

Modeling and simulation of gene regulatory networks 4

Hidde de Jong IBIS INRIA Grenoble – Rhône-Alpes Hidde.de-Jong@inria.fr

INRIA Grenoble - Rhône-Alpes and IBIS

- IBIS: systems biology group at INRIA/Université Joseph Fourier/CNRS
 - Analysis of bacterial regulatory networks by means of models and experiments
 - Biologists, computer scientists, mathematicians, physicists, ...

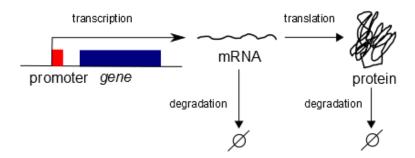
http://ibis.inrialpes.fr

Overview

- 1. Gene regulatory networks in bacteria
- 2. Deterministic modeling of gene regulatory networks
- 3. Qualitative modeling of gene regulatory networks
- 4. Stochastic modeling of gene regulatory networks
- 5. Some current issues and perspectives

Gene expression

- Typically, and simplifying quite a bit, gene expression in bacteria involves:
 - Transcription by RNAP (mRNA)
 - Translation by ribosomes (proteins)
 - Degradation of mRNA and protein



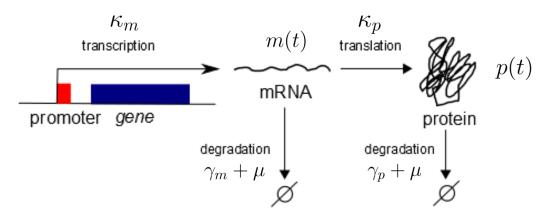
Modeling of gene regulatory networks

ODE model of gene expression, distinguishing transcription

and translation

$$\dot{m} = \kappa_m - (\gamma_m + \mu) m$$

$$\dot{p} = \kappa_p m - (\gamma_p + \mu) p$$



 $m(t) \ge 0$, concentration mRNA

 $p(t) \ge 0$, concentration protein

 κ_m , $\kappa_p > 0$, synthesis rate constants

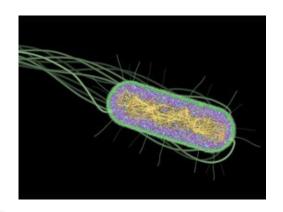
 γ_m , $\gamma_p > 0$, degradation rate constants

 $\mu \ge 0$, growth rate

- ODE models make abstraction of underlying biochemical reaction processes involved in gene expression that may not be warranted
 Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464
- Gene expression is stochastic instead of deterministic process
 - Underlying biochemical reactions are stochastic processes

Probability of reaction to occur depends on random encounters of

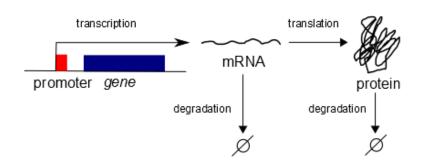
molecules in cell

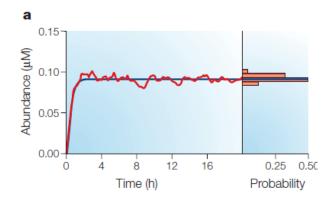


Goodsell (2010), *The Machinery of Life, Springer,* 2nd ed.

- ODE models make abstraction of underlying biochemical reaction processes involved in gene expression that may not be warranted
 Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464
- Gene expression is stochastic instead of deterministic process
 - Underlying biochemical reactions are stochastic processes
 - Probability of reaction to occur depends on random encounters of molecules in cell
- Discrete number of molecules of reaction species, instead of continuous concentrations
 - Some reactions species involved in gene expression have very low copy numbers (1-10)

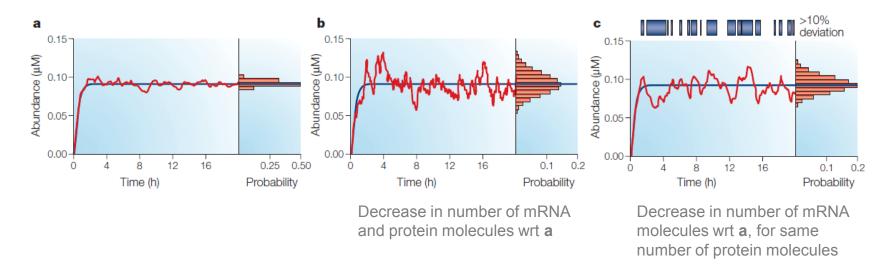
Stochasticity in gene expression leads to noise
 Fluctuations in mRNA and protein concentrations





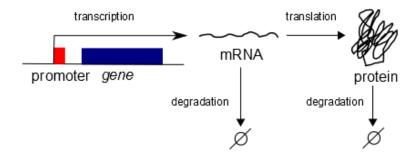
Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464

- Stochasticity in gene expression leads to noise Fluctuations in mRNA and protein concentrations
- Noise amplified by small number of molecules



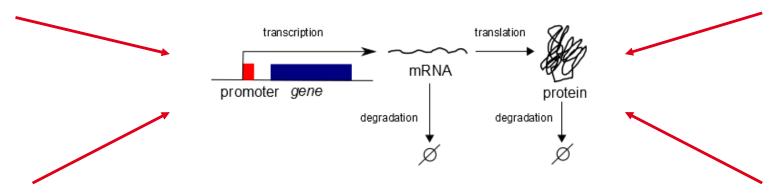
Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464

- Stochasticity in gene expression leads to noise
 Fluctuations in mRNA and protein concentrations
- Noise amplified by small number of molecules



- Different types of noise:
 - Intrinsic noise: fluctutations due to stochasticity of processes involved in gene expression (transcription, translation, ...)

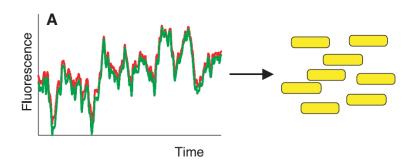
- Stochasticity in gene expression leads to noise
 Fluctuations in mRNA and protein concentrations
- Noise amplified by small number of molecules



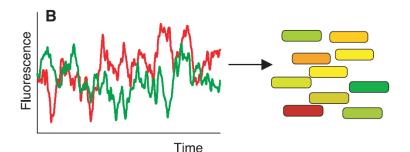
- Different types of noise:
 - Intrinsic noise: fluctutations due to stochasticity of processes involved in gene expression (transcription, translation, ...)
 - Extrinsic noise: fluctuations due to variability in external factors (temperature, ribosome availability, ...). Impact on rate constants.

Experimental discrimination between intrinsic and extrinsic noise

Expression in a single cell with two different reporter genes (*gfp* and *cfp*) controlled by same promoter



No intrinsic noise, so relative amount of both proteins is constant over time and across individual cells in population

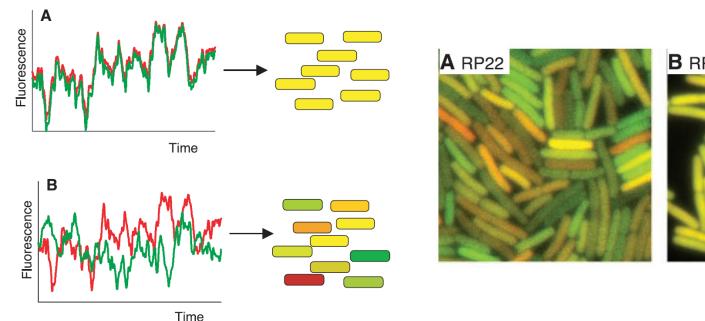


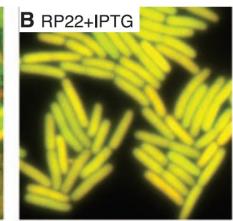
Intrinsic noise, so relative amount of both proteins varies over time and across individual cells in population

Elowitz et al. (2002), Science, 297(5584):1183-6

Experimental discrimination between intrinsic and extrinsic noise

Expression in a single cell with two different reporter genes controlled by same promoter

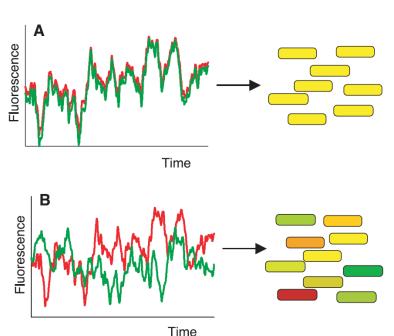


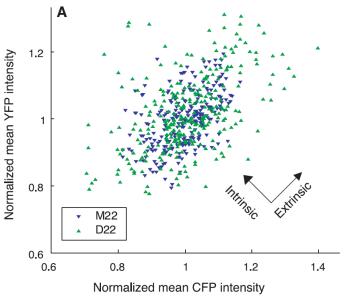


Elowitz et al. (2002), Science, 297(5584):1183-6

Experimental discrimination between intrinsic and extrinsic noise

Expression in a single cell with two different reporter genes controlled by same promoter





Elowitz et al. (2002), Science, 297(5584):1183-6

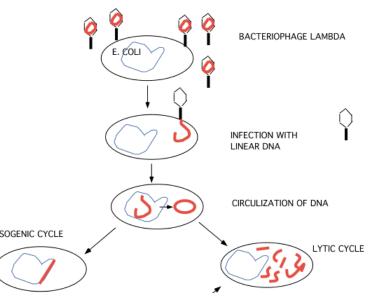
Major question is how cells both tolerate and exploit noise.

Rao *et al.* (2002), *Nature*, 420(6912):231-237 Raj and van Oudenaarden (2008), *Cell*, 135(2):216-26

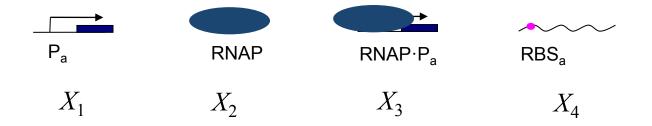
- Most cellular processes are robust to noise, despite stochasticity of underlying system of biochemical reactions
- Sometimes, intracellular noise drives population heterogeneity that may be beneficial for a species

After infection, only fraction of cells lyse

 ODE models are not suitable for studying origin and effects of noise



- Stochastic models of gene regulation are more appropriate
- Number of molecules of each species i at time-point t represented by discrete variable $X_i(t) \in \mathbb{N}$



- Stochastic models of gene regulation are more appropriate
- Number of molecules of each species i at time-point t represented by discrete variable $X_i(t) \in \mathbb{N}$
- Reactions between molecular species lead to change in state of system from X(t) to $X(t+\Delta t)$ over time-interval Δt , where $X = [X_1, \ldots, X_n]'$

Change of state by reaction k described by vector \boldsymbol{v}_k

Reaction 1:
$$v_1 = [-1 - 1 \ 10]$$

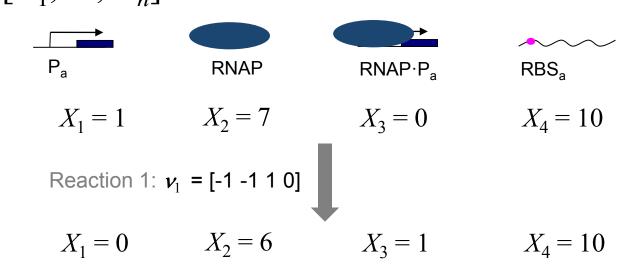
$$P_a + RNAP$$

$$RNAP \cdot P_a$$

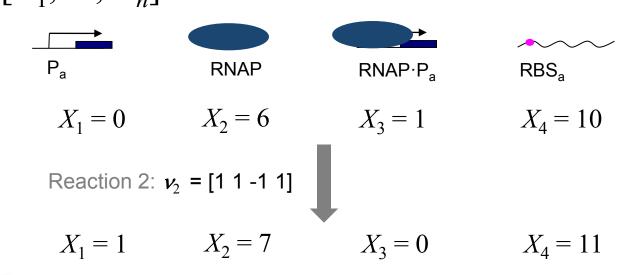
$$RNAP \cdot P_a + RBS_a$$

$$RNAP \cdot P_a + RBS_a$$

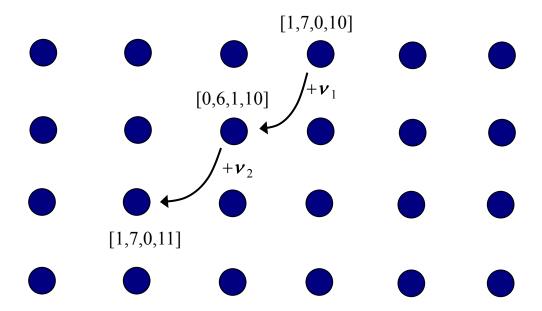
- Stochastic models of gene regulation are more appropriate
- Number of molecules of each species i at time-point t represented by discrete variable $X_i(t) \in \mathbb{N}$
- Reactions between molecular species lead to change in state of system from X(t) to $X(t+\Delta t)$ over time-interval Δt , where $X = [X_1, \ldots, X_n]'$



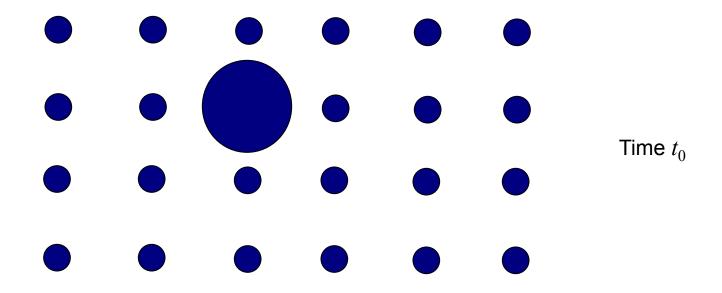
- Stochastic models of gene regulation are more appropriate
- Number of molecules of each species i at time-point t represented by discrete variable $X_i(t) \in \mathbb{N}$
- Reactions between molecular species lead to change in state of system from X(t) to $X(t+\Delta t)$ over time-interval Δt , where $X = [X_1, \ldots, X_n]'$



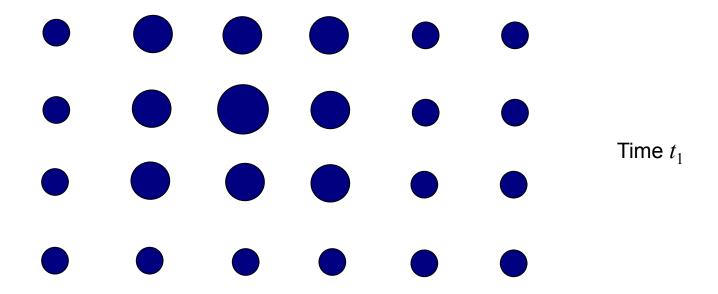
- Possible states are given by possible value combinations for variables: X = V, with $V = [V_1, ..., V_n]'$
- Transitions between states are given by possible reactions k



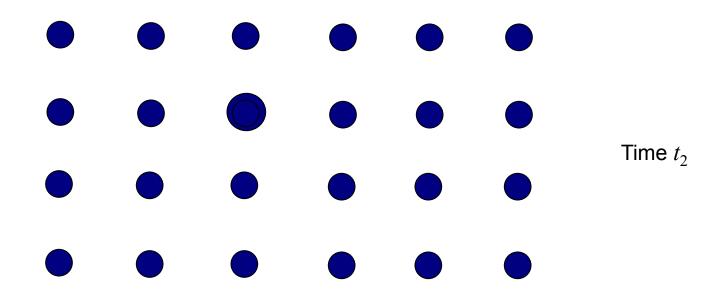
• Probability distribution p[X(t)=V] describes probability that at time-point t there are $V=[V_1,\ldots,V_n]'$ molecules



• Probability distribution p[X(t)=V] describes probability that at time-point t there are $V=[V_1,\ldots,V_n]'$ molecules



• Probability distribution p[X(t)=V] describes probability that at time-point t there are $V=[V_1,\ldots,V_n]'$ molecules



Stochastic master equation

• Evolution of probability distribution p[X(t)=V] given by

$$p[X(t+\Delta t)=V] = p[X(t)=V] (1 - \sum_{j=1}^{m} \alpha_j \Delta t) + \sum_{k=1}^{m} p[X(t)=V-v_k] \beta_k \Delta t$$

- m is the number of reactions that can occur in the system
- $\alpha_j \Delta t$ is the probability that reaction j will occur in $[t, t + \Delta t]$ given that X(t) = V
- $\beta_k \Delta t$ is the probability that reaction k will bring the system from $X(t) = V v_k$ to $X(t + \Delta t) = V$ in $[t, t + \Delta t]$

Van Kampen (1997), Stochastic Processes in Physics and Chemistry, Elsevier

Stochastic master equation

• For $\Delta t \rightarrow 0$ we obtain stochastic master equation

$$dp[X(t)=V] / dt = \sum_{j=1}^{m} p[X(t)=V-v_j] \beta_j - p[X(t)=V] \alpha_j$$

- Probabilities α_j , β_j are defined in terms of kinetic constants of reactions and number of reactant molecules
- Unimolecular reaction $j: S_1 \rightarrow \text{product}(s)$

$$\alpha_j = k_j X_1 (X_1 - 1)/2$$

Bimolecular reaction j : S₁ + S₂ → product(s)

$$\alpha_i = k_i X_1 X_2 / \Omega$$

 Ω : cell volume

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55

Stochastic master equation

• For $\Delta t \rightarrow 0$ we obtain stochastic master equation

$$dp[X(t)=V] / dt = \sum_{j=1}^{m} p[X(t)=V-v_j] \beta_j - p[X(t)=V] \alpha_j$$

- Probabilities α_j , β_j are defined in terms of kinetic constants of reactions and number of reactant molecules
- Analytical solution of master equation is not possible in most situations of practical interest

Van Kampen (1997), Stochastic Processes in Physics and Chemistry, Elsevier

- Analytical solution of master equations is not possible in most situations of practical interest
- Stochastic simulation predicts sequences of reactions that change state of system, starting from initial state $X(0) = V_0$
 - Stochastic simulation samples joint probability density function $p[\tau,j|X(t)=V]$

 τ = time until occurrence of next reaction

j = index of next reaction

- Interpretation: $p[\tau, j|X(t) = V]d\tau$ is probability, given X(t) = V, that next reaction will occur in $[t+\tau, t+\tau+d\tau]$ and is reaction j

Gillespie (2002), *J. Phys. Chem.*, 81(25): 2340-61 Gillespie (2007), *Annu. Rev. Phys. Chem.*, 58:35-55

- Analytical solution of master equations is not possible in most situations of practical interest
- Stochastic simulation generates sequences of reactions that change state of system, starting from initial state $X(0) = V_0$
 - Stochastic simulation samples joint probability density function $p[\tau,j|X(t)=V]$

 τ = time until occurrence of next reaction

j = index of next reaction

– Probability density function defined in terms of α_j , β_k (reaction constants)

Gillespie (2002), *J. Phys. Chem.*, 81(25): 2340-61 Gillespie (2007), *Annu. Rev. Phys. Chem.*, 58:35-55

- Analytical solution of master equations is not possible in most situations of practical interest
- Stochastic simulation generates sequences of reactions that change state of system, starting from initial state $X(0) = V_0$
- Stochastic simulation based on sampling of $p[\tau, j|X(t) = V]$ generates sequences in exact accordance with stochastic master equations
- Repeating stochastic simulation many times (Monte-Carlo procedure) yields approximation of probability distribution p(X(t)=V)

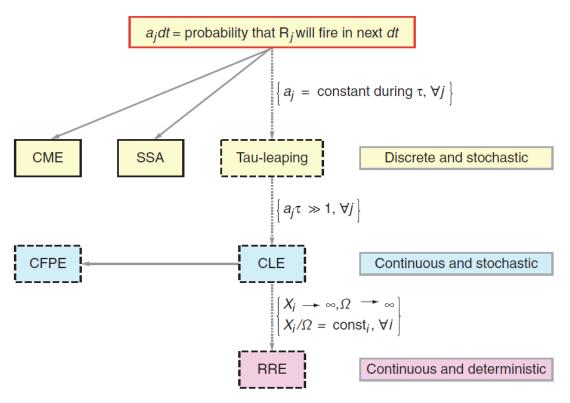
Gillespie (2002), *J. Phys. Chem.*, 81(25): 2340-61 Gillespie (2007), *Annu. Rev. Phys. Chem.*, 58:35-55

- Analytical solution of master equations is not possible in most situations of practical interest
- Stochastic simulation generates sequences of reactions that change state of system, starting from initial state $X(0) = V_0$
- Various approximations of basic stochastic simulation algorithm, trading exactness for simulation speed:
 - Tau-leaping approaches: choose τ such that α_j , β_j remain approximately constant over time interval (encapsulate several reactions in one step)
 - Quasi-steady-state approximations (distinguish between slow and fast reactions)
 - - ...

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55

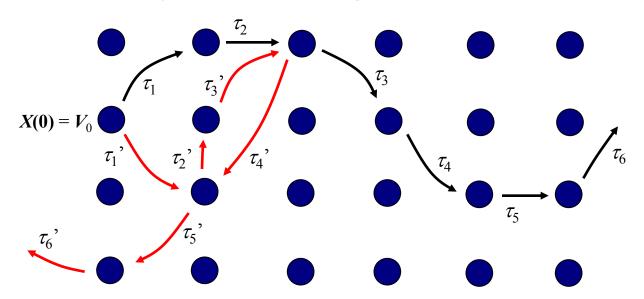
Relation of stochastic simulation models with other modeling

approaches



Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55

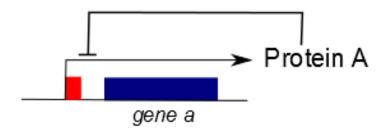
• Stochastic simulation generates sequences of reactions that change state of system, starting from initial state $X(0) = V_0$



 Stochastic simulation may lead to different dynamical behaviors starting from identical initial conditions: heterogeneity

Auto-inhibition network

 Auto-inhibition network consists of a single gene, coding for transcription regulator inhibiting expression of its own gene

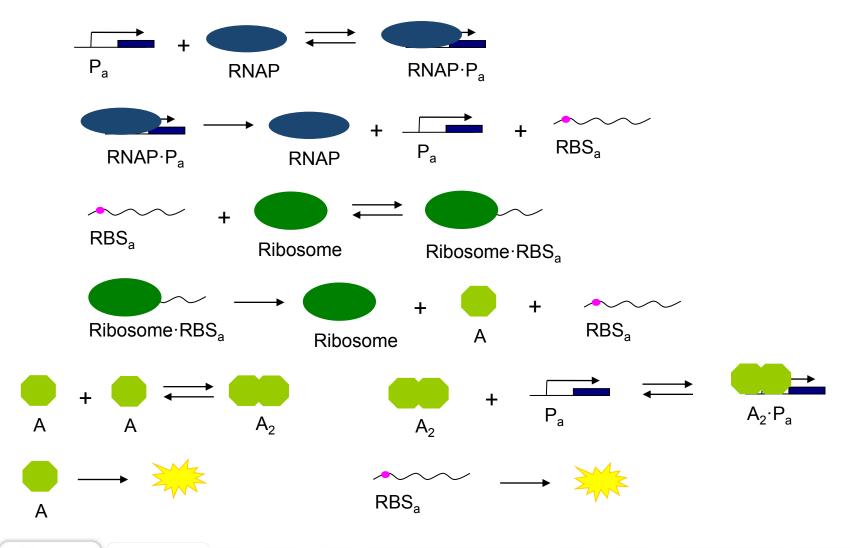


 Auto-inhibition is example of negative feedback, and frequently occurs in bacterial regulatory networks

Thieffry et al. (1998), BioEssays, 20(5):433-440

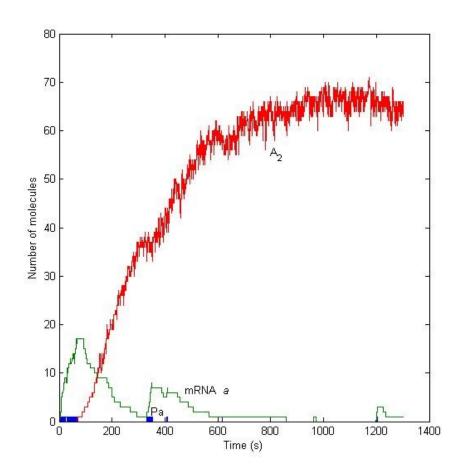
 Development of stochastic model requires list of species, reactions, and kinetic constants

Reactions and species



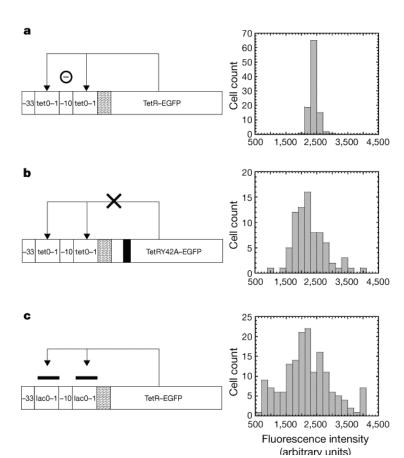
Stochastic simulation of auto-inhibition

Occurrence of fluctuations and bursts in gene expression



Auto-inhibition and noise reduction

Auto-inhibition reduces fluctuations in gene expression level

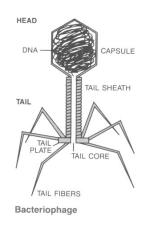


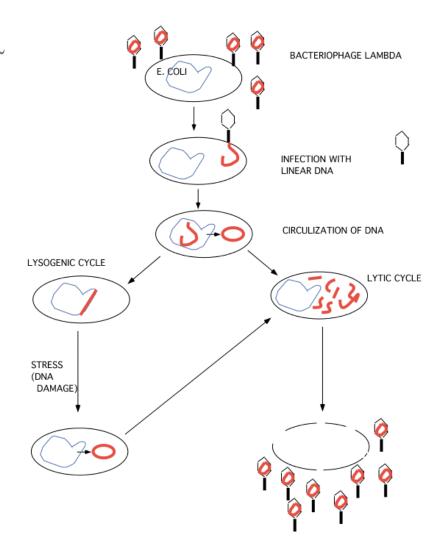
Becskei and Serrano (2000), Nature, 405(6785):590-591

Bacteriophage λ infection of *E. coli*

Response of *E. coli* to phage λ infection involves decision between alternative developmental pathways:
 lytic cycle and lysogeny

Ptashne (1997), A Genetic Switch: Phage λ and Higher Organisms, Cell Press





Stochastic analysis of phage λ infection

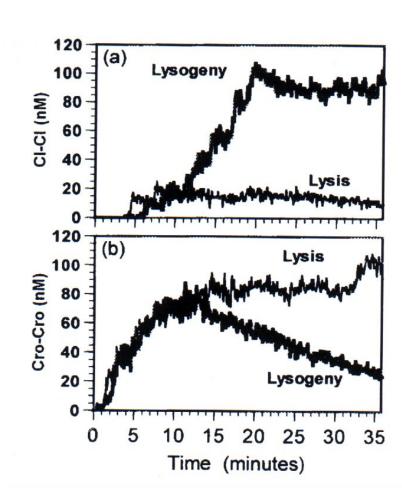
Stochastic model of λ
lysis-lysogeny
decision network

CII-CIII) deg <mark>k</mark>7 N cIII nucleotides from the cohesive end site (cos) cl TR1 T_{R2}

Arkin et al. (1998), Genetics, 149(4): 1633-1648

Stochastic analysis of phage \(\lambda \) infection

- Time evolution of Cro and Cl dimer concentrations
- Due to stochastic fluctuations, under identical conditions cells follow one or other pathway (with some probability)



Arkin et al. (1998), Genetics, 149(4): 1633-1648

Comparison with deterministic approach

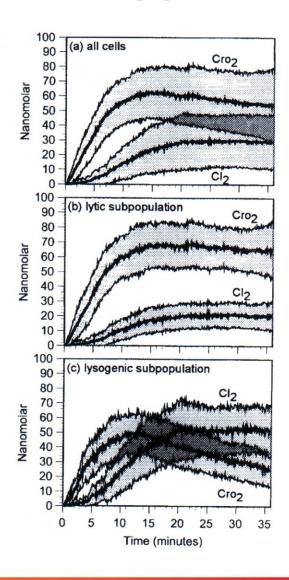
 Deterministic models can be seen as predicting average behavior of cell population

Gillespie. (2000), J. Chem. Phys., 113(1): 297-306

 Analysis of average behavior may obscure that one part of population chooses one pathway rather than another

Arkin et al. (1998), Genetics, 149(4): 1633-1648

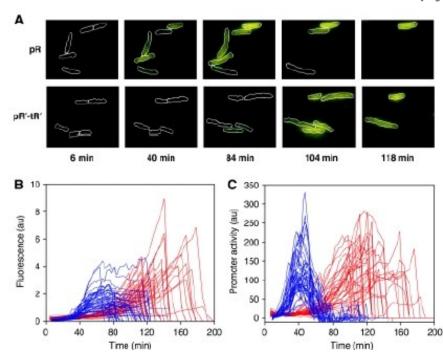
 However, under some conditions deterministic models yield good approximation



Measurements of phage λ infection

 New measurement techniques allow real-time and in-vivo monitoring of the execution of lytic and lysogenic pathways in individual cells

Use of reporter genes in combination with fluorescence microscopy

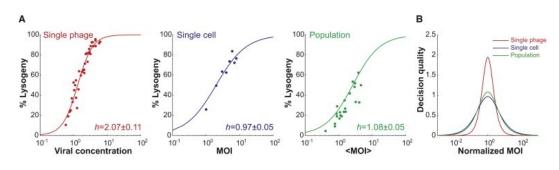


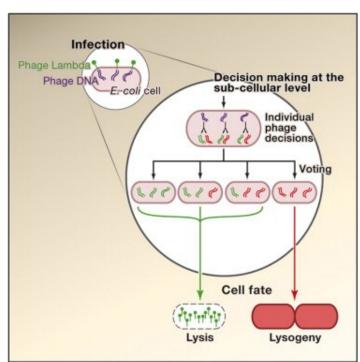
Amir et al. (2007), Mol. Syst. Biol., 3:71

Stochasticity and hidden variables

- Is observed population heterogeneity entirely due to stochastic dynamics of biochemical reactions?
- Hidden variables that deterministically set outcome of what seems noisy decision process

Deterministic voting of stochastic decision in single phages





Zeng et al. (2010), Cell, 141(4):682-91

Conclusions

- Stochastic models provide more realistic picture of gene expression
- Difficulty of stochastic models is that required information on regulatory mechanisms on molecular level usually not available
 - Reaction schemas and kinetic constants, necessary for generating values of parameters τ and ρ , are not or incompletely known
- Another difficulty is that stochastic simulation is computationally expensive
 - Large networks cannot currently be handled, but a host of extensions and approximations have been developed

Merci!

www.inrialpes.fr/ibis