Introduction to Modular Response Analysis

Daniel Kahn Laboratoire d'Ecologie Microbienne Lyon 1 University & INRA MIA Department

Daniel.Kahn@univ-lyon1.fr

Modular Response Analysis

Untangling the wires: A strategy to trace functional interactions in signaling and gene networks

Kholodenko et al. (2002), PNAS 99:12481-12486

Inverse engineering problem: given observable steady-state responses of the whole system to perturbations, deduce internal interactions

D. Kahn, Modular Response Analysis

Underlying assumptions

- > Each module reaches a steady-state that is stable on its own
- Each module i communicates with other modules through only one molecular species x_i (this assumption can be relaxed)
- There are module-specific parameters that can be acted upon experimentally

Quantifying module interactions

Let us consider the evolution of module i:

$$\dot{x}_i = f_i(\mathbf{x}, \mathbf{p})$$

At steady-state of module i:

$$f_i(\mathbf{x},\mathbf{p}) = 0$$

has a solution X_i that depends on the other states x_i so that:

$$\begin{split} &\frac{\partial f_{i}}{\partial x_{i}}\frac{\partial X_{i}}{\partial x_{j}} + \frac{\partial f_{i}}{\partial x_{j}} = 0\\ &\frac{\partial X_{i}}{\partial x_{j}} = - \left(\frac{\partial f_{i}}{\partial x_{j}}\right) \middle/ \left(\frac{\partial f_{i}}{\partial x_{i}}\right) \end{split}$$

expresses the sensitivity of module i to other modules j.

D. Kahn, Modular Response Analysis

D. Kahn, Modular Response Analysis

Quantifying module interactions

One defines local response coefficients reflecting how module i at steady-state responds to changes in the output of module j with other modules unchanged:

$$\begin{cases} r_{ij} := \frac{x_{j}}{X_{i}} \frac{\partial X_{i}}{\partial x_{j}} = \left(\frac{\partial \ln X_{i}}{\partial \ln x_{j}}\right)_{\text{module } i \text{ at steady-state}} & \text{if } i \neq j \\ r_{i} := -1 & \text{otherwise} \end{cases}$$

These coefficients reflect the regulatory interactions between the modules.

Quantifying module interactions

One defines local response coefficients reflecting how module i at steady-state responds to changes in the output of module j with other modules unchanged:

$$\begin{cases} r_{ij} \coloneqq \frac{x_j}{X_i} \frac{\partial X_i}{\partial x_j} = \left(\frac{\partial \ln X_i}{\partial \ln x_j}\right)_{\text{module } i \text{ at steady-state}} & \text{if } i \neq j \\ r_{i:} \coloneqq -1 & \end{cases}$$

However they are not directly observable in the entire system because of interactions with other modules.

D. Kahn, Modular Response Analysis

D. Kahn, Modular Response Analysis

Quantifying the global system response

Global response coefficients express the observable response in module i when the entire system relaxes to a new steadystate in response to a perturbation p_i specific of module j:

$$R_{i,p_j} := \left(\frac{d \ln X_i}{dp_j}\right)_{\text{entire system at steady-state}}$$

D. Kahn, Modular Response Analysis

Decomposing the system response

The response of module i is the sum of all responses mediated by modules k and of the direct effect of the perturbation when

$$R_{i,p_j} = \sum_{k \neq i} r_{ik} R_{k,p_j}$$
 for $i \neq j$

$$R_{i,p_i} = \sum_{k \neq i} r_{ik} R_{k,p_i} + \left(\frac{\partial \ln X_i}{\partial p_i}\right)_{\text{module } i \text{ at steady-state}}$$

D. Kahn, Modular Response Analysis

Inferring the regulatory structure

$$\begin{split} \mathbf{r} \cdot \mathbf{R}_{\mathbf{p}} + diag\left(\mathbf{r}_{\mathbf{p}}\right) &= 0 \\ \text{where } r_{p_i} = & \left(\frac{\partial \ln X_i}{\partial p_i}\right)_{\text{module } i \text{ at steady-state}} \end{split}$$

 $\mathbf{r} = -diag(\mathbf{r}_{\mathbf{p}}) \cdot \mathbf{R}_{\mathbf{p}}^{-1}$

Note that \mathbf{R}_{n} is nonsingular

if
$$\frac{\partial \mathbf{f}}{\partial \mathbf{p}}$$
 and Jacobian $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ are nonsingular

D. Kahn, Modular Response Analysis

Inferring the regulatory structure

$$\mathbf{r} = -diag\left(\mathbf{r}_{\mathbf{p}}\right) \cdot \mathbf{R}_{\mathbf{p}}^{-1}$$

whose diagonal terms are

$$-1 = -r_{p_i} \left(\mathbf{R}_{\mathbf{p}}^{-1} \right)_{ii}$$

therefore

Example of MRA success

Erk response determining PC-12 cell fate Santos et al. (2007) Nature Cell Biol. 9:324-330

$$diag\left(\mathbf{r}_{\mathbf{p}}\right) = \left[diag\left(\mathbf{R}_{\mathbf{p}}^{-1}\right)\right]^{-1}$$

D. Kahn, Modular Response Analysis

Inferring the regulatory structure

We can therefore derive an explicit relationship to calculate the local response matrix \boldsymbol{r} from the global response matrix $\boldsymbol{R}_{\text{p}}$:

$$\mathbf{r} = -\left[\operatorname{diag}\left(\mathbf{R}_{\mathbf{p}}^{-1}\right)\right]^{-1} \cdot \mathbf{R}_{\mathbf{p}}^{-1}$$

The matrix r provides the regulatory structure of the system. It is a normalized inverse of $\hat{R}_{\rm p}$

Because these relationships derive from $\dot{x}_i = f_i(\mathbf{x}, \mathbf{p}) = 0$ they can also be generalized to extremal responses, not only to steady-state responses.

Growth factor-induced MAPK network topology shapes

D. Kahn, Modular Response Analysis

D. Kahn, Modular Response Analysis

Global responses

D. Kahn, Modular Response Analysis

Local responses

D. Kahn, Modular Response Analysis

MAPK regulatory structure

Different responses of the MAPK cascade to EGF and NGF are accompanied by a different feed-back pattern.

The positive loop generates a bistable behaviour in the presence of NGF.

D. Kahn, Modular Response Analysis

Unimodal response to EGF

D. Kahn, Modular Response Analysis

Bimodal response to NGF

D. Kahn, Modular Response Analysis