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General problem
 Let us consider an arbitrary complex metabolic network
 Each reaction rate responds to changes in concentrations of 

substrates, products and some effectors:
 These kinetic laws are individual molecular properties

of each enzyme in the system

 Central questions of MCT:
 How does the system respond to changes 

in individual molecular properties (enzyme activities)?

 How does the system’s response depend on the network structure?

 How constrained are systemic sensitivities?
Do they show dependencies? 
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Steady-states and system definition
Metabolism concerns almost exclusively sustainable processing 
of chemical inputs into outputs such as biomass, energy, waste, 
etc.: it must reach a stable steady-state.
Therefore:

 The system must be open in order to reach 
a thermodynamically feasible non-trivial steady-state 
(i.e., with non-zero fluxes)

 Most reactions should be sensitive to both substrate and 
product concentrations, allowing for the 
balancing of metabolite production and consumption rates
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Intuitively?
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Quantitatively

Concentration control
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Quantitatively

Flux control
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Quantitatively

 Flux control by supply reaction 1 is proportional to sensitivity of 
demand reaction 2 to intermediate metabolite
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Quantitatively

 Concentration control by supply and demand of opposite signs
 Flux control by supply and demand add up to 1
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More generally
It is possible to derive a very general treatment of metabolic 
control theory for metabolic systems of arbitrary complexity.
C. Reder (1988) J. Theoret. Biol. 135:175-201

General definitions:
x = x(t,p) Molarity vector
X = X(p) Steady-state molarity vector: dx/dt = 0
v = v(x,p) Rate vector
J = J(p) Steady-state flux vector

= v(X(p),p)
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The stoichiometry matrix

Reactions in the network are expressed in the stoichiometry 
matrix N, whose columns contain the stoichiometric 
coefficients for each reaction

This matrix reflects the system’s structure

The stoichiometry matrix N is of maximal rank if and only if 
there is no conservation relationship constraining the different 
concentrations, which we will initially assume for simplicity

Otherwise it should be reduced to a matrix N0 with maximal 
rank in order to deal with independent variables:

N = L · N0
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Exercise: 2-component transduction
Write stoichiometry matrix for the following system:

Shinar et al, 2007, PNAS 104:19931-19935
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System evolution
The evolution of the system’s concentration vector x
is a simple function of the reaction rate vector v : 

dx/dt = N · v(x,p)

where p is a parameter vector, including enzyme activities.
The Jacobian is :

 = N · v/x

vi/xj are non-normalized ‘elasticities’.
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Steady-state flux constraints
 We are interested in analysing the steady-state of the system:

dx/dt = N · v(X(p), p) = 0
where X(p) is the vector of steady-state concentrations

 The steady-state introduces linear dependencies between
fluxes: 

N · J(p) = 0
Kirchhoff’s law for metabolic intermediates

 Therefore the flux vector J can be expressed
in a basis of Ker(N) (often termed K)
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Expressing systemic control
Differentiating the steady-state equation with respect to p:

 This equation relates systemic changes in steady-state 
concentrations X to changes in rates v

 The matrix  = - (N · v/x) · N 
contains all concentration control coefficients

N · v/x · X/p + N · v/p = 0

X/p = - (N · v/x)  · N · v/p
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Expressing systemic control
Differentiating the steady-state equation with respect to p:

 This equation relates systemic changes in steady-state 
concentrations X to changes in rates v

 The matrix  = - · N 
contains all concentration control coefficients

N · v/x · X/p + N · v/p = 0

X/p = -  · N · v/p



D. Kahn, Metabolic Control Theory 17

Flux control
 Let us calculate the resulting steady-state flux:

J = v(X(p), p)
and differentiate it with respect to p:

J/p = v/x · X/p + v/p
= (v/x ·  + I ) · v/p

 This equation relates systemic changes 
in steady-state fluxes J to changes in rates v

 The matrix  = I + v/x · 
contains all flux control coefficients
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Generalisation 
If the system shows conservation relationships
such as [ATP]+[ADP]+[AMP] = constant
we need to reduce N to a matrix N0 with maximal rank
corresponding to independent metabolite molarities x0 : 

N = L · N0

dx0/dt = N0 · v(x,p)
 = N0 · v/x · L
 = - L · · N0

 = I + v/x · 
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Normalised control coefficients

It is customary to express control in terms of dimension-less 
normalised control coefficients :

where the Ei parameters denote enzyme activities,
usually expressed in the same units as Ji (M.s-1).
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Scaling of fluxes with enzyme activities
The steady-state equation:

N · v(X,E) = 0
is invariant to an arbitrary scaling of activities E:

v(X,E) = v(X,E),  
Therefore the flux vector J is a 1st order homogeneous function
of enzyme activities E: 

J(E) = J(E),  
and concentrations X are 0-order homogeneous functions: 

X(E) = X(E), 






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Summation relationships

Summation theorems follow directly 
by derivation with respect to 

Flux control is distributed across the system
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Response coefficients
The linearised response of the system to a change in any 
parameter pi can be expressed from control coefficients and 
elasticity coefficients:

where

are normalised elasticity coefficients expressing the sensitivities 
of rates to parameter changes.

The Ri
j are called response coefficients
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Response coefficients

The response of the network depends on two factors:
- the sensitivities of enzymes to parameter pi (a molecular property)

- the control exerted by these enzymes on the flux (a systemic property)

One can similarly define response coefficients for metabolite 
concentrations:
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Connectivity relationships

 = - L · · N0

 · v/x · L = - L

 = I + v/x · 
 · v/x · L = 0



D. Kahn, Metabolic Control Theory 27

Connectivity relationships
When using normalised elasticities, connectivity relationships 
must be expressed with respect to independent variables xi

0 :

where is Kronecker’s symbol:
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Connectivity relationships

These relationships can be interpreted in terms of the internal
system’s response to perturbations of xi

0

They are necessary for the system’s stability:
The system counteracts fluctuations of xi

0

The rest of the system is insensitive to these fluctuations at 1st order
approximation 
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Summary
 The system’s response depends on both enzyme properties 

and network structure
 Fluxes are constrained to a low-dimension subspace because 

of metabolite pool balancing at steady-state
 Control of flux is generally distributed across the system

(no ‘bottleneck’)
 This is important for biotechnology and pharmacology!

 The system’s behaviour can be thought of under a general 
action-reaction principle:
 It usually buffers changes imposed externally

 It counteracts internal fluctuations
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Further reading
 Part 1 to 3.2 of Sauro (2004) Network dynamics

in Computational Systems Biology, Methods in Molecular 
Biology vol. 541, pp. 269-290, Humana Press

 Understanding the Control of Metabolism, by David Fell 
Portland Press, London, 1997
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For the practical course
 Familiarize yourself with the COPASI modeling environment 

http://www.copasi.org
 COPASI handbook 

 Be prepared to use your favourite mathematical package 
such as Scilab, Maple, R or Matlab




