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» Let us consider an arbitrary complex metabolic network
» Each reaction rate responds to changes in concentrations of
substrates, products and some effectors:
« These kinetic laws are individual molecular properties
of each enzyme in the system
» Central questions of MCT:
« How does the system respond to changes
in individual molecular properties (enzyme activities)?
« How does the system’s response depend on the network structure?

« How constrained are systemic sensitivities?
Do they show dependencies?
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Steady-states and system definition

Metabolism concerns almost exclusively sustainable processing
of chemical inputs into outputs such as biomass, energy, waste,
etc.: it must reach a stable steady-state.

Therefore:

» The system must be open in order to reach

a thermodynamically feasible non-trivial steady-state
(i.e., with non-zero fluxes)

» Most reactions should be sensitive to both substrate and

product concentrations, allowing for the
balancing of metabolite production and consumption rates
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Quantitatively

Intuitively?
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Concentration control
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Quantitatively
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Quantitatively

and we obtain the following remarkable summation relationships:
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» Concentration control by supply and demand of opposite signs
» Flux control by supply and demand add up to 1
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The stoichiometry matrix

» Reactions in the network are expressed in the stoichiometry
matrix N, whose columns contain the stoichiometric
coefficients for each reaction

» This matrix reflects the system’s structure

» The stoichiometry matrix N is of maximal rank if and only if
there is no conservation relationship constraining the different
concentrations, which we will initially assume for simplicity

> Otherwise it should be reduced to a matrix N° with maximal
rank in order to deal with independent variables:

N=L-NO

D. Kahn, Metabolic Control Theory

Quantitatively

If now we modulate E, we get similarly:
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» Flux control by supply reaction 1 is proportional to sensitivity of
demand reaction 2 to intermediate metabolite
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More generally

It is possible to derive a very general treatment of metabolic
control theory for metabolic systems of arbitrary complexity.
C. Reder (1988) J. Theoret. Biol. 135:175-201

General definitions:
x =x(t,p) Molarity vector
X =X(p) Steady-state molarity vector:  dx/dt=10

v =v(x,p) Rate vector
J=J(p) Steady-state flux vector
= v(X(p).p)
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System evolution

The evolution of the system’s concentration vector x
is a simple function of the reaction rate vector v :

dx/dt =N - v(x,p)

where p is a parameter vector, including enzyme activities.
The Jacobian is :

3 =N - ov/ox

0V;/dx; are non-normalized ‘elasticities’.
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Steady-state flux constraints

» We are interested in analysing the steady-state of the system:

dx/dt =N - v(X(p), p) =0
where X(p) is the vector of steady-state concentrations
» The steady-state introduces linear dependencies between
fluxes:
N-Jp)=0
Kirchhoff's law for metabolic intermediates

> Therefore the flux vector J can be expressed
in a basis of Ker(N) (often termed K)

Expressing systemic control

Differentiating the steady-state equation with respect to p:

N - 0v/0x - 0X/dp + N - dv/op =0

dX/dp =- (N - dv/ox) -1 - N - dv/dp

» This equation relates systemic changes in steady-state
concentrations X to changes in rates v

> The matrix F=-(N-dv/ox)~1-N
contains all concentration control coefficients
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Expressing systemic control
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Flux control

Differentiating the steady-state equation with respect to p:

N - 0v/ox - X/dp + N - dv/op =0

0X/dp =-371-N - dv/dp

» This equation relates systemic changes in steady-state
concentrations X to changes in rates v

» The matrix r=-31!-N
contains all concentration control coefficients

» Let us calculate the resulting steady-state flux:
J=v(X(p), p)
and differentiate it with respect to p:
0J/9p = dv/dx - 9X/dp + dv/dp
=(v/ox - T +1) - av/idp

» This equation relates systemic changes
in steady-state fluxes J to changes in rates v

> The matrix O=1+09v/iox T
contains all flux control coefficients
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Generalisation?

15 D. Kahn, Metabolic Control Theory

Generalisation

If the system shows conservation relationships
suchas [ATP]+[ADP]+[AMP] = constant

If the system shows conservation relationships
suchas [ATP]+[ADP]+[AMP] = constant
we need to reduce N to a matrix N° with maximal rank
corresponding to independent metabolite molarities x° :

N=L-N°
dx%dt = N° - v(x,p)
J=N0-9v/ox - L
F=-L-G-1-NO
®=1+0v/ox T
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Normalised control coefficients

It is customary to express control in terms of dimension-less
normalised control coefficients :

E an 81an
Flux control J==_—1=
J,0E  JdlnE
X E oX; dlnX,
Concentration control Cl=—t—>=
X; d  dInE

where the E; parameters denote enzyme activities,
usually expressed in the same units as J; (M.s).
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Summation relationships

Summation theorems follow directly
by derivation with respect to o
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Response coefficients

The linearised response of the system to a change in any
parameter p, can be expressed from control coefficients and
elasticity coefficients:

P aJ. P dJ. Jv )
R =3 T g~ T

i 9B ik ogcdp K

v,
where Sik =B

v, 9p,

are normalised elasticity coefficients expressing the sensitivities
of rates to parameter changes.

The Ri are called response coefficients
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Scaling of fluxes with enzyme activities

The steady-state equation:
N-v(X,E)=0

is invariant to an arbitrary scaling of activities E:
v(X,0E) = oav(X,E), Voe R*

Therefore the flux vector J is a 15t order homogeneous function
of enzyme activities E:

J(0E) = oJ(E), Voe R*
and concentrations X are 0-order homogeneous functions:
X(aE) =X(E), VYoe R*
D. Kahn, Metabolic Control Theory 20

Summation relationships

Summation theorems follow directly
by derivation with respect to o

aJ

For fluxes : ZEIa—Ej=Jj:>ZCIj=1
I i |

Flux control is distributed across the system

X
For molarities : ZC. =0
I
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Response coefficients

R =2 Cief
k

The response of the network depends on two factors:
- the sensitivities of enzymes to parameter ; (a molecular property)

- the control exerted by these enzymes on the flux (a systemic property)

One can similarly define response coefficients for metabolite
concentrations:

Rx' = chxlgik
k
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Connectivity relationships

F=-L-31 N
= I'-ov/ox-L=-L

O=1+9Jv/iox T
= ® - Jdv/ox-L=0
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Connectivity relationships

chxigik = _5ij
K

D> Clef =0
k

These relationships can be interpreted in terms of the internal
system’s response to perturbations of X
They are necessary for the system’s stability:

The system counteracts fluctuations of X,

The rest of the system is insensitive to these fluctuations at 15t order
approximation
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Further reading

» Part 1 to 3.2 of Sauro (2004) Network dynamics
in Computational Systems Biology, Methods in Molecular
Biology vol. 541, pp. 269-290, Humana Press

» Understanding the Control of Metabolism, by David Fell
Portland Press, London, 1997
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Connectivity relationships

When using normalised elasticities, connectivity relationships
must be expressed with respect to independent variables x°:

XV
LS

ZCkXJgik = _5ij
P

D Clef =0
k

™

Lifi=j

where 5". is Kronecker’s symbol: 5”- ={0 i |
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Summary

» The system’s response depends on both enzyme properties
and network structure

» Fluxes are constrained to a low-dimension subspace because
of metabolite pool balancing at steady-state

» Control of flux is generally distributed across the system
(no ‘bottleneck’)
« This is important for biotechnology and pharmacology!

» The system’s behaviour can be thought of under a general
action-reaction principle:
« It usually buffers changes imposed externally
« It counteracts internal fluctuations
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For the practical course

» Familiarize yourself with the COPASI modeling environment
http://www.copasi.org

« COPASI handbook

> Be prepared to use your favourite mathematical package
such as Scilab, Maple, R or Matlab
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