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System evolution around steady-state

Let us now consider the system around a steady-state X
dx/dt (X) =£(X)=0
In the vicinity of X we may use the first order approximation
dx/dt~3 - [x—-X]
which integrates into
x— X =exp(3t) - [x(0) - X]
using the matrix exponential

exp(St)::Z%Sktk

o
k=0
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Bifurcations

Jacobian of a differential system

Let us consider a system of ordinary differential equations (ODEs)

dx/dt = f(x)

We define its Jacobian matrix as the matrix of its partial derivatives

3 = oflox

which is a square matrix
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Stability conditions around steady-state

Consider the eigenvalues A, of the Jacobian matrix

The steady-state is unstable if
Ji,Re(4)>0

The steady-state is exponentially stable if

Vi,Re(4) <0
with relaxation times 7; =1/ |Re(4,) |
and frequencies @, = [m(A)|

2z

Consider the eigenvalues A (p) of the Jacobian matrix

when parameters vary

A saddle-node bifurcation corresponds to a zero-crossing

of one real eigenvalue /;

A Hopf bifurcation corresponds to a zero-crossing

of the real parts Re(4;) of one pair of conjugated eigenvalues
Re(4;) £ 2izw;

There are several other more complex bifurcation types
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Jacobian of a metabolic system
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From the evolution equation
dx/dt =N - v(x,p)
we derive the Jacobian

I =N"ov/ox
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Jacobian of a metabolic system

However this Jacobian is singular if N has not maximal rank.
It is then useful to reduce the system to independent variables:
dx%dt =N - v(x,p)
with N=L"-N°
ox/ox’=L
and we derive the Jacobian
JI=NO-0v/ox - L

that must be definite negative for the system to be stable
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What makes a metabolic system stable?

so that the system evolution follows:
dx /dt=A-p(x)

SzA«a—p‘
Ox

where

9:=@

Ox

is the matrix of normalized elasticities (usually noted ¢€)
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Stoichiometry matrix

ATP —8 — App
NADY  NADH NADH NAD*
e D mppp e WAL gy v L WAL Ly
H NADH R H
2 ATP-' 2 ADP JW 2ADP 2ATP |
NaD®
L3 Iy iy by by g iy My

FBP +1 -1 o o 0o 0o 0 o0

TP 0+ -1 0 0 0 -1 0

BPG 0 0 1 -l o o 0 0

PywACA| 0 0 0 +1 -1 -1 o 0

ATP -2 0 0 2 0 0 0 -1

NADH 0 0+ 0 -1 0 -1 0

NAD* 0 0 1 0 +1 0 +1 0

ADP +2 c 0o -2 0O 0 0 %1

What makes a metabolic system stable?

Structural kinetic modeling of metabolic networks

Ralf Stewsr*", Thilo Gross*Y, Joachim Selbig"™, andi Bernd Basius®

Steuer et al. (2006), PNAS 103:11868-11873
Different notations:
X; normalized by X; (dimensionless)
V; normalized by J;
=V,
Ay =Nyd, /X
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Example: simplified yeast glycolysis

Vg

ATP ADP
NAD®  NADH NADH NAD"

v v. v v
Gle —= N TBP gy WA por e pon

H NADH H
2 ATP-* 2 ADP v 2ADP 2ATP |

]
NAD*

with an inhibition parameter & for PFK by ATP:

Onp =1-¢
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Normalized elasticity matrix
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Vs

ATP ADP
NADY  NADH NADH NAD*

v v v vg
Gl L mppp ez e MA L g 4 T -

H NADH R H
2 ATP-' 2 ADP Vo 2ADP 2 ATP

NaD®

| FBP TP BPG Py/ACA ATP NADH NAD* ADP

w| 0 ] 0 [0] [} 0 0 0
|y 0 0 0 0 0 0 0
wl| 0 #yp 0 0 o 0 Fan 0
vl 0 0 B 0 0 0 0 e
w| O 0 o B 0 ®aon o 0
w| 0 ] 0 o (] 0 0 0
wl 0 #, 0 0 0 8apn ] 0
Vs o o o 0 Frp 0 o 0
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Effect of ATP feedback on stability Stabilization and saturation

Random sampling of parameters:
destabilization by saturation of ATP consumption
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Stabilization and saturation Stabilization and saturation

Random sampling of parameters

Constraining 6%, = 62

s = 045 = 0.9 far from saturation
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Stabilization by feedback Destabilization by feedback

Random sampling of parameters
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