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General problem

» Let us consider an arbitrary complex metabolic network

» Each reaction rate responds to changes in concentrations of
substrates, products and some effectors:
o These kinetic laws are individual molecular properties
of each enzyme in the system
» Central questions of MCT:

o How does the system respond to changes
In individual molecular properties (enzyme activities)?

o How does the system’s response depend on the network structure?

o How constrained are systemic sensitivities?
Do they show dependencies?
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Steady-states and system definition

Metabolism concerns almost exclusively sustainable processing
of chemical inputs into outputs such as biomass, energy, waste,
etc.: it must reach a stable steady-state.

Therefore:

» The system must be open in order to reach
a thermodynamically feasible non-trivial steady-state

(.e., with non-zero fluxes)

» Most reactions should be sensitive to both substrate and

product concentrations, allowing for the
balancing of metabolite production and consumption rates
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Intuitively?
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Quantitatively

Let E, be the activity of enzyme 2.

At steady-state:
v(X.E,) =V, (X,E,) g
ov ov ov -
—LAX =—2AX + —=AE,

OX OX OE, :
and at the limit AX
OX -1 . . .
— = If v, and E, are expressed in the same units
OE, OV, oV

OX  OX

Concentration control
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Quantitatively

J=v,(X,E,)
A = N2 ax Yo zE
OX oE,
and at the limit
oV
o ox
OE, OV, 0oV
OX  OX
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Quantitatively

If now we modulate E, we get similarly:

oV,
oX 1 A x

OE, oV, 0oV OE, oV, 0oV

OX  OX OX  OX

» Flux control by supply reaction 1 is proportional to sensitivity of
demand reaction 2 to intermediate metabolite
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Quantitatively

and we obtain the following remarkable summation relationships:
oX  0OX
+ =0
OE, OE,
0J N 0J _ 1
OE, OE,

» Concentration control by supply and demand of opposite signs

» Flux control by supply and demand add up to 1
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More generally

It is possible to derive a very general treatment of metabolic
control theory for metabolic systems of arbitrary complexity.
C. Reder (1988) J. Theoret. Biol. 135:175-201

General definitions:
X = X(t,p) Molarity vector
X = X(p) Steady-state molarity vector: dx/dt=0
vV =V(X,p) Rate vector
J =J(p) Steady-state flux vector

= V(X(p).p)
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The stoichiometry matrix

» Reactions in the network are expressed in the stoichiometry

matrix N, whose columns contain the stoichiometric
coefficients for each reaction

» This matrix reflects the system’s structure

> The stoichiometry matrix N is of maximal rank if and only if
there is no conservation relationship constraining the different
concentrations, which we will initially assume for simplicity

> Otherwise it should be reduced to a matrix N° with maximal
rank in order to deal with independent variables:

N =L NO
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Exercise: 2-component transduction

Write stoichiometry matrix for the following system:

a
X
ATP

Output

b
X+ATP — ° X -ATP 25X + ADP
-

&—
ks v
X-ATP +Yp " X-ATP-Y, —2 X -ATP +Y +P,

3

Shinar et al, 2007, PNAS 104:19931-19935
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System evolution

The evolution of the system’s concentration vector X
IS a simple function of the reaction rate vector V :

dx/dt =N - v(X,p)

where P Is a parameter vector, including enzyme activities.
The Jacobian is :

3 =N - ov/oX

0v;/0x; are non-normalized ‘elasticities’.
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Steady-state flux constraints

» We are interested in analysing the steady-state of the system:
dx/dt=N - v(X(p), p) =0
where X(p) is the vector of steady-state concentrations

» The steady-state introduces linear dependencies between
fluxes:

N-J(p)=0
Kirchhoff’'s law for metabolic intermediates

> Therefore the flux vector J can be expressed
in a basis of Ker(N) (often termed K)
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Expressing systemic control

Differentiating the steady-state equation with respect to p:

N - av/ox - dXIop + N - ovldp = 0

oXlop =- (N -ov/iox) 1 - N - ov/op

» This equation relates systemic changes in steady-state
concentrations X to changes in rates V

> The matrix I'=-(N-ov/iox)1-N
contains all concentration control coefficients
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Expressing systemic control

Differentiating the steady-state equation with respect to p:

N - av/ox - dXIop + N - ovldp = 0

oXlop=-31-N-ovlop

» This equation relates systemic changes in steady-state
concentrations X to changes in rates V

> The matrix r=-31.N
contains all concentration control coefficients
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Flux control

» Let us calculate the resulting steady-state flux:

J = v(X(p), p)
and differentiate it with respect to p:
0J/op = ovlox - oX/op + oviop
=(oviox-T"+ 1) - ovlop

» This equation relates systemic changes
in steady-state fluxes J to changes in rates Vv

> The matrix O=1+oviox - T
contains all flux control coefficients
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Generalisation

If the system shows conservation relationships

suchas [ATP]+[ADP]+[AMP] = constant
we need to reduce N to a matrix N9 with maximal rank

corresponding to independent metabolite molarities X9 :

N=L-NC
dx%dt = NO - v(x,p)
I =NO.ov/ox - L
I'=-L-31-NO
d=1+oviox -T
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Normalised control coefficients

It is customary to express control in terms of dimension-less
normalised control coefficients :

. E 8Jj oln Jj
Flux control Cl.=— —
J, oE; JInE
| E oX. 0dInX,
Concentration control CixJ = ] — ‘
X, ok, JInE

where the E; parameters denote enzyme activities,
usually expressed in the same units as J; (M.s™?).
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Scaling of fluxes with enzyme activities

The steady-state equation:
N-v(X,E)=0

IS invariant to an arbitrary scaling of activities E:
v(X,aE) = av(X,E), Va e R”

Therefore the flux vector J is a 1st order homogeneous function
of enzyme activities E:

J(aE) = ad(E), Va e R
and concentrations X are 0-order homogeneous functions:
X(aE) = X(E), Va e R
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Summation relationships

Summation theorems follow directly
by derivation with respect to o

oJ . .
For fluxes : E, 6—EJ = Jj — ZCiJ =1

Flux control is distributed across the system

X .
For molarities : ZCi =0
|
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Response coefficients

The linearised response of the system to a change in any

parameter P; can be expressed from control coefficients and
elasticity coefficients:

' P; 0J | P; 0J; ov P
R = T 2 o 2
i op; ik « 0P Tk

where & =&%
Vi OP,

are normalised elasticity coefficients expressing the sensitivities
of rates to parameter changes.

The RJ are called response coefficients
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Response coefficients

RI =Y C/é!
k

The response of the network depends on two factors:
- the sensitivities of enzymes to parameter P; (a molecular property)

- the control exerted by these enzymes on the flux (a systemic property)

One can similarly define response coefficients for metabolite
concentrations:

Rixj = ZCkagik
k
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Connectivity relationships

F=-L -31.NO
= I'-oviox-L=-L

d=I1+oviox-T
= ®-oviox-L =0
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Connectivity relationships

When using normalised elasticities, connectivity relationships
must be expressed with respect to independent variables x:

0
0
V, OX

J —_

E-

2

k

Y Clef =0
k

1ifi= ]

where &. is Kronecker’'s symbol: 0; =<5 . . .
! y ! {O ifi=]j
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Connectivity relationships

ZCkagik = _5ij
K

> Clef =0

k

These relationships can be interpreted in terms of the internal
system’s response to perturbations of XiO

They are necessary for the system’s stability:

The system counteracts fluctuations of X’
The rest of the system is insensitive to these fluctuations at 15t order
approximation
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Summary

» The system’s response depends on both enzyme properties
and network structure

» Fluxes are constrained to a low-dimension subspace because
of metabolite pool balancing at steady-state

» Control of flux is generally distributed across the system
(no ‘bottleneck’)

o This is important for biotechnology and pharmacology!

» The system’s behaviour can be thought of under a general
action-reaction principle:
It usually buffers changes imposed externally

o It counteracts internal fluctuations
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Further reading

» Part 1 to 3.2 of Sauro (2004) Network dynamics
iIn Computational Systems Biology, Methods in Molecular
Biology vol. 541, pp. 269-290, Humana Press

» Understanding the Control of Metabolism, by David Fell
Portland Press, London, 1997
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For the practical course

» Familiarize yourself with the COPASI modeling environment
http://www.copasi.org

« COPASI handbook

» Be prepared to use your favourite mathematical package
such as Scilab, Maple, R or Matlab

D. Kahn, Metabolic Control Theory





