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General problem
 Let us consider an arbitrary complex metabolic network
 Each reaction rate responds to changes in concentrations of 

substrates, products and some effectors:
 These kinetic laws are individual molecular properties

of each enzyme in the system

 Central questions of MCT:
 How does the system respond to changes 

in individual molecular properties (enzyme activities)?

 How does the system’s response depend on the network structure?

 How constrained are systemic sensitivities?
Do they show dependencies? 
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Steady-states and system definition
Metabolism concerns almost exclusively sustainable processing 
of chemical inputs into outputs such as biomass, energy, waste, 
etc.: it must reach a stable steady-state.
Therefore:

 The system must be open in order to reach 
a thermodynamically feasible non-trivial steady-state 
(i.e., with non-zero fluxes)

 Most reactions should be sensitive to both substrate and 
product concentrations, allowing for the 
balancing of metabolite production and consumption rates
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Intuitively?
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Quantitatively

Concentration control
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Quantitatively

Flux control
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Quantitatively

 Flux control by supply reaction 1 is proportional to sensitivity of 
demand reaction 2 to intermediate metabolite
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Quantitatively

 Concentration control by supply and demand of opposite signs
 Flux control by supply and demand add up to 1
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More generally
It is possible to derive a very general treatment of metabolic 
control theory for metabolic systems of arbitrary complexity.
C. Reder (1988) J. Theoret. Biol. 135:175-201

General definitions:
x = x(t,p) Molarity vector
X = X(p) Steady-state molarity vector: dx/dt = 0
v = v(x,p) Rate vector
J = J(p) Steady-state flux vector

= v(X(p),p)
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The stoichiometry matrix

Reactions in the network are expressed in the stoichiometry 
matrix N, whose columns contain the stoichiometric 
coefficients for each reaction

This matrix reflects the system’s structure

The stoichiometry matrix N is of maximal rank if and only if 
there is no conservation relationship constraining the different 
concentrations, which we will initially assume for simplicity

Otherwise it should be reduced to a matrix N0 with maximal 
rank in order to deal with independent variables:

N = L · N0



D. Kahn, Metabolic Control Theory

Exercise: 2-component transduction
Write stoichiometry matrix for the following system:

Shinar et al, 2007, PNAS 104:19931-19935
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System evolution
The evolution of the system’s concentration vector x
is a simple function of the reaction rate vector v : 

dx/dt = N · v(x,p)

where p is a parameter vector, including enzyme activities.
The Jacobian is :

 = N · v/x

vi/xj are non-normalized ‘elasticities’.
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Steady-state flux constraints
 We are interested in analysing the steady-state of the system:

dx/dt = N · v(X(p), p) = 0
where X(p) is the vector of steady-state concentrations

 The steady-state introduces linear dependencies between
fluxes: 

N · J(p) = 0
Kirchhoff’s law for metabolic intermediates

 Therefore the flux vector J can be expressed
in a basis of Ker(N) (often termed K)



D. Kahn, Metabolic Control Theory 15

Expressing systemic control
Differentiating the steady-state equation with respect to p:

 This equation relates systemic changes in steady-state 
concentrations X to changes in rates v

 The matrix  = - (N · v/x) · N 
contains all concentration control coefficients

N · v/x · X/p + N · v/p = 0

X/p = - (N · v/x)  · N · v/p
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Expressing systemic control
Differentiating the steady-state equation with respect to p:

 This equation relates systemic changes in steady-state 
concentrations X to changes in rates v

 The matrix  = - · N 
contains all concentration control coefficients

N · v/x · X/p + N · v/p = 0

X/p = -  · N · v/p
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Flux control
 Let us calculate the resulting steady-state flux:

J = v(X(p), p)
and differentiate it with respect to p:

J/p = v/x · X/p + v/p
= (v/x ·  + I ) · v/p

 This equation relates systemic changes 
in steady-state fluxes J to changes in rates v

 The matrix  = I + v/x · 
contains all flux control coefficients
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Generalisation 
If the system shows conservation relationships
such as [ATP]+[ADP]+[AMP] = constant
we need to reduce N to a matrix N0 with maximal rank
corresponding to independent metabolite molarities x0 : 

N = L · N0

dx0/dt = N0 · v(x,p)
 = N0 · v/x · L
 = - L · · N0

 = I + v/x · 
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Normalised control coefficients

It is customary to express control in terms of dimension-less 
normalised control coefficients :

where the Ei parameters denote enzyme activities,
usually expressed in the same units as Ji (M.s-1).
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Scaling of fluxes with enzyme activities
The steady-state equation:

N · v(X,E) = 0
is invariant to an arbitrary scaling of activities E:

v(X,E) = v(X,E),  
Therefore the flux vector J is a 1st order homogeneous function
of enzyme activities E: 

J(E) = J(E),  
and concentrations X are 0-order homogeneous functions: 

X(E) = X(E), 
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Summation relationships

Summation theorems follow directly 
by derivation with respect to 

Flux control is distributed across the system
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Response coefficients
The linearised response of the system to a change in any 
parameter pi can be expressed from control coefficients and 
elasticity coefficients:

where

are normalised elasticity coefficients expressing the sensitivities 
of rates to parameter changes.

The Ri
j are called response coefficients
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Response coefficients

The response of the network depends on two factors:
- the sensitivities of enzymes to parameter pi (a molecular property)

- the control exerted by these enzymes on the flux (a systemic property)

One can similarly define response coefficients for metabolite 
concentrations:
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Connectivity relationships

 = - L · · N0

 · v/x · L = - L

 = I + v/x · 
 · v/x · L = 0



D. Kahn, Metabolic Control Theory 27

Connectivity relationships
When using normalised elasticities, connectivity relationships 
must be expressed with respect to independent variables xi

0 :

where is Kronecker’s symbol:
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Connectivity relationships

These relationships can be interpreted in terms of the internal
system’s response to perturbations of xi

0

They are necessary for the system’s stability:
The system counteracts fluctuations of xi

0

The rest of the system is insensitive to these fluctuations at 1st order
approximation 
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Summary
 The system’s response depends on both enzyme properties 

and network structure
 Fluxes are constrained to a low-dimension subspace because 

of metabolite pool balancing at steady-state
 Control of flux is generally distributed across the system

(no ‘bottleneck’)
 This is important for biotechnology and pharmacology!

 The system’s behaviour can be thought of under a general 
action-reaction principle:
 It usually buffers changes imposed externally

 It counteracts internal fluctuations
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Further reading
 Part 1 to 3.2 of Sauro (2004) Network dynamics

in Computational Systems Biology, Methods in Molecular 
Biology vol. 541, pp. 269-290, Humana Press

 Understanding the Control of Metabolism, by David Fell 
Portland Press, London, 1997
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For the practical course
 Familiarize yourself with the COPASI modeling environment 

http://www.copasi.org
 COPASI handbook 

 Be prepared to use your favourite mathematical package 
such as Scilab, Maple, R or Matlab




