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Abstract

Mathematical modeling of biological processes provides deep insights into complex cellular
systems. While quantitative and continuous models such as differential equations have been
widely used, their use is obstructed in systems wherein the knowledge of mechanistic details
and kinetic parameters is scarce. On the other hand, a wealth of molecular level qualitative
data on individual components and interactions can be obtained from the experimental
literature and high-throughput technologies, making qualitative approaches such as Boolean
network modeling extremely useful. In this paper, we build on our research to provide a
methodology overview of Boolean modeling in systems biology, including Boolean dynamic
modeling of cellular networks, attractor analysis of Boolean dynamic models, as well as
inferring biological regulatory mechanisms from high-throughput data using Boolean models.
We finally demonstrate how Boolean models can be applied to perform the structural analysis
of cellular networks. This overview aims to acquaint life science researchers with the basic
steps of Boolean modeling and its applications in several areas of systems biology.

1. Introduction

Systems biology aims to elucidate how complex behaviors
of biological systems emerge from the properties of the
components and interactions in the systems. It uses a
combination of experimental techniques and computational
approaches to gain global insights into complex biological
systems. The experimental techniques employed in systems
biology tend to have high-throughput capabilities, and
are thus able to determine the abundance or activity of
numerous components at the same time. For example, the
abundance of mRNA transcripts of thousands of genes can be
measured by microarrays [19] or RNA-seq [66]. Quantitative
protein concentrations and post-translational modifications
can be determined by proteomics and phosphoproteomics
studies conducted through mass spectrometry (MS) [7069]
or two-dimensional (2D) gels [32, 105]. Metabolomic
profiles generated by gas chromatography (GC)-MS or liquid
chromatography (LC)-MS can measure the composition and
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concentration of both targeted and untargeted metabolites
[50, 54]. There are also high-throughput experiments that can
detect the interactions among components such as protein—
protein interactions [102], transcriptional regulations (protein—
DNA interactions) [56, 39] and genetic interactions [95]. In
addition to high-throughput assays, small-scale experiments
that study fewer components and interactions involved in
specific biological processes provide high-quality and reliable
focused knowledge for biological systems [15, 51]. Taking
drought-induced signaling in plants as an example, numerous
small-scale experiments performed over decades generated an
abundance of individual components and causal interactions
that mediate this signaling in guard cells. Such information
was then assembled into a guard cell abscisic acid (ABA)
signal transduction network [51].

Experimental data from high-throughput technologies and
small-scale studies provide a rich source for understanding
the system-level mechanisms of biological processes [72].
However, a complement of computational and modeling
approaches is necessary to obtain mechanistic insights from
the data and generate testable hypotheses. Computational
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methods that have been used in systems biology can be
classified into top-down methods and bottom-up methods
[88]. Top-down methods such as statistical analyses and
static network models are applied to high-throughput
omics data and aim to decipher the organization of the
underlying systems and mine information specific to a
biological process [88, 47, 5]. Methods from this class
do not require kinetic parameters and can be applied to
the analysis of genome-scale data with tens of thousands
of components or interactions to obtain coarse-grained
knowledge about biological systems. Bottom-up methods
model how interacting components such as genes, proteins and
metabolites achieve the dynamic behaviors of cellular systems.
This class of methods usually starts with hypotheses of
biological mechanisms generated from individual small-scale
experiments. Continuous dynamic modeling, the most widely
used bottom-up method [88, 10, 48], requires sufficient
mechanistic details and kinetic parameters such as synthesis
and degradation rates, making it practical on systems with
only tens of components or less. Discrete dynamic modeling
such as Boolean network models [9, 12, 91], multi-valued
logical models [11, 64] and Petri nets [22, 76], does not
require kinetic parameters and is able to provide qualitative
dynamic descriptions of system behaviors. These approaches
can be employed for systems with hundreds of components
and have been increasingly used in modeling biological
networks [81, 82, 84, 85].

Boolean network models, which were initially proposed
as prototypical models of genetic regulatory networks
[49, 94], are a special case of discrete dynamic models.
A Boolean network consists of a set of nodes whose state
is binary and is determined by other nodes in the network
through Boolean functions. In terms of complexity, Boolean
networks lie between static network models and continuous
dynamic models [47], making them a tractable and powerful
approach to modeling large-scale biological systems. After
assembling individual components and regulatory interactions
involved in a system into a coherent network representation,
Boolean models can be used to describe the qualitative
temporal behavior of the system and to understand how
perturbations may alter its behaviors. They also lead to
predictive testable hypotheses which are especially valuable
in poorly understood large-scale systems [12, 38]. Boolean
networks have been successfully applied in modeling many
gene regulatory and signaling networks in a variety of
organisms [59, 92, 103, 98, 8, 78], and have been reviewed
in several survey articles [100, 65, 9, 12]. In addition, Boolean
networks have been used as models in reverse engineering of
biological networks, e.g., to infer regulatory interactions and
signaling pathways from gene expression or proteomics data
[57,79, 80].

Here, we provide a methodology overview of Boolean
modeling in systems biology and illustrate it using examples
from our research. In section 2, we describe the main
steps of dynamic modeling of cellular networks and their
implementations, from construction of the network diagram
to the generation of novel hypotheses. Section 3 presents the
methodologies developed for a crucial modeling step, namely

analysis of the possible long-term behaviors (attractors) of
the system. Various applications of Boolean models show
that they are useful both as a top-down method and as a
bottom-up method in understanding system-level mechanisms
of biological processes. Thus in section 4 we review methods
for reverse engineering of biological regulatory networks
using Boolean models. We end by demonstrating in section 5
how Boolean models can be employed for functional (input—
output) analysis of cellular networks without the necessity of
performing dynamic simulation.

2. Boolean dynamic modeling of cellular networks

A Boolean variable assumes only two values (0 and 1)
corresponding to the logic values FALSE and TRUE. When
representing the state of a biological entity by a binary
variable, the two states are usually referred to as OFF and
ON. A Boolean function with k variables is a mapping B:
{0,1}*~{0,1} from the set of all k-tuples over {0, 1} to
a binary output. This function describes how to determine
a Boolean-valued output based on certain logical operations
from k binary inputs [17]. The basic logical operations include
AND, OR and NOT. For example, D = (A OR B) AND NOT C
is a Boolean function with three variables. A Boolean function
can also be represented by a truth table, wherein each row lists a
combination of values of Boolean variables and its associated
output value. The truth table of a Boolean function with k
variables has 2* rows and k +1 columns.

A Boolean network model consists of a set of Boolean
variables {o|, 0, ..., 0,} whose value is determined by other
variables in the network through a set of Boolean functions
B = {By, B,,..., B,}, one assigned to each variable. In a
Boolean dynamic model, the value of each variable o; is
determined by the current or prior values of its regulators
(inputs), depending on the updating schemes used in the model.
The synchronous scheme updates all variables in the model
simultaneously, i.e., the value of each variable at time #+1 is
determined by its k; inputs at time :

1 _ p (.t t t
o; —B,(ail,aiz,...,aiki).

This update mode is deterministic. In asynchronous schemes,
the variables are updated in a non-synchronous manner:

S
Ui = B,‘(O’,‘l, Uiz’ ey Uik’_),

where the asterisk denotes the new value of the variable o;,
i =1,2,..., n. The values of its inputs on the right-hand
side of the equation can be current or prior, depending on the
individual timescales. As we describe in the following section,
both deterministic and stochastic asynchronous schemes have
been employed for modeling biological systems.

A Boolean network model can be projected to a directed
graph G(V, E), where the node set V = {vy, vs,...,v,}
corresponds to the Boolean variables, and the edge set E is
implicitly defined by the Boolean functions in the model.
Each edge has a sign implying whether the input node has
a positive or negative effect on the target node. We note that
Boolean models contain information additional to the directed
and signed network diagram, since the same diagram can
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(a) Network structure

(b) Boolean functions
B,(o,, 0,) =6, OR NOT o,

B,(o,, 6,) =0, AND o,

(¢) Truth tables

B,(o,, o,) B,(c,, ;) B,(c,)
o 1851 IS ol 1051 iS2 G, C,
0 01 0 00 olo
0 1 0 0 1 0 1 1
1 01 1 0.0
1 11 1 11

(d) State transition graph

Figure 1. A simple Boolean network model. (@) The directed graph (network structure) associated with the Boolean model. The edges with
sharp arrows represent positive effects and the edges with blunt arrows denote negative effects. Note that the graph does not uniquely
determine the Boolean functions for nodes v, and v,. (b) The Boolean functions in the model. Note that the graph in (a) can support
alternative Boolean functions, specifically B(c 1, 03) = 0y AND NOT o3, By(01, 03) = 01 OR 03. (¢) The truth tables of the Boolean
functions given in (b). (d) The state transition graph of the Boolean model constructed using the synchronous updating scheme. The states
100 and 111 are the fixed points of the system, and the states 101 and 110 form a limit cycle.

correspond to several alternative Boolean functions and the
Boolean model adds a dynamic layer to the network in the
form of a state variable o «¢) for each node v;. The state of
the system at time ¢ can be represented by a vector (o (%),
o0y(0),...,0,() with the ith element representing the state
of node v; at time ¢. All possible states of the system, a
total of 2", make up its state space. The possible trajectories
in the state space can be represented by a state transition
graph, wherein nodes are states of the system and edges
represent the allowed transitions among the states based on
an updating scheme. By updating the nodes’ states at each
time step, the model evolves over time following a trajectory
of states and eventually reaches a steady state (fixed point) or
a set of recurring states. These steady or recurring states are
collectively referred to as attractors. The set of initial states
that leads the model to a specific attractor is called the basin of
attraction of that attractor. Figure 1 illustrates a simple Boolean
network and its associated Boolean functions, truth tables and
state transition graph based on the synchronous scheme.
Boolean networks, as a special case of discrete dynamic
modeling, provide an efficient formalism to describe the
dynamics of biological systems [49, 94]. The directed and
signed graph projection of a Boolean network model can
be directly related to the pathway diagram of a biological
regulatory system. Each node v; in the Boolean network stands
for a biological component such as a gene, protein, metabolite,
an ion channel, or a stimulus (signal), which is associated with
a binary state (expression level, concentration, or activity) o ;.
The state o; = 1 (ON) represents that component v; is active
or expressed, or has an above-threshold concentration, and
o; = 0 (OFF) denotes that it is inactive or not expressed, or
has a below-threshold concentration. The thresholds invoked
in the definition of states do not need to be quantified, as

long as it is known that a concentration level exists above
which the component in question can effectively regulate its
downstream targets. Each Boolean function represents the
conditional dependence of input components in regulating the
downstream target component. The parameter-free nature and
qualitative features of Boolean modeling make it suitable for
analyzing the complex behaviors of a large-scale system, such
as the activity of components in a steady state, the activity
changes of components following a perturbation, the input—
output relations of the system and the stability of cellular
responses to a signal.

Boolean dynamic modeling of biological networks entails
six main steps, as shown in figure 2. In this overview, we
provide a brief description of each of these steps in the
following six paragraphs; a more detailed description can be
found in [9, 12]. The first step is to synthesize the network
structure by extensively collecting the relevant literature and
experimental data concerning the biological system of interest.
Although for many biological processes different experiments
generate an abundance of relevant components and causal
interactions, there is insufficient information on the overall
structure and mechanisms of these processes. Therefore,
information sources from individual experiments need to
be assembled and integrated. Experimental evidence about
the involvement of a component or a regulatory relationship
in a biological process has several types. For example, the
concentration change of a protein after treating the system
with an input signal (ligand) indicates that this protein may
be a component of this ligand’s signal transduction network.
Such evidence can be collected from high-throughput gene
expression, proteomics and metabolomics data. In addition, if
knocking out or over-expressing a component leads to changes
in the relevant cellular response, it can be concluded that
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Figure 2. The main steps in Boolean dynamic modeling of biological systems.

this component is involved in the biological process. Causal
relationships between components can be collected from high-
throughput phosphoproteomics, protein-DNA interaction, as
well as genetic interaction studies. These data sources may
not be specific to the biological system of interest. To
make them context-specific, one can complement them with
direct biochemical evidence from small-scale experiments. If
relevant information is sufficient, these causal relationships
can be represented as directed edges from one component
to another characterized by one of two signs: activating
(positive) or inhibitory (negative). In some cases, genetic
evidence from multiple experiments leads to composite causal
relationships which can be broken down into component-to-
component relationships depending on the concrete situation
[6, 7]. Dealing with such cases is made simpler by the
software NET-SYNTHESIS that finds the most parsimonious
network incorporating all known components and the causal
relationships between them [46, 6].

The network structure assembled in the first step
significantly constrains, but does not uniquely determine, the
dependency relationships among node states. Thus the second
step is to determine the Boolean transfer functions based on
evidence from the literature and experimental observations.
Many biological events can be qualitatively represented by
Boolean functions. For example, consider a protein P whose
phosphorylated form regulates downstream processes (simply
said, it is active). We can designate the state of protein P as 1
(ON) if it is predominantly in the phosphorylated form, and as

0 (OFF) if it is predominantly in the unphosphorylated form.
If P is solely regulated by a kinase K that phosphorylates it,
the Boolean transfer function for the state of P can be written
as P* = K, where for simplicity the node states are denoted
by the node names, and the asterisk refers to the new state
of P. If instead of a kinase the protein P interacts with and
is dephosphorylated by a phosphatase R, the transfer function
for P can be written as P* = NOT R. In many cases, the
activation of a component requires two or more regulators. For
example, the transcription process of a gene G may require a
transcriptional complex consisting of two proteins P1 and P2.
This can be represented by the AND operator describing the
simultaneous presence of the two proteins: G* = P1 AND P2.
If a component is regulated by multiple regulators and any of
them can activate the component independently, e.g., a protein
with multiple phosphorylation sites, the independent effects of
these regulators on the target component can be captured by the
OR operator. The Boolean transfer function for a component
can be a complicated combination of AND, OR and NOT
operations. If the transfer function for a component is not
fully known, several variants can be tried by comparing their
dynamic sequences with observations for the real system [18].

The dynamics of a Boolean model stems from the
transition of one system state to another, and is determined
by the transfer functions and influenced by the chosen
updating scheme. The synchronous scheme is the simplest
update mode, wherein the states of all nodes are updated
simultaneously according to the last state of the system.
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This type of update implicitly assumes that the timescales
of all biological events in the system are similar and the
state transitions of components are synchronized. The state
trajectory of the system is deterministic under the synchronous
scheme and any system state can have at most one successor
in the state transition graph. However, cellular systems are
complicated, and most often the timescales of biological events
are different and can vary widely from fractions of seconds
to hours [72]. The synchronous scheme cannot account for
such variations. In asynchronous models, the states of the
nodes are updated in a non-synchronous manner, depending
on the timescales of individual biological events. There are
deterministic asynchronous schemes with fixed individual
timescales [24] and stochastic asynchronous schemes wherein
all nodes are updated according to a random order, or one
node is randomly selected to be updated [23, 40]. In stochastic
asynchronous models, the same initial condition can lead to
different successors in the state transition graph due to the
randomness involved in the update scheme. Asynchronous
schemes can be informed by knowledge about the timescales
of some components if such knowledge is available. Updating
schemes have a considerable effect on the dynamics of a
system. One can choose a scheme that is most realistic for the
biological system of interest, or compare different schemes on
the same system [77].

Starting from an initial condition the model evolves over
time by transitioning from one state to another, and finally
stabilizes in an attractor representing the long-term behavior
of the system. The attractors of regulatory and signaling
networks usually correspond to the steady activation states of
components or to cellular phenotypes [58, 78, 33]. Therefore,
identifying the possible attractors is useful and biologically
relevant. Particularly, it allows one to examine the activities
of components in a steady cellular state and compare them
with experimental observations. It also helps to determine
critical components for cellular phenotypes by examining the
changes in the system’s attractors if a certain component is
knocked out (fixed in the OFF state) or over-expressed (fixed
in the ON state). Different initial conditions may lead the
system to different attractors. Ideally, one can start from a
biologically relevant initial condition if it is known a priori.
If the available information is insufficient, one can sample a
large number of initial conditions and calculate the fraction of
realizations of a certain attractor, representing the probability
that the system attains the corresponding cellular phenotype
[59, 103]. As a Boolean network model with n nodes has
2" possible initial conditions, detecting attractors of a large
system under synchronous and asynchronous schemes is a
challenging problem; for this reason we dedicate section 3 to
its discussion.

An important step of Boolean dynamic modeling of
biological systems is to test the correctness of the model.
There are several ways to validate certain features of the
model. For example, the model must be able to reproduce
prior experimental observations such as input—output relations,
dynamic behaviors and cellular responses. If the model fails
to do this, one needs to go back and check whether some
important components or interactions are missing from the

network structure, or whether some Boolean transfer functions
are incomplete or wrong (e.g., use AND instead of OR or vice
versa). The failure may also arise from the improperness of
updating schemes or initial conditions. After several rounds
of iterations, a Boolean dynamic model consistent with
all known experimental observations can be obtained. An
advanced strategy for validating the model is to conduct new
experiments on the activity of some components. However
such experiments can be very time-consuming and may not
be the best investment in the model-testing stage. It has been
revealed that many biological systems are robust [97, 8, 58],
so an indirect way to validate the model is to test its robustness
to small perturbations such as interchanging OR and AND
rules, switching the signs of interactions, rewiring a pair of
interactions, adding or deleting a component or interaction.
A good model can accommodate the majority of small
perturbations, which reflects the adaptability of the system
under diverse circumstances.

The first five steps are time- and labor-intensive, but all
the effort is well worth it when the fragmented knowledge
from individual experiments and data sources is assembled
and integrated into a predictive model. The power of Boolean
dynamic modeling is its ability to predict the outcomes of
the system, generate testable hypotheses, and direct future
wet-bench experiments in an efficient way. For example, the
attractors of the system predict the activity of components in
cellular responses or phenotype traits [78, 33]. By analyzing
the outcomes of the system from various initial conditions,
we can understand how different signals (stimuli) crosstalk
and lead to different cellular responses. The outcomes of
system perturbations (e.g., knockout or over-expression of
certain components) can predict the changes in the steady-
state activity of components and identify essential components
accounting for phenotype traits [103, 92, 78, 59 ]. We can
also predict the biological role of regulatory interactions and
feedback loops by removing them and comparing the dynamic
sequences before and after the perturbations. In summary, the
model not only provides a system-level picture to understand
the underlying mechanisms of the biological process, but also
can direct follow-up targeted experiments and save the cost of
exploratory wet-bench analysis.

Boolean networks have been successfully applied in
modeling gene regulatory and signaling networks in a variety
of biological systems [59, 34, 85, 8, 81, 82, 65, 100]. They
have also been used to analyze human signaling networks
associated with diseases to predict pathogenesis mechanisms
and potential therapeutic targets [103,78, 84, 92,91, 98]. Many
software tools are available for Boolean dynamic modeling of
biological systems, such as BooleanNet [4], BoolNet [67],
SimBoolNet [106] and ChemChains [42]. Several software
packages also support multi-valued logical dynamic modeling,
such as GINsim [36], SQUAD [28] and ADAM [43]. In
addition to logic operation-based Boolean networks, threshold
Boolean networks have been used in modeling biological
networks at both cellular and population levels [58, 20].
Piecewise linear models are a hybrid of Boolean models and
differential equation-based continuous models [35], and have
been fruitfully applied due to their attractive combination



Phys. Biol. 9 (2012) 055001

R-S Wang et al

of continuous time, quantitative information and few kinetic
parameters [24, 27, 93]. The methodologies and modeling
steps described above apply to threshold Boolean models
and piecewise linear models as well. In particular, one can
utilize the software packages Genetic Network Analyzer [26]
or BooleanNet [4] for qualitative modeling of biological
networks based on piecewise linear models.

3. Attractor analysis of Boolean dynamic models

As it has been mentioned before, the attractors of a system
represent the long-term behavior of the system. The simplest
type of attractor is a single state called a fixed point (steady
state), which remains unchanged under additional updates of
the system. Since fixed points are time-independent, the fixed-
point repertoire of a Boolean model is the same regardless
of the manner of update (synchronous or asynchronous). We
note, however, that the choice of updating scheme can affect the
probability with which the system reaches these fixed points
when starting from a given initial condition. In addition to
fixed points, complex attractors in which the system oscillates
among a set of states may appear in the state transition graphs
of the system. The complex attractors of deterministic and
stochastic Boolean models can be different. In synchronous
and deterministic asynchronous models, the system oscillates
regularly among the states in a complex attractor, which in this
case is referred to as a limit cycle. The number of states in the
limit cycle is called the period or length of the attractor. In
stochastic asynchronous models, on the other hand, the system
oscillates irregularly among a set of states; these complex
attractors are alternatively referred to as loose attractors [40]. It
was observed that limit cycles present in synchronous Boolean
models can be absent from the corresponding asynchronous
Boolean models [31, 77].

For small Boolean network models, the fixed points can
be found by analytical methods. For example, taking away the
time dependence of the transfer functions in a Boolean model,
they form a system of time-independent Boolean equations
described by B{oy,..., 0,) = 04 i = 1,2,...,n, where
n is the number of nodes in the network. All the possible
solutions of this system correspond to the fixed points of
the Boolean model. For example, the fixed points of the simple
network in figure 1 can be obtained analytically by solving
the following system of equations: 0; = o; OR NOT o3,
0, =01 AND 03, and 03 = 0,. Substituting the last equation
into the second one results in o3 = o7 AND o3. Substituting
this equation into the first one and simplifying the resulting
equation using Boolean algebra leads to oy = 1. As a result,
o3 = (1 AND o3) = o3, that is, o3 can be either O or 1.
Noting that o, = 03, we obtain two fixed points of the system,
100 and 111. Boolean models of signaling networks with one
or more steady signals (inputs) usually contain nodes whose
states stabilize after a transient period irrespective of the update
methods or initial conditions of other nodes. The logical steady
state analysis proposed in [53] can find (partial) fixed points
of Boolean models of signaling networks by propagating the
input signals to the output layer. In addition, methods based
on scalar equations and reduced scalar equations [30, 41]

can be used to obtain limit cycles of synchronous models
analytically. These equations, which are ordinary recurrence
equations for the nodes of a Boolean network, are obtained
by iterating the original Boolean rules. Unfortunately, such
techniques are not practical for large Boolean networks [104].
Finding loose attractors of stochastic asynchronous models
analytically is difficult even for small networks since the state
transitions involve stochasticity.

In addition to analytical methods, another class of
approaches to finding attractors takes advantage of the
properties of state transition graphs. We note that fixed
points in a state transition graph are nodes without outgoing
edges except self-loops. A limit cycle in the state transition
graph of a synchronous or deterministic asynchronous model
is a set of nodes that make up a cycle without outgoing
edges. For example, in figure 1(d), the states 100 and 111
are the two fixed points of the system, and the states 101
and 110 form a limit cycle. A loose attractor in the state
transition graph of a stochastic asynchronous model is a set
of states that form a strongly connected component without
outgoing edges. The attractors of small Boolean networks
can be found by constructing complete state transition graphs
using numerical simulations and then searching such graphs.
However, constructing the state transition graph of a relatively
large Boolean network is usually time-consuming. Search
methods that utilize the special features of attractors in
state transition graphs without the necessity of checking all
possible trajectories have also been developed. Dubrova and
Teslenko [29] proposed a SAT-based bounded model checking
algorithm for finding all attractors in synchronous Boolean
networks. This method first uses propositional formulae to
represent the state transitions in / time steps, i.e., the paths
of length / in the state transition graph. Then it checks
if such paths exist and contain cycles so as to determine
whether all attractors have been already identified or the
search should continue by increasing the path length. To
combat the state space explosion problem, Garg et al [33] used
reduced ordered binary decision diagrams (BDDs) to represent
Boolean functions and developed an algorithm to identify all
attractors in synchronous Boolean networks by computing
forward and backward reachable sets of seed states. They
further extended this algorithm to identify loose attractors in a
special case of asynchronous Boolean models by introducing
a combined synchronous—asynchronous traversal technique to
search reduced ordered BDDs [33]. Recently, Skodawessely
and Klemm [87] proposed a method to identify attractors of
asynchronous Boolean models based on a systematic removal
of state transitions by stabilizing certain nodes’ state. This
method reduces the state transition graph into an acyclic graph
such that all attractors become fixed points of this graph and
can be enumerated with little effort in most instances. The
attractors of the original dynamics model, each containing at
least one fixed point of the reduced model, can be found by
depth-first search seeded at each fixed point of the reduced
model [87].

Identifying attractors of large-scale Boolean networks
is a computationally difficult problem for both synchronous
and asynchronous models [104]. One way to overcome
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this difficulty is to simplify the networks prior to dynamic
analysis. To this end, several reduction techniques have been
proposed [16, 68, 77, 96, 75]. Certain variables in a Boolean
network model evolve to the same steady state independent
of the initial condition and thus are not relevant to the task of
attractor identification. Such stable variables can be found by
inspection of transition functions and network connectivity. A
network reduction technique based on the removal of frozen
nodes (stable variables) and network leaves (i.e. nodes with no
outgoing edges) has been used to simplify random Boolean
networks [16, 75]. In [16], the frozen nodes were identified
in a way similar to the logical steady state analysis, whereas
in [75], first a random sampling method for the initial states
was used to determine a subset of the attractors, and then
a minimum set of frozen nodes was found by identifying the
nodes whose state was the same in all attractors. The reduction
method proposed in [68, 96] consists of iteratively removing
nodes without a self-loop from the network and simplifying
the redundant transfer functions. This method was proven to
preserve the fixed points of a system, but it may introduce
spurious oscillations into the reduced model [68].

In [77], we proposed a two-step reduction method
for signal transduction networks, which first identifies and
removes stabilized nodes, and then iteratively removes simple
mediator nodes (e.g., nodes with one incoming edge and one
outgoing edge). To identify the stabilized nodes, one needs to
first fix the known state of signal nodes, and iteratively identify
the nodes whose rules depend on the signal and/or already-
stabilized nodes and simplify those rules based on Boolean
algebra. This procedure results in identification of either the
fixed point(s) of the system, or the partial fixed point(s) and
a remaining system of equations. We note that the first step
of this reduction method is similar to the logical steady state
analysis in [53]. If this system of equations is small enough,
one can obtain the attractors of the reduced network by
using the methods mentioned before. Otherwise, one can
merge simple mediator nodes and obtain a simpler set of
equations whose attractors can be easily identified by the
methods suitable for small networks. The attractors of the
reduced network can be readily extended to those of the whole
system by considering the states of the stabilized nodes and
the removed simple mediator nodes. This reduction method
facilitates the identification of attractors for large networks.
We employed it to identify attractors of the ABA signal
transduction network [77] as well as a signaling network
corresponding to the disease T-LGL leukemia [78]. For
example, for the former, the properties of the state transition
graph, including attractors of the system and their basins of
attraction, were compared in a synchronous as well as three
different asynchronous models [77].

Once the attractors of the Boolean model of a system
are determined, the activity of components in relevant
cellular responses or phenotype traits can be predicted.
For example, the Boolean dynamic model of a T-helper
(Th) cell differentiation network [33] has three fixed points,
representing the activation patterns of components observed
in ThO, Th1 and Th2 cells. For the T-LGL leukemia survival
signaling network, the attractors of the system representing

the healthy and disease conditions were identified, and
the latter successfully unraveled the T-LGL (disease) states
of all the components in the network, including the ones
that were experimentally undocumented before [78]. Having
the attractors of a system, one can also perform dynamic
perturbation analysis by knocking out the nodes that stabilize
at ON and over-expressing the ones that stabilize at OFF in an
attractor. This allows identifying component manipulations
that can change the ultimate outcome of the system. For
example, dynamic perturbation analysis for the T-LGL
leukemia signaling network led to the identification of 19
potential therapeutic targets for the disease, more than half
of which were in agreement with the available experimental
data and the rest can guide future experiments [78].

It is worth noting that a stochastic asynchronous Boolean
model can be described by a discrete-time Markov chain
process [23, 34,77, 78]. The transition matrix P of the Markov
chain contains the probabilities of transition from each state
to all other states in the state space which can be obtained
according to the asynchronous scheme used in the model.
The ijth entry pg;") of the matrix P™ gives the probability
that the system will be in state s; after m time steps when
starting from state s;. Let 77 (0) be the probability vector which
represents the initial distribution of states of the system. Then
w(m) = w(0)P™ gives the probability that the system is in
each state after m time steps. In particular, this formula gives
the probability that the system ends up in different steady
states or in transient states in loose attractors if m is large
enough [34]. When the asynchronous model has at least one
fixed point, and it is possible to reach a fixed point from each
transient state, it corresponds to an absorbing Markov chain
[37]. In such Markov chains, starting from any transient state
s; of the system one can obtain the absorption time ¢#; (the
expected number of time steps to reach any of the fixed points)
as well as the absorption probabilities u; (the probabilities
of reaching each fixed point s; from the transient state s;)
[37]. The former can be calculated using the formula T =
(I-Q)~'0, where I is an identity matrix, O is a column vector
all of whose elements are 1 and Q is the sub-matrix of P
containing the transition probabilities from each transient state
to all other transient states. The latter can be obtained by
the formula U = (I—Q)~'R, where R is the sub-matrix of
P containing the transition probabilities from each transient
state to the fixed points. Calculating absorption probabilities
is particularly important for the systems with multiple fixed
points as it can provide the probabilities of the system being
in each steady state. For example, in the T-LGL leukemia
signaling network, the analysis of the absorption probabilities
revealed that for the majority of the states that can reach
both the healthy and disease fixed points, the probabilities
of reaching the healthy fixed point is higher than those of the
disease fixed point [78].

4. Inferring biological mechanisms with Boolean
models

As we described in section 2, in Boolean dynamic modeling
of biological systems, individual regulatory relationships,
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Figure 3. Applications of Boolean network models in forward and reverse engineering of biological networks.

partial signaling pathways and conditional dependence among
regulators are assembled from experimental observations and
integrated together to form a dynamic model of a relatively
complete regulatory network. This dynamic model can predict
the qualitative activity of components such as proteins
and metabolites. The bottom-up approach used to construct
the dynamic model is sometimes referred to as forward
engineering of biological regulatory networks [25, 73]. On
the other hand, high-throughput techniques can generate the
abundance profiles of genes, proteins and metabolites in a
steady or transient state of the cell. These measurements reflect
the quantitative activities of these biological components
in the corresponding biological processes which arise from
the system-level dynamic regulation of various molecules.
Reverse engineering of biological networks, as shown
in figure 3, aims to recover these underlying regulatory
relationships or signaling pathways from observed activity
data [13, 14, 89, 79].

Boolean networks are one of the most popular models
used in reverse engineering of biological regulatory networks,
wherein the objective is to infer not only the network structure
but also the Boolean transfer functions from experimental
abundance profiles. An early study in this field was done
by Liang et al [60], wherein they constructed Boolean
state transition tables based on the time series of gene
expression and analyzed the mutual information between
input and output states to infer the regulators controlling
each gene. The algorithm, implemented in the REVEAL
program, showed that a small number of state transition
pairs are sufficient for inferring the original Boolean network
correctly. Following this study, Akutsu et al [2] devised
a simpler algorithm for the same problem and rigorously
proved that if the number of incoming interactions to
each node is bounded by a constant, only O(log n) state
transition pairs are necessary and sufficient to correctly
identify the original Boolean network with n nodes with a high
probability. The algorithm was later extended to infer a noisy
Boolean network since gene expression exhibits considerable
uncertainty [3]. Several studies utilized probabilistic Boolean
networks wherein the uncertainty in gene expression data
is incorporated by using several alternative Boolean transfer
functions (each with a certain probability) for a node in the
network [86]. The inference process results in the Boolean
transfer functions and their probabilities. Later, Laubenbacher
and Stigler [55] described gene regulatory networks by time-
discrete polynomial dynamical systems (an extension of

Boolean modeling) and employed tools from computational
algebra to design a reverse-engineering algorithm for inferring
the transfer functions from experimental time-course data.
More recently, Martin et al [62] developed a method to
identify multiple gene regulatory networks that match the
same time series microarray data. This method first clusters
and discretizes the gene expression data using k-means
clustering and support vector regression, and then samples and
enumerates the Boolean networks that match the discretized
data. By putting a limit on the number of inputs of a Boolean
function, the methods mentioned above are able to infer gene
regulatory networks efficiently.

A state-of-art Boolean network method for reverse
engineering of signaling networks has been developed by
Saez-Rodriguez et al [79]. This method, implemented in
the software CellNetOptimizer, aims to bridge literature-
based context-specific signaling networks, which tend to
be disconnected, and protein networks inferred purely from
data, which do not reflect existing mechanistic information.
Their method first generates a superstructure of Boolean
models which include all possible logic gates compatible
with the prior literature-based signaling network. Then, this
superstructure is trained against dose-response experimental
data by minimizing the difference between data and model
simulation while penalizing model size, and finally a set
of calibrated Boolean models are obtained. Applications of
this method to the growth and inflammatory signaling in
human cancer cells showed that it can create Boolean network
models which eliminate many false-positive interactions
present in the prior literature-based signaling network and
also predict new interactions [79]. Cell-specific Boolean
models of immediate-early signaling networks in normal and
transformed hepatocytes have been inferred by this method
based on biochemical data treated with different combinations
of signals and drugs, thereby revealing biochemical differences
in signal transduction among normal and tumor live cells [80].
To model quantitative data in a simple and efficient way, this
method was then extended to a constrained fuzzy logic-based
framework which can describe intermediate levels of protein
activation [64].

While Boolean networks have been widely used to infer
gene regulatory relationships from time series expression
profiles, few studies have so far used Boolean models
to deduce regulatory mechanisms from steady-state mutant
transcriptomes. Usually such data are analyzed using a
simple statistical analysis that compares gene expression
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Figure 4. Application of Boolean models in analyzing complex mutant expression data. (@) Boolean variables ABA, GPA1, and AGB1 code
the eight combinations of genotypes and treatments. Green cells represent 1, and white cells denote 0. (b) Boolean functions for the
theoretical regulatory modes of the G-protein and the corresponding idealized differential expression patterns of genes. In the truth tables
green cells represent 1, and white cells denote 0. In the differential expression patterns, red cells represent upregulation, yellow cells denote
downregulation and white cells signify no differential expression. (¢) Examples of Boolean functions for the theoretical co-regulatory modes
of the G-protein and ABA, and the corresponding idealized differential expression patterns according to [71]. (d) An example of theoretical
regulatory modes supported by enrichment of target genes. The figure is adapted from [71].

profiles in the wild type and mutants. While such an
analysis can identify differentially expressed genes in each
mutant, it generates results that are difficult to interpret when
samples are combinatorially complex. In contrast, Boolean
models are able to provide natural and intuitive interpretations
about signaling and regulatory mechanisms among mutated
components and signaling conditions. In an attempt to infer
regulatory mechanisms of the kinase Hog1-dependent osmotic
stress responses, Calpadi et al [21] analyzed gene expression
in single- and multiple-mutant strains of budding yeast and
inferred the combinatorial interactions between Hogl and
general osmotic stress (Msn2/4) pathways. In this study,
simple AND and OR relations were extracted by a multiple
linear regression algorithm. In [71], we developed a Boolean
modeling framework to analyze transcriptomes corresponding
to four genotypes and two signaling conditions. Here we briefly
describe this framework to illustrate how Boolean models can
be used to analyze complex steady-state mutant expression
data.

Heterotrimeric G-proteins, consisting of Ga, G and
Gy subunits, mediate a variety of crucial signal transduction
mechanisms in both mammalian and plant systems [63, 45].
ABA is a major plant hormone which promotes tolerance of
abiotic stresses such as drought and cold [51]. To answer
how ABA and the G-protein interplay with each other at the
transcript level, Pandey et al [71] generated the transcriptome
data of Arabidopsis genome-wide genes in four genotypes
(wild type, gpal mutant (Ga), aghbl mutant (GB) and agbl
gpal double mutant (Ga, GB)) in the presence or absence
of ABA. According to the characteristics of the sample
conditions, we used Boolean variables to code the states of
GPA1, AGBI and ABA, i.e. the genotypes and treatments
(figure 4(a)). Then the expression profile of a target gene in
different genotypes and/or treatments can be seen as truth
values of a Boolean function determined by the states of
GPA1, AGB1 and/or ABA. The G-protein regulation was
modeled by Boolean functions of the form A(GPA1, AGB1)
(figure 4(b)) which reflect the activity of G-protein-regulated
mediators that further regulate the expression level of target
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genes. The co-regulation of the G-protein and ABA was
described by Boolean functions of the form B(ABA, A(GPAI,
AGB1)) which represent the co-regulatory activity of ABA
and the G-protein-regulated mediators (see figure 4(c)). ABA
regulation independent of the G-protein was modeled by
an eight-dimensional constant vector Caga. Collectively, the
Boolean modeling framework F(ABA, GPA1l, AGBI1) =
Casa + B(ABA, A(GPA1, AGB1)) defines 142 theoretical
regulatory modes of the G-protein and/or ABA which can be
classified into five categories of signaling pathways [71].

After defining the Boolean functions for the regulatory
modes of ABA and the G-protein, the next step is to determine
which theoretically possible signaling pathways and regulatory
modes are experimentally supported by the transcriptome data.
To this end, genes were assigned into the theoretical regulatory
modes by correlating their real differential expression patterns
with the idealized differential expression patterns determined
by Boolean functions (figures 4(b) and (c)). The classical
Pearson correlation coefficient cannot be used for this purpose
because here both shape similarity and differential expression
strength are important. Thus, a new correlation measure was
defined and used for associating genes with the theoretical
regulatory modes [71]. Each gene was assigned to the
theoretical regulatory mode for which it had the maximum
correlation score (figure 4(d)). Then biologically realistic
regulatory modes and signaling pathways were determined
according to the number of associated genes (figure 4(d)).
Overall, this Boolean modeling framework discovered new
mechanisms of G-protein and hormonal control at the
transcript level. The method is versatile enough to be applied
to transcriptome datasets from other systems to provide
new perspectives regarding switch-like signal transduction
mechanisms or to infer the combinatorial regulation of
transcription factors.

5. Boolean rule-based structural analysis of cellular
networks

Boolean dynamic modeling is a powerful tool for analyzing
the dynamic characteristics of biological systems. However,
due to the exponential dependence of the size of state
space on the network size, it is difficult to sufficiently
sample initial conditions when the biologically relevant
initial conditions are not known. Dynamic modeling also
requires one to sample timescales randomly if real timescale
information is not available or sufficient. These aspects make
it difficult to analyze a large-scale biological network by
performing Boolean dynamic simulations. Network reduction
methods discussed in section 3 can alleviate these difficulties
by reducing the size of the networks while preserving
essential dynamic properties. Alternatively, structural methods
for analysis of biological networks have been developed
[53, 61, 74] as increasing evidence reveals that the structure
of biological networks is closely related to their function
[90, 44]. However, most of these structural methods ignore
the signs of the interactions (inhibitory or activating) as well
as the conditional dependence among the multiple regulators of
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a component, which are quite common in signal transduction
and gene regulatory networks.

A notable exception is the methodology introduced
by Klamt et al [83, 53] for structural and functional
analyses of signaling and regulatory networks. This method,
implemented in the software CellNetAnalyzer [52], represents
a biological network by a logical interaction hypergraph
whose hyper-edges connect two sets of nodes instead of
two nodes. This way the relationship C* = A AND B
can be represented by a hyper-edge that starts from the
node set {A, B} and ends at C. Klamt er al used the
logical steady state analysis to find minimum intervention
targets, defined as a minimal set of important nodes whose
simultaneous manipulation satisfies a user-defined goal (e.g.
permanent deactivation of the output). Such a structural
analysis can efficiently identify minimum failure modes
for signaling and regulatory networks without the necessity
of dynamic simulation. Recently, Abdi et al [1] applied
fault diagnosis methods used in digital circuits to Boolean
representations of signaling networks to find vulnerable
components mediating a signal transduction process. The
method determines the probability that the dysfunction of a
signaling component propagates to the output(s) by traversing
all paths from the dysfunctional site to the output(s) and
by applying Boolean function-based propagation probability
rules in the traversal. Abdi et al identified vulnerable
components with high dysfunction propagation probabilities
in several signal transduction networks and confirmed them by
experiments [1].

In [99], we developed a structural method augmented
by incorporating inhibitory regulations and conditional
dependence among regulators into the topology of a signaling
network. Specifically, the method introduces a complementary
node for each node that has negative effects on other nodes or is
inhibited by other nodes, and introduces a composite node for
each set of interactions with conditional dependence. The new
representation, wherein all interactions represent activation
and all composite nodes indicate conditional dependence,
facilitates the incorporation of conditionality in evaluating
the cascading effects of node failure. The new concept of
elementary signaling mode (ESM), illustrated in figure 5(a),
was defined as the minimal set of components that are
able to perform signal transduction independently [99]. We
hypothesized that the signaling components whose disruption
(and its cascading effects, see figure 5(b)) eliminates the
majority or all of the ESMs are essential [99]. Validation
on several signaling networks showed that this augmented
structural method and essentiality criterion are in strong
agreement with the results of dynamic simulations [99].

Taken together, these integrated Boolean-structural
studies reveal that while some properties of a dynamic
model depend on initial conditions and individual timescales,
other properties are encoded in the combinatorial regulations
represented by the Boolean rules and do not depend on the
details of the dynamic simulation. Therefore, for exploratory
analysis of large networks where dynamic modeling is
computationally impractical, one can utilize Boolean rule-
based structural methods to guide targeted computational or
experimental design.
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(@)
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response

Figure 5. Illustration of ESMs in signaling networks and of the
cascading effects of a component’s disruption. (a) There are three
ESMs: {A, B, D, F}, {A, B, C, F} and {A, C, E, F}. (b) The
cascading effects of the deletion of component A. The dashed node
contours and the dashed edges indicate the nodes and edges that will
be disrupted in the cascading failure following the removal of node
A.In (a) and (b), the small gray circles signify composite nodes.

6. Conclusions

Computational modeling of biological processes plays a
pivotal role in systems biology and enables efficient
in silico experiments whose predictions greatly improve
the design of wet-bench experiments. Although Boolean
network models are created with a set of assumptions and
have limitations in describing the quantitative characteristics
of dynamic systems, they do not require the knowledge
of kinetic parameters, which make them powerful in
qualitatively describing the large-scale systems’ dynamics
and efficiently predicting effective interventions. The success
of Boolean models illustrates that in at least a subset
of biological systems, the organization of the network
structure plays a more important role than the Kkinetic
details of the individual interactions [8, 58]. In addition,
Boolean networks are extremely useful for modeling poorly
understood large-scale systems where continuous modeling
is impossible due to insufficient quantitative information.
In practice, qualitative models and quantitative models
complement each other. The choice between qualitative
models like Boolean networks and quantitative models such
as differential equations depends on the availability of kinetic
information, the size of the systems and the types of questions
to be addressed. Boolean networks can serve as a foundation
for modeling regulatory and signaling networks on which more
detailed continuous models can be built as kinetic information
and quantitative experimental data become available [101].
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