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Jacobian of a differential system

Let us consider a system of ordinary differential equations (ODEs)

dx/dt = f(x)
We define its Jacobian matrix as the matrix of its partial derivatives

 := f/x
which is a square matrix
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System evolution around steady-state
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Let us now consider the system around a steady-state X

dx/dt (X) = f(X) = 0

In the vicinity of X we may use the first order approximation

dx/dt ~ ꞏ [ x – X ]
which integrates into 

x – X = exp(t) ꞏ [ x(0) – X ]
using the matrix exponential
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Stability conditions around steady-state

Consider the eigenvalues  of the Jacobian matrix

The steady-state is unstable if

,Re( ) 0

The steady-state is exponentially stable if

, Re( ) 0

with relaxation times 1/ | Re( ) |

and frequencies 
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Jacobian of a metabolic system

From the evolution equation

dx /dt = N ꞏ v(x,p)

we derive the Jacobian

= N ꞏ v/x
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Jacobian of a metabolic system

However this Jacobian is singular if N has not maximal rank.

It is then useful to reduce the system to independent variables:

dx0/dt = N0 ꞏ v(x,p)

with N = L ꞏ N0

x/x0 = L

and we derive the Jacobian

 = N0 ꞏ v/x ꞏ L
that must be definite negative
for the system to be asymptotically stable
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Shifting between steady-states

Starting from a steady-state X1, what happens if we perturb the 
rates v with a small change in parameters p ?
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where  is the new steady-state. 
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Shifting between steady-states

These relationships express the changes in steady-state
concentrations X and fluxes J in response to a change in the 
enzyme rates v
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which integrates into:

( ) exp . .

 being definitive negative for the steady-state to be stable:
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