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To develop and investigate detailed mathematical models of meta-
bolic processes is one of the primary challenges in systems biology.
However, despite considerable advance in the topological analysis of
metabolic networks, kinetic modeling is still often severely hampered
by inadequate knowledge of the enzyme–kinetic rate laws and their
associated parameter values. Here we propose a method that aims to
give a quantitative account of the dynamical capabilities of a meta-
bolic system, without requiring any explicit information about the
functional form of the rate equations. Our approach is based on
constructing a local linear model at each point in parameter space,
such that each element of the model is either directly experimentally
accessible or amenable to a straightforward biochemical interpreta-
tion. This ensemble of local linear models, encompassing all possible
explicit kinetic models, then allows for a statistical exploration of the
comprehensive parameter space. The method is exemplified on two
paradigmatic metabolic systems: the glycolytic pathway of yeast and
a realistic-scale representation of the photosynthetic Calvin cycle.

systems biology � computational biochemistry � metabolomics � metabolic
regulation � biological robustness

Cellular metabolism constitutes a complex dynamical system and
gives rise to a wide variety of dynamical phenomena, including

multiple steady states and temporal oscillations. The elucidation,
understanding, and eventually prediction of the behavior of met-
abolic systems represent one of the primary challenges in the
postgenomic era (1–5). To this end, substantial effort has been
dedicated in recent years to develop and investigate detailed models
of cellular metabolic processes (6, 7).

Once a mathematical model is established, it can serve a multi-
tude of purposes: It can be regarded as a ‘‘virtual laboratory’’ that
allows the building up of a characteristic description of the system
and gives insights into fundamental design principles of cellular
functions, such as adaptability, robustness, and optimality (8–10).
Likewise, mathematical models of cellular metabolism serve as a
basis to investigate questions of major biotechnological importance,
such as the effects of directed modifications of enzymatic activities
to improve a desired property of the system (11).

However, although there has been a formidable progress in the
structural (or topological) analysis of metabolic systems (12, 13),
and despite the long history of metabolic modeling, dynamic models
of cellular metabolism incorporating a realistic complexity are still
scarce.

This scarcity is owed to the fact that the construction of such
models encompasses a number of profound difficulties. Most
importantly, the construction of kinetic models relies on the precise
knowledge of the functional form of all involved enzymatic rate
equations and their associated parameter values. Furthermore,
even if both are available from the literature, parameter values may
(and usually do) depend on many factors such as tissue type or
experimental and physiological conditions. Likewise, most en-
zyme–kinetic rate laws have been determined in vitro, and often
there is only little guidance available whether a particular rate
function is still appropriate in vivo.

In this work, we aim to overcome some of these difficulties and
propose a bridge between structural modeling, which is based on
the stoichiometry alone (12–14), and explicit kinetic models of
cellular metabolism. In particular, we demonstrate that it is possible

to acquire an exact, detailed, and quantitative picture of the
bifurcation structure of a given metabolic system, without explicitly
referring to any particular set of differential equations.

Our approach starts with the observation that in most circum-
stances an explicit kinetic model is not necessary. For example, to
determine under which conditions a steady state loses its stability,
only a local linear model of the system at this state is needed, i.e.,
we only need to know the eigenvalues of the associated Jacobian
matrix. Note that by stating this assertion, and unlike related
approaches to qualitative modeling (14, 15), we do not aim at an
approximation of the system. The boundaries of an oscillatory
region in parameter space that arise out of a Hopf (HO) bifurcation
are actually and exactly determined by the eigenvalues of the
Jacobian. Likewise, other bifurcations, including bifurcations of
higher codimension, can be deduced from the spectrum of eigen-
values and give rise to specific dynamical behavior.

The basis of our approach thus consists of giving a parametric
representation of the Jacobian matrix of an arbitrary metabolic
system at each possible point in parameter space, such that each
element is accessible even without explicit knowledge of the
functional form of the rate equations. Once this representation of
the Jacobian is obtained, it allows to give a detailed statistical
account of the dynamical capabilities of a metabolic system, in-
cluding the stability of steady states, the possibility of sustained
oscillations, as well as the existence of quasiperiodic and chaotic
regimes. Moreover, the analysis is quantitative, i.e., it allows the
deduction of specific biochemical conditions under which a certain
dynamical behavior occurs and allows the assessment of the plau-
sibility or robustness of experimentally observed behavior by re-
lating it to a quantifiable region in parameter space.

Structural Kinetic Modeling
The temporal behavior of a metabolic network, consisting of m
metabolites and r reactions, can be described by a set of
differential equations (6)

dS� t�
dt

� N��S, k� , [1]

where S denotes the m-dimensional vector of biochemical reactants
and N the m � r stoichiometric matrix. The r-dimensional vector of
reaction rates �(S, k) consists of nonlinear (and often unknown)
functions, which depend on the substrate concentrations S, as well
as on a set of parameters k.

In the following, we will not assume explicit knowledge of the
functional form of the rate equations but instead aim at a para-
metric representation of the Jacobian of the system. As the only
mathematical assumption about the system, we require the exis-
tence of a positive state S0 that fulfills the steady-state condition
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N�(S0, k) � 0. Note that the state S0 is not required to be unique
or stable.

Using the definitions (16, 17)

xi�t� :�
Si�t�
Si

0 , �ij :� Nij

� j�S0�

Si
0 and � j�x� :�

� j�S�

� j�S0�
, [2]

with i � 1, . . . , m and j � 1, . . . , r and applying the variable
substitution Si � xiSi

0, the system can be rewritten in terms of new
variables x(t)

dx
dt

� ���x� . [3]

The corresponding Jacobian of the normalized system at the
steady state x0 � 1 is

Jx � �
���x�

�x
�

x0�1
�: ��x

�. [4]

Because the new variables x are related to S by a simple
multiplicative constant, Jx can be straightforwardly transformed
back into the original Jacobian.

Any further evaluation of the Jacobian now rests on the inter-
pretation of the terms in Eq. 4. We begin with an analysis of the
matrix �: Its elements �ij have the units of an inverse time and
consist of the elements of the stoichiometric matrix N, the vector of
steady-state concentrations S0, and the steady-state fluxes �(S0).
Provided a metabolic system is designated for mathematical mod-
eling, we can assume that there exists some knowledge about the
relevant concentrations, i.e., for each metabolite, we can specify an
interval Si

� � Si
0 � Si

�, which defines a physiologically feasible range
of the respective concentration. Furthermore, the steady-state
fluxes �(S0) are subject to the mass-balance constraint N�(S0) � 0,
leaving only r � rank(N) independent reaction rates (6). Again, an
interval �i

� � �i
0 � �i

� can be specified for all independent reaction
rates, defining a physiologically admissible flux space.

In the following, we denote S0 and �(S0), usually correspond-
ing to an experimentally observed state of the system, as the
‘‘operating point’’ at which the Jacobian is to be evaluated. This
information, together with the stoichiometric matrix N, fully
specifies the matrix �.

The interpretation of the matrix �x
� in Eq. 4 is slightly more subtle

because it involves the derivatives of the unknown functions �(x)
with respect to the new normalized variables at the point x0 � 1.
Nevertheless, an interpretation of these parameters is possible and
does not rely on the explicit knowledge of the detailed functional
form of the rate equations: Each element �xi

�j of the matrix �x
�

measures the normalized degree of saturation of the reaction �j with
respect to a substrate Si at the operating point S0. In particular, the
dependence of almost all biochemical rate laws �j(S) on a biochem-
ical reactant Si can be written in the form �j(S, k) � kvSi

n�fm(S, k),
where n denotes an integer exponent and fm(S, k) a polynomial of
order m in Si with positive coefficients k. All other reactants have
been absorbed into k (6). After applying the transformation of Eq.
2, we obtain

�xi

�j �
�� j�x�

�xi
�

x0�1
� n � �m , [5]

with � � [0, 1] denoting a free variable in the unit interval. The
limiting cases are always limSi

030� � 1 and limSi
03�� � 0. To

evaluate the matrix �x
�, we thus restrict each saturation parameter

to a well defined interval, specified in the following way: As for most
biochemical rate laws n � m � 1, the partial derivative usually takes
a value between zero and unity, determining the degree of satu-
ration of the respective reaction. In the case of cooperative behavior

with exponents n � m 	 1, the normalized partial derivative lies in
the interval [0, n] and, analogously, in the interval [0, �m] for
inhibitory interaction with n � 0 and m 	 1. For examples and proof
of Eq. 5, see, respectively, Materials and Methods and the Supporting
Appendix and Figs. 8–11, which are published as supporting infor-
mation on the PNAS web site.

The matrices �x
� and �, as defined above, fully specify the

Jacobian of the system. In the following, both quantities are treated
as free parameters, defining the physiologically admissible ‘‘param-
eter space’’ of the system. Importantly, our representation of the
Jacobian fulfills the following three essential conditions. (i) The
reconstructed Jacobian represents the exact Jacobian at this point
in parameter space. There is no approximation involved. (ii) Each
term in the Jacobian is either directly experimentally accessible,
such as flux or concentration values, or has a well defined bio-
chemical interpretation, such as a normalized degree of saturation
of a given reaction. (iii) The Jacobian does not depend on a
particular choice of specific rate functions. Rather, it encompasses
all possible kinetic models of the system that are consistent with the
considerations above. In this sense, the reconstructed Jacobian is
exhaustive.

An Illustrative Example
Before an application to more detailed biochemical models, we
exemplify our approach using a simple hypothetical pathway.
Suppose the reaction scheme depicted in Fig. 1, consisting of two
metabolites and three reactions, is designated for mathematical
modeling. The starting point of our analysis is then usually an
experimentally observed operating point, characterized by metab-
olite concentrations S0 � (G0, T0) and flux values �0 � (�1

0, �2
0, �3

0).
Furthermore, an analysis of the stoichiometric matrix N reveals that
there is only one independent steady-state reaction rate c, with �1

0 �
�2

0 � c, and �3
0 � 2c. Thus, we only require knowledge of the average

overall flux through the pathway, specifying the value c. This
information already enables the construction of the matrix �, which
defines the operating point at which the system is to be evaluated.

� � � c�G0 �c�G0 0
0 2c�T0 �2c�T0� . [6]

The only remaining parameters are now the elements of the
matrix �x

�. Starting with the dependence of each reaction on its
substrate and assuming conventional biochemical rate laws, we
obtain �G

�2 � 	0, 1
, specifying the degree of saturation of �2 with
respect to its substrate glucose (G). Furthermore, �T

�3 � 	0, 1

specifies the degree of saturation of �3 with respect to ATP (T).
Additionally, the known regulatory feedback of the metabolite T
upon the reaction �2 is incorporated by �T

�2 � 	0, n
, where n 	 1
denotes a positive integer. The matrix �x

� thus contains three
nonzero values, each restricted to a well defined interval

Fig. 1. A simple pathway, reminiscent of a minimal model of yeast glycolysis
(18). One unit of glucose (G) is converted into two units of ATP (T), with ATP
exerting a positive feedback on its own production. (Upper) A schematic
representation. (Lower) The corresponding set of differential equations with
the unspecified rate functions �1 � const, �2(G, T) and �3(T).
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�x
� � � 0 0

�G
�2 �T

�2

0 �T
�3
� . [7]

We emphasize that the three elements of �x
� represent bona fide

parameters of the system, specifying the Jacobian matrix no less
unique and quantitative than a corresponding set of Michaelis
constants. Given the elements of �x

� as free parameters, we thus
have obtained a parametric representation of the Jacobian matrix,
which encompasses all possible kinetic models consistent with the
experimentally observed operating point. In the remainder of this
work, we use our approach to evaluate the dynamical capabilities of
two more complex examples of metabolic system.

Glycolytic Pathway
Among the most classical and probably best studied examples of a
biochemical oscillator is the breakdown of sugar by means of
glycolysis in yeast. Damped and sustained glycolytic oscillations
have been observed for several decades and have triggered the
development of a large variety of kinetic models (18–20). In the
following, we will address some of the characteristic questions that
led to the development of those earlier models and show that these
questions can be readily answered by using the concept of structural
kinetic modeling. Given a schematic representation of the pathway,
as depicted in Fig. 2, the first and foremost question is to establish
whether the proposed reaction mechanism indeed facilitates sus-
tained oscillations at the observed operating point. And, if yes, what
are the specific kinetic conditions under which sustained oscilla-
tions can be expected?

We start out by constructing the matrix � using the experimen-
tally observed state S0 and �0, identified here with the average
concentration and flux values reported in refs. 19 and 20. Addi-
tionally, the matrix of saturation coefficients �x

� has to be specified.
For simplicity, we assume that all reactions are irreversible and
depend on their respective substrates only, resulting in 13 free
parameters. Based on our discussion of conventional biochemical
rate laws above, the saturation coefficients are restricted to the unit
interval �S

� � [0, 1].
For the dependence of the PFK–HK reaction on ATP, we follow

a previously proposed kinetic model (19) and assume linear acti-
vation because of its effect as a substrate and a saturable inhibition
involving a positive exponent n 	 1. The corresponding parameter
is thus �ATP

�1 � 1 � 
, with 
 � [0, n]. No further assumptions about
the detailed functional form of any of the rate equations are
necessary. For an explicit representation of both matrices � and �x

�,
see the Supporting Appendix. To investigate the possibility of
sustained oscillation, we begin with the most simple scenario and set
�S

� � 1 for all reactions, corresponding to bilinear mass-action
kinetics. Note, however, that the inhibition term is still assumed to
be an unspecified nonlinear function. Fig. 3 shows the largest

eigenvalue of the resulting Jacobian at the experimentally observed
operating point as a function of the feedback strength 
. For
sufficient inhibition, the spectrum of eigenvalues passes through a
HO bifurcation, and the system facilitates sustained oscillations.
Importantly, for a HO bifurcation to occur at the observed oper-
ating point, an exponent n 	 2 is needed, irrespective of the detailed
functional form of the rate equation.

We have to highlight one fundamental aspect of our analysis:
Given our parametric representation of the Jacobian, the impact of
the inhibition is decoupled from the steady-state concentrations
and flux values the system adopts (the latter being solely deter-
mined by the matrix �). Thus, we specifically ask whether the
assumed inhibition is indeed a necessary condition for the obser-
vation of oscillations at the experimentally observed operating
point. In contrast to this fact, using a conventional kinetic model
and reducing the influence of the regulation, i.e., by increasing the
corresponding Michaelis constant, would concomitantly result in
altered steady-state concentrations, thus not straightforwardly con-
tributing to the answer to this question.

Furthermore, because glycolytic oscillations have no obvious
physiological role and are only observed under rather specific
experimental conditions, some questions concerning their possible
functional significance have been raised. One assertion is that the
observed oscillations might only be an unavoidable side effect of the
regulatory interactions, optimized for other purposes (6). Indeed, as
shown in Fig. 3, a varying feedback strength 
 allows for different
dynamical regimes. In particular, an intermediate value speeds up
the response time with respect to perturbations, as also frequently
observed in explicit models of cellular regulation (21).

Statistical Analysis of the Parameter Space
Going beyond the case of bilinear kinetics, we now evaluate the
properties of a Jacobian at the most general level. All saturation
coefficients �S

� � (0, 1] are allowed to take arbitrary values in the
unit interval, encompassing all possible explicit kinetic models of
the pathway shown in Fig. 2. The steady-state concentrations and

Fig. 2. A medium-complexity representation of the yeast glycolytic pathway
(19). The system consists of eight metabolites and eight reactions. The main
regulatory step is the phosphofructokinase (PFK), here combined with the
hexokinase (HK) reaction into the reaction rate �1. Although PFK is known to
have several effectors, we only consider the inhibition by its substrate ATP (19)
(see Supporting Appendix for further details). Glc, glucose; FBP, fructose-1,6-
biphosphate; TP, pool of triosephosphates; BPG, 1,3-biphosphoglycerate; Pyr,
pool of pyruvate and acetaldehyde; EtOH, ethanol. Glc and EtOH are assumed
to be the external source and sink, respectively.

Fig. 3. Dynamics of the glycolytic pathway. (Upper) The eigenvalue with the
largest real part as a function of the inhibitory feedback strength 
 of ATP on
the combined PFK–HK reaction �1. All other saturation parameters are �x

� � 1.
Shown is the real part �R

max (solid line) together with the imaginary part �I
max

(dashed line). At the HO, a complex conjugate pair of eigenvalues �max �
�R

max � i�I
max crosses the imaginary axis. (Lower) A varying feedback strength


 allows for four different dynamical regimes. Shown are time courses of
fructose-1,6-biphosphate (FBP) using an explicit kinetic model at the points
a–d indicated above. Point a, slow relaxation to the stable steady state; point
b, optimal response to perturbations, as determined by the minimal largest
eigenvalue �R

max; point c, oscillatory return to the stable steady state; point d,
sustained oscillations. All different regimes can be deduced solely from the
Jacobian and are only exemplified by using the explicit model. For rate
equations and kinetic parameters, see Fig. 12 and the Supporting Appendix.
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flux values are again restricted to the experimentally observed
operating point. To assess the dynamical properties of the system,
the saturation coefficients �S

� � (0, 1] are repeatedly sampled from
a uniform distribution. For each random realization the Jacobian is
evaluated, and the largest real part �R

max of its eigenvalues is
recorded. Fig. 4 shows the histogram of the largest real part within
the spectrum of eigenvalues, with �R

max � 0 implying instability of
the operating point. In the absence of inhibitory feedback 
 � 0, the
operating point is likely to be unstable, i.e., most realizations result
in a spectrum of eigenvalues with at least one positive real part.

Two ways to circumvent this inherent instability are conceivable.
First, we can ask about the dependence on particular reactions, that
is, whether the saturation (or nonsaturation) of a specific reaction
contributes to an increased stability of the system. To this end, the
correlation coefficient between �R

max, reflecting the stability of the
system, and the saturation parameters �S

� was estimated. Indeed,
several parameters �S

� show a strong correlation with �R
max, indicat-

ing that their value essentially determines the stability of the system
(for data see Supporting Appendix and Figs. 12–14, which are
published as supporting information on the PNAS web site). Fig. 4
Left depicts the distribution of �R

max under the assumption that these
reactions are restricted to weak saturation. In this case, the resulting
distribution is shifted toward negative values, corresponding to an
increased probability of the system to operate at a stable steady
state.

The second option to ensure stability of the system arises from
the negative feedback of ATP upon the combined PFK–HK
reaction. Fig. 4 Right shows the distribution of the largest real part
�R

max of the eigenvalues for a nonzero feedback strength 
 � 0.
Again, the distribution is markedly shifted toward negative values,
increasing the probability of a stable steady state.

To investigate the role of the feedback in more detail, Fig. 5
depicts the distribution of �R

max as a function of the feedback
strength 
. As can be observed, in the absence of the regulatory
feedback the system is prone to instability, i.e., it is not possible (or
rather unlikely) for the observed operating point to exist as a stable
steady state. Subsequently, as the feedback strength is increased, the
probability of obtaining a stable steady state increases. For an
intermediate value 
 � 1, the system is fully stable: Any realization
of the Jacobian will result in a stable steady state, independent of
the detailed functional form of the rate equations or their associ-
ated parameters. However, as the feedback is increased further, the
operating point again loses its stability. This time the instability

arises out of a HO bifurcation, indicating the presence of sustained
oscillations.

Based on these findings, we can summarize some essential
properties of the pathway depicted in Fig. 2: Given the experimen-
tally observed metabolite concentrations and flux values, our
results show that in the absence of the regulatory interaction it
would not be possible (or highly unlikely) to observe either sus-
tained oscillations or a stable steady state. However, for sufficiently
large inhibitory feedback, the system will inevitably exhibit sus-
tained oscillations. Furthermore, as the feedback strength 
 � [0, n]
is bounded by an exponent n of the (unspecified) rate equation, n 	
2 is required for the existence of sustained oscillations. As dem-
onstrated, our method thus allows one to derive the likeliness or
plausibility of the experimentally observed oscillations, as well as
the specific kinetic requirements for oscillations to occur, without
referring to the detailed functional form of the rate equations.

Photosynthetic Calvin Cycle
The CO2-assimilating Calvin cycle, taking place in the chloroplast
stroma of plants, is a primary source of carbon for all organisms and
is of central importance for many biotechnological applications.
However, even when restricting an analysis to the core pathway, the
construction of a detailed kinetic model already entails consider-
able challenges with respect to the required rate equations and
kinetic parameters (22, 23).

In the following, we thus use a representation of the photosyn-
thetic Calvin cycle, as adapted from earlier kinetic models (22, 23),
to demonstrate the applicability of our approach to a system of a
reasonable complexity. The structural kinetic model consists of 18
metabolites, subject to 2 conservation relations, and 20 reactions,
including 3 export reactions, starch synthesis, and regeneration of
ATP. For a schematic representation of the pathway, see Supporting
Appendix and Figs. 15–17, which are published as supporting
information on the PNAS web site.

We seek to describe a general strategy to extract information
about the dynamical capabilities of the system, without referring to
an explicit set of differential equations. Our agenda focuses on (i)
the stability and robustness of the experimentally observed con-
centration and flux values, (ii) the relative impact or importance of
each reaction on the dynamical properties of the system, (iii) the
existence and quantification of different dynamical regimes such as
oscillations and multistability, and (iv) the possibility of complex or
chaotic temporal behavior.

Fig. 4. The distribution of the largest real part �R
max within the spectrum of

eigenvalues for 105 realizations of the Jacobian matrix. For each realization,
the 12 saturation parameters �S

� were sampled randomly from a uniform
distribution in the unit interval. An eigenvalue �R

max � 0 implies instability. In
the absence of the regulatory feedback (
 � 0, solid line), the observed
operating point of the system is likely to be unstable. (Left) Influence of
specific reaction rates. The saturation parameters showing the largest impact
on �R

max are restricted to weak saturation: �ATP
�8 � 0.9, �Pyr

�6 � 0.9, and �TP
�7 � 0.9.

The probability of finding �R
max 
 0 is markedly increased (dashed line). (Right)

For a nonzero feedback strength 
 � 0.92, the distribution of �R
max is shifted

toward negative values, i.e., most realizations of the Jacobian give rise to a
stable steady state (dashed line).

Fig. 5. The distribution of the largest real part �R
max of the eigenvalues as a

function of the feedback strength 
. All other saturation parameters are
sampled from a uniform distribution. (Left) Color-coded visualization of the
resulting distribution of �R

max (red, large; blue, small). (Right) The relative
fraction of models with �R

max � 0, implying the instability of the observed
operating point. The solid line (SN) denotes the case of a single positive real
part �R

max within the spectrum of eigenvalues, indicating an SN bifurcation.
The dashed line (HO) denotes the case of a pair of complex conjugate eigen-
values with positive real parts. Note that this result does not necessarily imply
sustained oscillations. However, it indicates the existence of a nearby HO
bifurcation, thus constituting prima facie evidence for oscillatory behavior.
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The starting point is again an experimentally observed state,
characterized by the vector of metabolite concentrations S0 and flux
values �0, as reported by Petterson and Ryde-Petterson (22).
Although additional knowledge on the reactions is often available,
for the moment we assume that all reactions depend only on their
substrates and products, with parameters �S

� � (0, 1] and �P
� � [0,

�1], respectively. This information, embedded within the matrices
� and �S

�, constitutes the structural kinetic model of the Calvin
cycle at the observed operating point.

As a first approximation, we commence with global saturation
parameters, �S

� and �P
�, set equal for all reactions. Although clearly

oversimplified, the resulting bifurcation diagram, depicted in Fig. 6,
already reveals some fundamental dynamical properties of the
system. First, the observed operating point is indeed a stable steady
state for most parameters �S

� and �P
�. Interestingly, however, in the

absence of product inhibition �P
� � 0, a steady state is no longer

feasible. In particular, for pure irreversible mass-action kinetics
(�S

� � 1, �P
� � 0), corresponding to a nonenzymatic chemical system,

the pathway could not operate at the observed steady state. Second,
for low product saturation (�P

� close to zero), a HO bifurcation
occurs. Although this result does not necessarily imply that this
region within parameter space is actually accessible under normal
conditions, it shows the dynamical capability of the system to
generate sustained oscillations; i.e., there exists a region in param-
eter space that allows for oscillatory behavior. Additionally, for low
values of the substrate saturation �S

�, a saddle-node (SN) bifurcation
occurs. This result shows that the observed steady state will
eventually lose its stability, i.e., there are conditions under which the
observed steady state is no longer stable. And, indeed, both
dynamical features have been observed for the Calvin cycle: Pho-
tosynthetic oscillations are known for many decades and have been
subject to extensive experimental and numerical studies (24).
Likewise, multistability was recently found in a detailed kinetic
model of the Calvin cycle and verified in vivo (23).

To proceed with a systematic analysis, the next step is to drop the
assumption of global saturation parameters. All individual param-
eters �S

� � (0, 1] are now allowed to take arbitrary values in the unit
interval, reflecting the full spectrum of possible dynamical capa-
bilities of the metabolic system. For simplicity, all reactions are still
restricted to weak saturation by their products �P

� � �1�3. Of
foremost interest is again the stability of the experimentally ob-
served operating point: Evaluating an ensemble of 5 � 105 random
realizations of the Jacobian at this operating point, the system gives
rise to a stable steady state in �94.3% of all cases (see Supporting
Appendix and Figs. 15–17 for convergence and dependence on

ensemble size). Thus, the stability of the observed operating point
is indeed generic and does not rely on a specific choice of the kinetic
parameters.

As for the remaining �5.7% of models, corresponding to the case
where the observed operating point is unstable, �5.1% give rise to
a single positive eigenvalue. Only �0.6% correspond to a more
complex situation, with two or more real parts �0. The latter case,
although only restricted to a small region within parameter space,
holds profound implications for the possible dynamics of the system.
As a further step within our approach, the existence of certain
bifurcations of higher codimension allows the prediction of specific
dynamics (see Materials and Methods). Fig. 7 shows a bifurcation
diagram of the Calvin cycle within a particular region of parameter
space where such bifurcations occur. Here, the system gives rise to
a Gavrilov–Guckenheimer (GG) bifurcation, implying the exis-
tence of quasiperiodic dynamics and making the existence of
chaotic dynamics likely. In close vicinity of the GG bifurcation, we
also find a double Hopf (DH) bifurcation, formed by the interaction
of two codimension-1 HO bifurcations. The generic existence of a
chaotic parameter region close to the DH bifurcation can be proven
(25, 26).

Thus, our results demonstrate the possibility of quasiperiodic and
chaotic dynamics for the model of the photosynthetic Calvin cycle,
without relying on any particular assumptions about the functional
form of the kinetic rate equations. Furthermore, because it is a
quantitative method, we can assert that complex dynamics at the
operating point are confined to a rather small region in parameter
space and that the experimentally observed steady state is gener-
ically stable.

Discussion and Conclusions
We have presented a systematic approach to explore and quantify
the dynamic capabilities of a metabolic system. Based on a para-
metric representation of the Jacobian matrix, constructed in such a
way that each element is either directly experimentally accessible or
amenable to a clear biochemical interpretation, we look for char-
acteristic bifurcations that give insight into the possible dynamics of
the system. Our method then builds on the construction of a large

Fig. 6. The bifurcation diagram of the Calvin cycle at the observed operating
point with respect to the two global saturation parameters �S

� � (0, 1] and �P
� �

[0, �1]. Fig. 7. Bifurcation diagrams of the Calvin cycle as a function of the saturation
of the Rubisco reaction with respect to ribulose-1,5-bisphosphate (RuBP) and
the saturation of the Aldolase reaction with respect to glyceraldehyde-3-
phosphate (GAP), while all other saturation parameters are fixed to specific
values. Bifurcation lines are depicted in blue; numerals indicate the number of
positive real parts within the spectrum of eigenvalues. (a) The bifurcation
diagram. (bA) The system gives rise to a GG bifurcation, formed by the
interaction of a HO and a SN bifurcation. (bB) The interaction of two HO
bifurcations gives rise to a DH bifurcation.
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ensemble of models, encompassing all possible explicit kinetic
models, to statistically explore and quantify the parameter regions
associated with a specific dynamical behavior.

One of the primary advantages of our approach is that available
information, such as experimentally accessible concentration val-
ues, can be readily incorporated into the description of the system.
Focusing on a particular observed operating point, our approach
then allows for the identification of crucial reaction steps that
predominantly contribute to the stability, and thus robustness, of
the observed state and results in specific biochemical conditions for
which certain dynamical behavior can be expected. Furthermore, by
taking bifurcations of higher codimension into account, we go
beyond the usually considered case and are able to predict the
possibility of complex or chaotic dynamics, often a nontrivial task
even if an explicit kinetic model is available.

Exemplified here with two paradigmatic examples of metabolic
pathways, our approach holds a vast number of possible further
applications. In particular, with respect to biotechnological appli-
cations, a desired flux distribution must not necessarily be stable. By
using our approach, it is thus possible to incorporate dynamic
aspects into the description of the system and explore the conditions
that support the stability of directed modifications of the system.
Likewise, structural kinetic modeling can serve as a prequel to
explicit mathematical modeling, aiming to identify crucial reaction
steps and parameters in best time.

Materials and Methods
Interpretation of the Saturation Matrix. Our approach relies crucially
on the interpretation of the elements of the matrix �x

�. As a simple
example, consider a single bilinear reaction rate of the form �(S1,
S2) � vmaxS1S2. Then, according to Eq. 2, the normalized rate is
�(x1, x2) � x1x2; thus,

�xi

� �
��

�x1
�

x0�1

�
��

�x2
�

x0�1

� 1. [8]

In the case of Michaelis–Menten kinetics �(S) � vmaxS�(KM �
S), depending on a single substrate S, we obtain

��x� � x
KM � S0

KM � xS0 f �x
� �

1
1 � S0�KM

� 	0, 1
. [9]

Clearly, the partial derivative �x
� � [0, 1] measures the normalized

degree of saturation of the reaction at the steady state S0. The
limiting cases are lims030�x

� � 1 (linear regime) and lims03��x
� � 0

(full saturation). This result implies that the saturation parameter
indeed covers the full interval, which holds likewise for the general
case of Eq. 5. For additional instances of specific rate functions, see
the Supporting Appendix and Figs. 8–10.

Note that, except for the change in variables, the saturation
parameters �x

� are reminiscent of the scaled elasticity coefficients,
as defined in the realm of metabolic control analysis (6). However,
for our reasoning to hold, the analysis is restricted to unidirectional
reactions, i.e., in the case of reversible reactions, forward and
backward terms have to be treated separately. Because the denom-
inator is usually preserved for both terms, no additional free
saturation parameters arise.

Another close analogy to the saturation parameters is found
within the power-law approximation, where each enzyme kinetic
rate law is replaced by a function of the form �j(S)��j�iSi

gij with gij

denoting the ‘‘effective kinetic order’’ of the reaction (6). In fact, the
power-law formalism can be regarded as the simplest possible way
to specify explicit nonlinear functions that are consistent with a
given Jacobian. Applying the transformation of Eq. 2, we obtain
�j(x) � �ix i

gij, thus �xi

�j � gij. However, beyond the properties of the
Jacobian itself, only little confidence can be placed in an actual
numerical integration of these functions (6). Generally, it is possible
to specify several classes of explicit functions that, by construction,
result in a given Jacobian but have no, or only little, biochemical
justification otherwise. Consequently, we opt for using the prop-
erties of the parametric representation of the Jacobian directly,
instead of going the loop way by means of auxiliary ad hoc functions.

Dynamics and Bifurcations. One of the foundations of our approach
is the fact that knowledge of the Jacobian matrix alone is sufficient
to deduce certain characteristic bifurcations of a metabolic system.
In general, the stability of a steady state is lost either in a HO
bifurcation or in a bifurcation of SN type, both of codimension-1.
Of particular interest for revealing insights about the dynamical
behavior of systems are bifurcations of higher codimension, such as
the Takens–Bogdanov (TB), the GG, and the DH bifurcation (16,
25). Each of these local bifurcations of codimension-2 arises out of
an interaction of two codimension-1 bifurcations and has important
implications for the possible dynamical behavior. For instance, the
TB bifurcation indicates the presence of a homoclinic bifurcation
and therefore the possibility of spiking or bursting behavior. The
presence of a GG bifurcation shows that complex (quasiperiodic or
chaotic) dynamics exist generically in a certain parameter space. In
the same way, the DH bifurcation indicates the generic existence of
a chaotic parameter region. For details, see refs. 16 and 25, the
Supporting Appendix, and Fig. 10.
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23. Poolman, M. G., Ölcer, H., Lloyd, J. C., Raines, C. A. & Fell, D. A. (2001) Eur.

J. Biochem. 268, 2810–2816.
24. Ryde-Petterson, U. (1991) Eur. J. Biochem. 198, 613–619.
25. Kuznetsov, Y. A. (1995) Elements of Applied Bifurcation Theory (Springer, Berlin).
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