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Jacobian of a differential system

Let us consider a system of ordinary differential equations (ODEs)

dx/dt = f(x)
We define its Jacobian matrix as the matrix of its partial derivatives

 := f/x
which is a square matrix
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System evolution around steady-state
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Let us now consider the system around a steady-state X

dx/dt (X) = f(X) = 0

In the vicinity of X we may use the first order approximation

dx/dt ~ · [ x – X ]
which integrates into 

x – X = exp(t) · [ x(0) – X ]
using the matrix exponential
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Stability conditions around steady-state

Consider the eigenvalues  of the Jacobian matrix

The steady-state is unstable if

,Re( ) 0

The steady-state is exponentially stable if

,Re( ) 0

with relaxation times 1/ | Re( ) |

and frequencies 
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Bifurcations

Consider the eigenvalues (p) of the Jacobian matrix

when parameters vary

A saddle-node bifurcation corresponds to a zero-crossing

of one real eigenvalue  

A Hopf bifurcation corresponds to a zero-cros
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of the real parts Re( ) of one pair of conjugated eigenvalues

Re( ) 2

There are several other more complex bifurcation types
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Jacobian of a metabolic system

From the evolution equation

dx/dt = N · v(x,p)

we derive the Jacobian

= N · v/x
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Jacobian of a metabolic system

However this Jacobian is singular if N has not maximal rank.

It is then useful to reduce the system to independent variables:

dx0/dt = N0 · v(x,p)

with N = L · N0

x/x0 = L

and we derive the Jacobian

 = N0 · v/x · L
that must be definite negative for the system to be stable
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What makes a metabolic system stable?

Steuer et al. (2006), PNAS 103:11868-11873

Different notations:
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What makes a metabolic system stable?

so that the system evolution follows:

d / ( )

where

:

is the matrix of normalized elasticities (usually noted )
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Example: simplified yeast glycolysis

with an inhibition parameter  for PFK by ATP:

1 1ATP
  
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Stoichiometry matrix
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Normalized elasticity matrix
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Effect of ATP feedback on stability
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Stabilization and saturation

Random sampling of parameters:

destabilization by saturation of ATP consumption
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Stabilization and saturation
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Stabilization and saturation

Random sampling of parameters

Constraining far from saturation8 6 7 0.9ATP Pyr TP
      
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Stabilization by feedback

Random sampling of parameters
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Destabilization by feedback


