Ny Nucl /ribosome 79 85 65 52 41 T s Gm s Ny t
mRNA

Bremer and Dennis (1996), Escherichia Coli and Salmonella, ASM Press, 1553-69
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Gene expression and global physiology

« Changes in global physiology important for control of enzyme
synthesis

Global effect of gene expression machinery may in some situations
dominate effect of more specific regulators

Physiological state

l i 1 l cAMP
T E S i f
v L ) v il P

pfis fis perp cip

| |
1 1
IR ' '
v 4 Y v
Fis regulon Crp regulon
115 operons 263 operons

pacs acs

Berthoumieux et al. (2013), Mol. Syst. Biol., 9:634




Gene expression and global physiology

« Changes in global physiology important for control of enzyme
synthesis

Global effect of gene expression machinery may in some situations
dominate effect of more specific regulators

B ap Physiological state
A I
cAMP

0.5 !
—_— ’ . ‘,“'J_“‘“I\
S 0 Ry 7 __",..' : pfis fis perp e '

¥ i

S !
g i

-0.5 v . é' v

prposS  mposS pacs acs

=1 -0.5 0 0.5 1

l0g(Pan/Pam) Berthoumieux et al. (2013), Mol. Syst. Biol., 9:634




Whole-cell model M. genitalium
* Metabolic networks are integrated with gene networks and

signalling networks
Complex multi-level system with feedback across different time-

oS

scales

External
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co modfication
RMA Ribosome ]
' : assembly Tefmégleomr\gﬁnelle
Protein
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Whole-cell model of
Mycoplasma genitalium
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Karr et al. (2012), Cell, 150(2): 389-401




Whole-cell model M. genitalium

* Whole-cell model represents huge modelling effort:

— Whole-genome model including complete known metabolic, gene, and
signalling networks

100% 900+ 1900+ 28
of genes publications parameters processes
| L | J
!

F 2
EE i &

Metabolome =P o Transcri ptome

|
Predicive  Novel _ Biological _ Rationa
redictive ovel lologica ationa
Karr et al. (2012), Ce”, 150(2) 389'401 (;apacity hypg[heses d|5;:)g\fery design

— Variety of formalisms to model the 28 modules: FBA, kinetic ODE
models, Boolean models, Markov chains, ...

— Cell cycle simulated for >100 cells, >30 mutants on 128-core machine




Whole-cell model M. genitalium

* Whole-cell simulation of M. genitalium cell cycle
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Whole-cell model M. genitalium

* Whole-cell simulations have provided new insights into
robustness of cell-cycle duration

. . - . . A c
— High variability of replication Replcaton inaton 8, | 4" -
. ng . ] Repl:gﬁte'grs EE ::;-.' ‘.
initiation buffered by dNTP- $. . 8¢ | i
. . . =2 _“E“‘g:,su o= .
dependent duration of replication ES | LI
— This metabolic control of . Duraton () © o Repteanch taton draton )
. . c  spReplication initiation Replication Cytokinesis — o
replication leads to decreased 85 S | i Bedmmingof rpichton
. ays 8 g E o] 8 T
variability of cell-cycle length 28, g et
zg 5 . Em. ) :“E:{'{..Z:{"_ .
é EE E %o Replication duration (h)
gz — .
581 % .':..-_,'.
g 20 a 4 ::':E'-:
8= S RN
gg % s :

8

4 0 4 8 12
Time (h) Replication initiation duration (h)

Karr et al. (2012), Cell, 150(2): 389-401




Whole-cell model M. genitalium

* Whole-cell simulations have provided new insights into
global use and allocation of energy

C Translation
e 9
ATP

_ . A

— Transcription and translation most % o
g 1ot GTP wuujw @
costly processes 3 gj e

: TON  NADG) NADPG) 7] e
— Energy use largely independent of § g g Ao
cell-cycle length 5 wel — : mgj e @

Time (h) —
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Karr et al. (2012), Cell, 150(2): 389-401
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Conclusions kinetic multi-scale models

 Kinetic multi-scale models help analyse the dynamics of the
interactions between multiple functions of the cell

Inclusion of different time-scales and different levels of regulation

Prediction of dynamics of complex nonlinear system with feedback
loops across different levels

Models allow predictions to be confronted with experimental data and
performance of thought experiments

Towards whole-cell models!




Conclusions kinetic multi-scale models

« But kinetic models have problems as well!

— Models difficult to construct, to debug and to maintain

— Huge number of parameters, many unknown: parameter estimation
is a difficult problem requiring many data of high quality

— How do we extract fundamental insights on cell functioning from
large, mechanistic models?




Conclusions kinetic multi-scale models

« But kinetic models have problems as well!

— Models difficult to construct, to debug and to maintain

— Huge number of parameters, many unknown: parameter estimation
is a difficult problem requiring many data of high quality

— How do we extract fundamental insights on cell functioning from
large, mechanistic models?

On Exactitude in Science

Jorge Luis Borges, Collected Fictions, translated by Andrew Hurley.

...In that Empire, the Art of Cartography attained such Perfection that the map of a
single Province occupied the entirety of a City, and the map of the Empire, the entirety
of a Province. In time, those Unconscionable Maps no longer satisfied, and the
Cartographers Guilds struck aMap of the Empire whose size was that of the Empirejand
which coincided point for point with it. The following Generations, who were not so
fond of the Study of Cartography as their Forebears had been, saw that that vast Map
was Useless, and not without some Pitilessness was it, that they delivered it up to the
Inclemencies of Sun and Winters. In the Deserts of the West, still today, there are
Tattered Ruins of that Map, inhabited by Animals and Beggars; in all the Land there is
no other Relic of the Disciplines of Geography.

—Suarez Miranda,Viajes de varones prudentes, Libro IV,Cap. XLV, Lerida, 1658

- UNIVERSITE ‘




Kinetic modelling of metabolism

» Kinetic models of form & = N v(x)
— Concentration variables = € R}

— Reactionrates v : R} — RY
— Stoichiometry matrix N € Z™*9

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall

« Stochiometry matrix N describes structure of reaction
network

 Reaction rate v depends on concentrations of other cellular
components




Coarse-grained model of the cell

« Minimal model of the cell based on coarse-grained
description of growth-related processes
Molecular pools and macroreactions

Lipid
biosynthesis pathway

pathway

Molenaar et al. (2009), Mol. Syst. Biol., 5:323




Coarse-grained models of the cell

 Question: how does cell allocate resources to different
processes so as to optimize growth?
Optimization problem similar to FBA

Lipid
biosynthesis pathway

pathway

Molenaar et al. (2009), Mol. Syst. Biol., 5:323




Coarse-grained models of the cell

 Question: how does cell allocate resources to different
processes so as to optimize growth?
Optimization problem similar to FBA
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Coarse-grained models of the cell

 Question: how does cell allocate resources to different
processes so as to optimize growth?
Optimization problem similar to FBA
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Coarse-grained models of the cell

* Question: how does cell recognize time to trigger cell
division?
Kinetic model connecting cell cycle, metabolism, and growth in yeast

Table 2. List of model eguations. The model consists of five
differential equations (1}—(5), one stochastic function (8 and five
algebraic equations (91-{13).

%=_kﬂ, F(MCLNT/2, 1) i

dch1/2
ar

= ky = mCLN1/2 « BF *%_ kypeChI/Z (2

dBf kg o
F:ﬁ;ma(m)amﬂﬁaﬂ aF (3}
dgam Kam qa A
T:kwma(m)anﬂaaﬂ *F 4}
dBAe Kag a n A
T=ﬁ;m*(m)xm3 =B v (5
mB1 = constant 16}
mB* = constant 7
_ [ mCLN 2t} + randint{0,1)  ifr =1
fimCIN1{2, 1) = { mCLN/2(1) otherwise &'
AA™ =k, » AR 8}
AN =k, + ABY (10}
Alf) = AT (1) + A%(1) (11
V(1) oc (A1) forx & {m, d} 1z

Vit) = Vvmit) + V(1) (13}




Conclusions kinetic multi-scale models

« Course-grained models help analyse the dynamics of the
interactions between multiple functions of the cell
— Minimal assumptions on molecular mechanisms at work
— Models easier to calibrate and to explore
— Focused on understanding qualitative trends rather than quantitative

precision

 However, models are usually valid only within limited range

of conditions!

Implicit assumptions on environment




Conclusions

Adaptation of bacteria to their environment involves
reorganisation of cellular physiology

Increasingly powerful methods have become available to
experimentally quantify cellular adaptation

Transcriptomics, proteomics, fluxomics, metabolomics, ...
Adaptation process achieved by large and complex
regulatory networks

Nonlinear dynamical systems with feedback across different time-
scales

Fundamental questions on network functioning remain
unanswered and require integrated models of the cell

Multiple functions, multiple regulatory levels, interactions with
environment and ecosystem, ...




Conclusions

* Several approaches have been tried to develop and exploit
integrated models of the cell
— Flux balance models

— Kinetic models of cellular functions: towards whole-cell models
— Resource allocation models

 |ssues for development of such models:
— Scope
— Granularity
— Mathematical methods




Conclusions

* Several approaches have been tried to develop and exploit
integrated models of the cell
— Flux balance models

— Kinetic models of cellular functions: towards whole-cell models
— Resource allocation models

 |ssues for development of such models
— Scope
— Granularity
— Mathematical methods

* Most importantly, models are tools for a purpose: a different
model for a different question




Most fundamental questions are still open

« How does the multi-level feedback structure of the network

give rise to dynamical properties of adaptive response?

Can we formulate general laws that explain a variety of phenomena on the
molecular level?

 How does repertoire of dynamical properties of the cell respond
to challenges from ecosystem?

Why have these properties been evolutionary conserved in environment?

How do bacterial cells cooperate and evolve in consortia of microorganisms?




Internships in IBIS

e Challenging problems for biologists, physicists, computer
scientists, mathematicians, ...

* ... In a multidisciplinary working environment
e Contact: Hidde.dedJong@inria.fr and ibis.inrialpes.fr

Courtesy Guillaume Baptist (2008)
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