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Intracellular processes rarely work in isolation but continually
interact with the rest of the cell. In microbes, for example, we now
know that gene expression across the whole genome typically
changes with growth rate. The mechanisms driving such global
regulation, however, are not well understood. Here we consider
three trade-offs that, because of limitations in levels of cellular
energy, free ribosomes, and proteins, are faced by all living
cells and we construct a mechanistic model that comprises these
trade-offs. Our model couples gene expression with growth rate and
growth rate with a growing population of cells. We show that the
model recovers Monod’s law for the growth of microbes and two
other empirical relationships connecting growth rate to the mass
fraction of ribosomes. Further, we can explain growth-related
effects in dosage compensation by paralogs and predict host–cir-
cuit interactions in synthetic biology. Simulating competitions be-
tween strains, we find that the regulation of metabolic pathways
may have evolved not to match expression of enzymes to levels of
extracellular substrates in changing environments but rather to
balance a trade-off between exploiting one type of nutrient over
another. Although coarse-grained, the trade-offs that the model
embodies are fundamental, and, as such, our modeling framework
has potentially wide application, including in both biotechnology
and medicine.
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Intracellular processes rarely work in isolation but continually
interact with the rest of the cell. Yet often we study cellular

processes with the implicit assumption that the remainder of the
cell can either be ignored or provides a constant, background
environment. Work in both systems and synthetic biology is,
however, showing that this assumption is weak, at best. In
microbes, growth rate can affect the expression both of single
genes (1, 2) and across the entire genome (3–6). Specific control
by transcription factors seems to be complemented by global,
unspecific regulation that reflects the physiological state of the
cell (5–7). Correspondingly, progress in synthetic biology is lim-
ited by two-way interactions between synthetic circuits and the
host cell that cannot be designed away (8, 9).
These phenomena are thought to arise from trade-offs where

commitment of a finite intracellular resource to one response
necessarily reduces the commitment of that resource to another
response. A trade-off in the allocation of ribosomes has been
suggested to underlie global gene regulation (2, 5). Similarly,
depletion of finite resources and competition for cellular pro-
cesses is thought to explain the failure of some synthetic circuits
(8). Such circuits “load” the host cell, which can induce phys-
iological responses that further degrade the function of the
circuit (10). Our understanding of such trade-offs, however, is
mostly phenomenological.
Here we take an alternative approach and ask what new in-

sight can be gained from a minimal mechanistic model that
captures these trade-offs. We focus on three trade-offs that can
be considered universal in the sense that they are experienced by

all living cells: (i) finite levels of cellular energy so that launching
a new biochemical process reduces the activities of others;
(ii) finite levels of ribosomes so that translating a new type of
mRNA reduces translation of all other mRNAs; and (iii) a finite
proteome, or cell mass, so that expressing a new type of protein
reduces levels of other types. Reduced demand on any of these
finite resources will, correspondingly, free that resource for other
intracellular processes.
We develop a mechanistic cellular model built around these

three trade-offs. The model predicts allocation of the proteome,
energy turnover, and physiological phenotypes, such as growth
rate, from specifications made at the level of genotype, and thus
connects molecular mechanisms to cellular behavior. A whole-cell
model has been proposed as one way to make such predictions
(11), but its level of detail may sometimes obscure the core bio-
chemistry that underlies the observed phenotypes and potentially
complicates further analyses. We instead adopt a complementary
coarse-grained approach (12–14) and try to find minimal descrip-
tions that highlight the mechanisms generating the in silico phe-
notypes we observe. In contrast to other approaches (13, 14), we
emphasize that we do not optimize either growth rate or any other
physiological variable.
With only these trade-offs we can derive fundamental prop-

erties of microbial growth (15, 16) and potentially explain diverse
phenomena such as gene dosage compensation (17) and host
effects on the performance of synthetic circuits. Our mechanistic
framework can be extended to include, for example, signal
transduction and population-scale effects. Using such an exten-
sion, we study the evolutionary benefits of gene regulation and
find that transcriptional regulation of metabolic pathways may
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have evolved to balance the uptake of different nutrients rather
than to tune levels of enzymes to match the extracellular avail-
ability of their substrates in changing environments.

Results
Using Trade-offs to Construct a Mechanistic Single-Cell Model. Our
model implements cellular trade-offs by considering two core
biochemical processes: gene expression and nutrient import
and metabolism (Fig. 1A). To focus on the effects of the trade-
offs, the model is a deterministic system of ordinary differential
equations, each one describing the rate of change of the numbers
of molecules per cell of a particular intracellular chemical
species. Throughout, we work with numbers of molecules rather
than concentrations and, for simplicity, do not explicitly model
changes in cell volume. Details of the model are given in SI
Appendix, section S1.
Finite energy. The first trade-off that we include is the finite
size of the pool of intracellular levels of energy. We consider
a generic form of energy, denoted a, that includes all intra-
cellular molecules used to fuel molecular synthesis, such as
ATP and NADPH (more generally, a can be considered as
a generic primary metabolite). The environment contains a
single nutrient, s, that once internalized (and then denoted si)
can be metabolized. One molecule of s yields ns molecules
of a. If et denotes the enzyme that transports s into the cell and

em denotes the enzyme that metabolizes si into a, then the
dynamics of si obey

dsi
dt

= νimpðet; sÞ− νcatðem; siÞ− λsi; [1]

where the rates of import, νimp, and of metabolism, νcat, both
have a Michaelis–Menten form. The growth rate is denoted by
λ, and all intracellular species are diluted at a rate λ because of
partitioning of molecules to daughter cells at division.
For both Escherichia coli and Saccharomyces cerevisiae, the

two best-studied microbes, translation dominates the consump-
tion of cellular energy (18–20), and, in the spirit of a minimal
model, we therefore neglect other energy-consuming processes.
If each translational elongation step consumes one unit of a, then
the amount consumed during the translation of a protein x is
proportional to its length nx. Letting νx denote the translation rate
for protein x, we can describe the overall turnover of energy by

da
dt

= nsνcatðem; siÞ−
X
x

nxνx − λa; [2]

where the sum over x is over all types of protein in the cell. We
see that energy is created by metabolizing si and lost through
translation and dilution.

A B
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D

Fig. 1. A mechanistic cell model that recovers the laws of microbial growth. (A) Schematic of the model. Enzymes (shown in blue and dark green) import
and metabolize an extracellular nutrient (shown in orange), which yields energy (yellow). Transcription of all genes depends on energy (dashed arrows).
mRNA molecules compete for ribosomes (light green). The overall rate of translation determines the rate of growth (lower right). We model three classes
of proteins: ribosomes, enzymes and other house-keeping proteins, q (red). (B) The model fits the data from Scott et al. (2) that empirically demonstrate
two of the growth relations. Growth rate is changed either by changing the quality of nutrients (circles of the same color indicate the same extracellular
media) or by adding chloramphenicol, a drug that inhibits translation (numbers within circles indicate the concentration in micromolar). Solid lines show
the fits from 100 parameter sets randomly drawn from the posterior distribution; dashed lines are the fit given by the modes of the marginal posterior
distributions, which we used in subsequent simulations. (Inset) Varying the amount of external nutrient, the model reproduces Monod’s growth law. (C )
The posterior probability distributions of the parameters show no fine tuning. Box plots indicate the median and the 25%, and 75% quantiles with
outliers in red. The distributions span several orders of magnitudes (except those of Kq and kcm), indicating that the parameter fit is robust. (D) Statistical
dependencies between parameter values show that a few pairs of parameters are strongly correlated. Lower triangle: Pairwise posterior distributions.
Upper triangle: correlation coefficient.
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The effective rate of translational elongation obeys

γðaÞ= γmaxa
Kγ + a

[3]

if an equal amount of energy is consumed for the addition of
each amino acid to the growing peptide chain (SI Appendix,
section S1.2.3). Here γmax is the maximal elongation rate and
Kγ is the threshold amount of energy where elongation is half-
maximal. Using cx to denote the complex between a ribosome
and the mRNA for protein x, then the translation rate for x is

νx =
γðaÞ
nx

cx: [4]

It is through the sum in Eq. 2 and the energy dependence of
Eq. 4 that the first trade-off is implemented. Translation of each
mRNA consumes a, and levels of a determine the rate of trans-
lation of all mRNAs.
Finite ribosomes. The second trade-off results from the finite pool
of intracellular ribosomes. To include this trade-off, we explicitly
model the competition between mRNAs for binding free ribo-
somes. Let r denote the number of free ribosomes. Let kb and ku
denote the rates of binding and unbinding of a ribosome to
mRNA (assumed identical for all mRNAs) and let the mRNA
for a protein x be mx, then

dmx

dt
=ωxðaÞ− kbmxr+ kucx + νx − dmmx − λmx; [5]

with ωxðaÞ being the rate of transcription. The rate dm is the rate
of degradation of all mRNAs (assumed equal for simplicity).
Similarly, for the ribosome–mRNA complex, we have

dcx
dt

= kbmxr− kucx − νx − λcx: [6]

Translation, by releasing mx from cx, contributes a positive term
to Eq. 5 and a negative term to Eq. 6. Again, in the spirit of
a minimal model, we do not include polysomes but assume an
mRNA can bind only one ribosome. The equation for free ribo-
somes is

dr
dt
= νr − λ r+

X
x

½νx − kbmxr+ kucx�; [7]

where the sum over all proteins, including ribosomes, again im-
plements the trade-off.
Although we neglect the contribution of processes other than

translation to the consumption of energy, we do model tran-
scription as dependent on levels of energy because transcription
must cease when all energy is lost. Analogous to our model of
translation, Eq. 3, if each transcriptional elongation step uses
a fixed (although assumed negligible) amount of energy, it fol-
lows that the transcription rate for a gene x takes the form

ωxðaÞ= wxa
θx + a

; [8]

where wx is the maximal transcription rate and θx is the threshold
amount of energy at which transcription is half-maximal. We
note that wx is determined by the copy number, induction level,
and length of gene x. Eq. 8 holds too for ribosomal genes.
Although ribosomes are ribonucleoproteins, we ignore such
complexity and consider only the expression of their protein
component because only the protein component is necessary to
implement the trade-offs.

Besides ribosomes, we include other house-keeping proteins,
such as cytoskeletal proteins. Denoting these proteins by q, we
assume their transcription to be negatively autoregulated to
maintain stable levels across different growth conditions (1, 2):
ωqðaÞ= wqa

θq + a×
1

1+ ðq=KqÞhq
.

Finite proteome. Finally, we include the third trade-off, the fi-
niteness of the proteome, by assuming that cells have a fixed
mass, M, at exponential growth. If the mass is dominated by the
cell’s proteins, thenM is proportional to the size of the proteome
in numbers of amino acids. At exponential growth, when the
intracellular variables are at steady-state, we can show (SI Ap-
pendix, section S1.2.5) that if

λ=
γðaÞ
M

X
x

cx; [9]

then
X
x

nxx+ nr
X
x

cx =M; [10]

where M is approximately 108 amino acids for E. coli (19) and
assumed fixed (although M could also be made a function of ns,
the quality of the available nutrients). Eq. 9 implements the
trade-off through its enforcement of Eq. 10 (recalling that each
cx contains a ribosome).
We assume that Eq. 9 holds generally and not just at expo-

nential growth. The instantaneous growth rate is therefore the
inverse of the time taken by the current number of translating
ribosomes to synthesize all of the proteins required for a new
exponentially growing cell (21). Although the mass of exponen-
tially growing cells can vary with growth rate, we ignore such
variations, which are typically small (19).

The Trade-offs Capture Fundamental Properties of Microbial Growth.
A model of exponentially growing microbes should recover gen-
eral empirical properties of cell growth. The hyperbolic depen-
dence of growth rate on levels of extracellular nutrients (15) is
known as Monod’s law and is a fundamental of microbiology. Two
further relationships relate growth rate to the fraction of cellular
mass comprising ribosomes: a linear, positive dependence as ex-
tracellular nutrients change (ribosomal mass fraction increases with
growth rate) (16) and a linear, negative dependence as translation
is inhibited by the addition of translation-poisoning drugs (ribo-
somal mass fraction decreases with growth rate) (2). Although
these growth relations have been observed in bacteria (22), there is
some evidence that they are also valid in eukaryotes (23).
Parameterizing the model. We parameterize the model with param-
eters for E. coli from the literature (SI Appendix, section S3) and
then fit the remaining parameters to data from E. coli that dem-
onstrate the two different types of linear dependence of ribosomal
mass fraction on growth rate (2). We fit parameters related to
gene expression: the maximal transcription rates, wx; the tran-
scriptional thresholds, θx (Eq. 8); the autorepression threshold for
house-keeping genes, Kq; and the translation threshold, Kγ (Eq. 3).
In the experiments (Fig. 1B), chloramphenicol was used to inhibit
translation, and we model its action by having the drug sequester
complexes of mRNA and ribosomes (SI Appendix, section S3.1).
We also therefore fit the rate constant for chloramphenicol
binding, kcm.
The model fits the data of Scott et al. (2) (see SI Appendix,

section S3.4 for a discussion of the quality of the fit) and
reproduces the microbial growth laws (Fig. 1B). No fine tuning of
parameters is necessary: The model is robust in the sense that
a range of parameters fits the data (Fig. 1 C and D and SI Ap-
pendix, section S3.3). We find that the transcriptional threshold
for ribosomes, θr in Eq. 8, is typically about two orders of mag-
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nitude larger than the transcriptional threshold, θnr, used for all
other genes with significant correlation (ρ= 0:85, P value <10−20;
Fig. 1 C and D). This difference in transcription thresholds
implies that ribosomal and nonribosomal transcription respond
differently to cellular energy levels (4), and, as we shall see, this
difference is key to allow the empirical growth relations to be
derived from the model.
We emphasize that, although we parameterize our model with

data from E. coli, the trade-offs considered are common to all
growing cells, and so we expect the qualitative behavior to be
generally true. To apply specifically to another organism, the
model should be refit to similar data.
Deriving the growth relations. The robustness of the model fit to the
data suggests that the growth relations are an inherent property
of the trade-offs included in the model. Indeed, under mild
assumptions we can mathematically derive the relations from the
model (SI Appendix, section S2).
One relation is that growth rate is proportional to the ribo-

somal mass fraction, which follows from the definition of growth
rate via ribosomal activity (Eq. 9) (2). With ϕR and ϕr denoting
the mass fractions of total and free ribosomes and τγ denoting
the time for ribosomal synthesis, Eq. 9 can be rearranged to give
(SI Appendix, section S2.1)

λ=
1
τγ
ðϕR −ϕrÞ: [11]

The synthesis time τγ = nr=γ is the time taken to translate a ri-
bosome and is a measure of ribosome efficiency: It relates the
costs of ribosome production (the amount of energy required
per ribosome) to the translational elongation rate. A smaller τγ
implies higher ribosomal efficiency. Eq. 11 restates that the
growth rate is proportional to the rate of translation and gives
a linear dependence of the growth rate on the ribosomal mass
fraction if τγ is approximately constant (for example, if the
elongation rate γðaÞ is near saturation at intracellular levels
of a). Mechanistically, with more extracellular nutrient, more
energy is available, which leads to more transcription. Tran-
scription of ribosomes, however, is increased more than tran-
scription of other proteins (θr � θnr in Eq. 8 and Fig. 2A), and so
ϕR increases (Fig. 1B).
Another empirical relation is a negative, linear dependence of

the ribosomal mass fraction with growth rate when nutrient
conditions are fixed and translation is inhibited by the addition of
drugs (Fig. 1B) (2). We can derive

λ≈
1
τe

�
1−ϕq −ϕR

�
·

s
Kt + s

; [12]

with ϕq being the mass fraction of nonribosomal house-keeping
proteins, Kt being the Michaelis constant of the nutrient trans-
porter, and τe being the enzyme synthesis time: the time taken
to import sufficient nutrient to synthesize both a metabolic and
a transporter enzyme. The enzyme synthesis time is therefore
a measure of metabolic efficiency and is inversely proportional
to the energy yield, τe ∼ 1=ns (SI Appendix, section S2.2). Eq. 12
therefore explains the different slopes obtained for different
types of nutrients in Fig. 1B. Under the experimental conditions
applied (2), we note that levels of extracellular nutrients, s, are
constant, and so Eq. 12 is indeed linear. Intuitively, poisoning
translation increases intracellular energy levels because fewer
ribosomes can translate and leads to a proportionally larger in-
crease in transcription of ribosomal mRNAs ðθr � θnrÞ and so to
a larger ϕR. The negative dependence on ϕR arises because in
this regime the growth rate is proportional to ϕt, the mass frac-
tion of the nutrient transporter, and so to the negative of ϕR

because the total amount of proteins is conserved (SI Appendix,
section S2.2.3).
Finally, we can derive Monod’s law to show a hyperbolic de-

pendence of growth rate on the external nutrient s (SI Appendix,
section S2.3):

λ≈

�
1−ϕq

�
s

Ktτe +
�
τe + τγ

�
s
: [13]

The maximal growth rate, ð1−ϕqÞ=ðτe + τγÞ, is determined by the
mass fraction of nonribosomal house-keeping proteins, ϕq, and
by the efficiency of ribosomes and metabolism. The half-maximal
level of extracellular nutrients, Ktτe=ðτe + τγÞ, is proportional to
the Michaelis constant of the nutrient transporter.
Our model recovers the growth relations because of both the

trade-offs and the differences in transcriptional responses re-
quired by the data ðθr � θnrÞ. Several mechanisms can lead to
differential transcriptional responses. For example, this differ-
ence could arise if RNA polymerases, whose levels increase with
growth rate (19), have lower affinities to ribosomal genes either
because of promoter structures or because the cell employs
different polymerases for their transcription. Alternatively, in
bacteria, ribosomal genes are enriched near the replication ori-
gin (24). Consequently, the copy number of ribosomal genes will
disproportionally increase through the parallel rounds of DNA
replication used by bacteria during rapid growth (25) (when
levels of energy are presumably higher), which can lead to in-
creased levels of ribosomal transcription.

Including the Growth of the Cell Population. We can extend our
model to include the growth of a population of cells (SI Ap-
pendix, section S6.1). For a homogeneous population with a
death rate of individual cells of dN ≥ 0, the number of cells, N,
satisfies

dN
dt

= λN − dNN; [14]

where the growth rate λ obeys Eq. 9. When all intracellular con-
centrations are at steady-state, the culture reaches exponential
growth (SI Appendix, Fig. S5). The total amount of intracellular
molecules in the population (across all cells) then grows
exponentially.
By explicitly modeling the dynamics of extracellular nutrients,

we can describe both batch and continuous cultures. For con-
tinuous culture, such as a chemostat, s has an influx rate kin and
is diluted with a rate equal to the dilution rate of the cells. If each
cell consumes nutrient with the same rate, νimp, we can describe
the dynamics of the external nutrient by

ds
dt

= kin − νimpðet; sÞN − dNs: [15]

The steady-state number of cells is determined by the influx rate
of nutrient and its energetic value ns and by the dilution rate and
is approximately nskin=dNM (SI Appendix, section S6.1). For a
batch culture, we set dN = kin = 0, and consequently extracellular
nutrient can only decrease from its initial amount. Eq. 15 then
generates a typical growth curve with a lag phase if, for example,
the number of nutrient transporters is initially low (SI Appendix,
Fig. S5).

Applications.
The trade-offs may explain gene dosage compensation for paralogs.With
its parameterization from the data of Scott et al. (2), the model
imposes global negative feedbacks on levels of enzymes and of
ribosomes. Consider first the negative feedback on enzymes. If
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levels of enzymes fall, the cell imports and metabolizes less nutrient
and energy levels decrease. Lower energy causes proportionally
more enzyme mRNAs to be expressed (Fig. 2A) and consequently
enzyme mRNA will be more successful in binding ribosomes. This
success leads to increasing translation and so increasing levels of
enzymes. Conversely, if levels of enzymes rise, energy levels rise
and enzyme mRNA will be less successful in binding ribosomes,
leading to decreasing levels of enzymes. The negative feedback on
ribosomes works similarly. If levels of ribosomes fall, translation
decreases and energy levels consequently rise causing propor-
tionally more ribosomal transcription (Fig. 2A). An increase in
ribosomes is in the same way counteracted by decrease in ribo-
somal transcription through changes in energy levels. The feed-
backs act to balance energy influx and consumption and so to
stabilize energy levels.
Many genes have paralogs and the effects of deleting a gene

can be reduced by increased expression of a paralogous gene,
a phenomenon known as gene dosage compensation (17, 26).

Multiple global mechanisms can control gene expression (5–7).
For example, Keren et al. (5) showed that the expression of most
genes in both E. coli and S. cerevisiae is relative and stable at
different growth rates. We considered whether dosage compen-
sation could arise from the global coupling of gene expression
and the negative feedback generated by the trade-offs compris-
ing the model. For example, DeLuna et al. (27) examined dosage
compensation in over 200 genes in budding yeast and found that
increased expression of a paralog upon deletion of its duplicate
occurs only for genes required for growth.
To determine whether this need-based regulation arises in the

model, we first consider the deletion of an enzyme needed for
growth and then the deletion of a gratuitous protein—one that
does not contribute to growth, but whose expression still uses
global resources (SI Appendix, section S4). Assuming that the
paralogous gene copies are identical, we simulate a deletion
strain, Δx, by halving the maximal rate of transcription for a
particular gene (wx in Eq. 8). For a system not constrained by

A

B

C

D

Fig. 2. The model can explain dosage compensation of pairs of paralogous genes. (A) The relative abundance of mRNA changes with the level of intracellular
energy because of different transcriptional responses of ribosomal and nonribosomal genes (θr � θnr in Eq. 8). We plot the relative transcription rate,
PðxÞ=ωx=

P
y ωy , which determines the ability of mx to compete for ribosomes. (Inset) Schematic to illustrate the negative feedback via energy on levels of

enzymes and ribosomes. (B) Responsiveness is high upon deleting one of a pair of genes for an enzyme. Responsiveness in other genes is the log2 of the ratio
of protein levels in the deletion strain to those in the wild type. For medium to high nutrient levels, ribosome responsiveness is negative and so up-regulating
enzymes is at the cost of ribosomes. (C) Responsiveness is low upon deleting one of a pair of genes for a gratuitous protein. (D) Comparing the ratio of the
relative transcription rates between the deletion and wild-type strains explains the corresponding behavior of the responsiveness as a function of levels of
external nutrient. A ratio above 0.5 (red line) implies dosage compensation. (Inset) Fractions of free enzyme mRNA in the Δe and the wild-type strains as
a function of external nutrient.
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cellular trade-offs and so with independent expression from each
gene, levels of protein x in the deletion strain would be half the
levels of protein x in the “wild-type” strain where wx is un-
changed. Dosage compensation occurs if these two quantities
are not equal and can be quantified using the “responsiveness”
(27): the log2 of the ratio of the levels of protein in the deletion
strain to half the levels of protein in the wild-type strain. A
system with independent gene expression would have a respon-
siveness of zero.
The model indeed predicts substantial dosage compensation

for deletion of a gene for an enzyme, and the responsiveness
increases with the level of available nutrients (Fig. 2B). Deleting
a copy of the gene for an enzyme reduces the energy influx and
so the steady-state levels of energy relative to the wild-type
strain. The deletion strain correspondingly has proportionally
higher levels of enzymes (Fig. 2A). The magnitude of the re-
sponsiveness as a function of external nutrients reflects an in-
crease in the relative abundance of enzyme-mRNA compared
with the wild-type strain (Fig. 2D). With high levels of nutrients,
the transcription of enzyme genes is saturated by the high levels
of energy, but transcription of ribosomal genes still varies ap-
proximately linearly with energy (because θr � θe in Eq. 8).
Deleting an enzyme gene, which approximately halves the energy
levels, reduces the rate of transcription of the enzyme genes,
although not substantially (energy levels still exceed the tran-
scriptional threshold θe). The rate of transcription of ribosomal
genes, however, halves. Reduced ribosome transcription relieves
the competitive pressure for enzyme mRNAs to bind ribosomes
for translation, and so the frequency at which an enzyme mRNA,
rather than a ribosomal mRNA, succeeds in binding a ribosome
is high. For low levels of nutrient, the rate of transcription of
both ribosomal and enzyme genes varies approximately linearly
with energy, and both are affected similarly by a reduction in
energy levels. Consequently, the ratio between the relative
transcription of enzyme mRNA in the deletion and wild-type
strains is low (and close to its theoretical minimum of 0.5).
Similarly, in agreement with DeLuna et al. (27), the model

predicts little dosage compensation if we delete a copy of a gene
for a gratuitous protein (Fig. 2C). Deleting a gratuitous gene
affects energy levels substantially less than deleting a gene for an
enzyme, and so the responsiveness is in general lower. In contrast
to enzyme deletion, deleting a gene for a gratuitous protein
increases steady-state energy levels (although only by a few
percent), and the responsiveness now decreases in high-nutrient
environments, again following the trend in Fig. 2D. Unlike for
enzyme deletion, this latter behavior does not reflect differences
in energy levels because these differences are negligible. As
levels of nutrients, and so levels of energy, increase, transcription
becomes dominated by transcription of ribosomes. Hence, the
difference between whether the mRNA for the gratuitous pro-
tein is transcribed from one or two copies of the gene becomes
negligible. The ratio of relative transcription of the mRNA of the
gratuitous protein between the deletion and the wild-type strain
tends to its minimum value of 0.5 (Fig. 2D).
In summary, the trade-offs that generate the growth laws also

generate global negative feedbacks on proteins affecting growth.
Whether this global regulation is the mechanism behind the
observations of DeLuna et al. (27), however, requires further
research: Specific regulation, such as end-product inhibition of
enzymatic pathways, is a possible alternative.
Exploiting the trade-offs for host-aware design of synthetic circuits.A key
goal in synthetic biology is to construct complex biochemical
circuits with predictable functions (9, 28). Synthetic circuits,
however, compete for resources with their hosts in ways that are
largely not understood. Host–circuit interactions can alter the
designed function of a circuit (29), reduce the fitness of the host
(8), and ultimately impose a negative selection pressure on cells
with functioning synthetic circuits (30, 31). Examples of com-

petitive effects include titration of native transcription factors
(10) and cross-talk owing to overloading of the degradation (32)
or translation machinery (33).
Our model can be used as a tool to quantify host–circuit

interactions for the “host-aware” design of synthetic gene circuits
(Fig. 3A). The interplay between circuit, host, and environment
can be directly incorporated into the design to minimize the
impact of cellular trade-offs and resource competition on the
circuit function. We can embed synthetic circuits in the model by
defining new species linked to exogenous genes that compete for
the shared pool of ribosomes and energy (SI Appendix, section S5).
Although mathematical modeling is an integral part of synthetic
biology’s design cycle, most models do not include explicit inter-
actions with the host (34). These models cannot predict the impact
of host–circuit interactions, resulting in an inefficient design pro-
cess and lengthy trial-and-error iterations to appropriately tune
a circuit’s expression levels (35).
To illustrate the ability of the model to predict host–circuit

interactions, we introduced a repressilator into the cellular
chassis described by the model. The repressilator is a synthetic
oscillator composed of three mutually repressive genes (36). The
three repressilator proteins impose a burden on the cell, because
they do not contribute to either growth or survival. To quantify
the effects of host–circuit interactions, we focus on the impact of
changing the levels of induction of the circuit, a commonly tuned
quantity in synthetic circuits (37), and investigate growth and
protein allocation in the host and the effect of changes in the
host on the circuit’s function.
The model predicts a sigmoidal decrease in growth for stron-

ger induction of the repressilator genes (Fig. 3B). At low induc-
tion, expression of the synthetic genes is mostly at the expense of
house-keeping proteins, including ribosomes. The host can com-
pensate for this load and the consequent reduction of energy
levels through transcriptional regulation and repartitioning of
the proteome (following Fig. 2A). When the induction is suf-
ficiently strong, however, competition for free ribosomes by the
circuit mRNAs inhibits the synthesis of the host enzymes
needed for nutrient transport and metabolism. This trade-off
reduces expression of all proteins and consequently leads to a
drop in growth.
We find that the onset of oscillations occurs at lower levels of

induction as the growth rate increases (Fig. 3C). Because the
oscillatory dynamics are driven by the negative feedback among
the repressilator genes (36), the behavior in Fig. 3C is likely to
reflect a stronger negative feedback at faster growth rates be-
cause of higher numbers of repressor proteins. Fig. 3C provides
a prediction of the model that can be directly tested by experi-
ment. Further, the predicted behavior suggests that environ-
mental manipulations can be used to add flexibility to the design
of synthetic circuits.
Host–circuit interactions can limit the ability to tune the be-

havior of synthetic circuits. By comparing the function of the
repressilator between the host-aware model and the traditional
model isolated from the host (Fig. 3D) we observe significant
differences in their oscillatory dynamics. The model of the iso-
lated circuit predicts oscillations with amplitude and period that
increase with the level of induction. The host-aware circuit, in
contrast, predicts a nonmonotonic behavior because of over-
loading of the host. For weak induction, and consequently little
host loading, the amplitude and period are qualitatively similar
to those predicted by the isolated circuit, coinciding with a minor
drop in growth (Fig. 3B). For intermediate induction, the period
decreases with further induction and there is a major drop in
growth. Once overloaded, the amplitude too decreases reflecting
an overall fall in protein production because of the limited
synthesis of ribosomes (Fig. 3B). Further analysis suggests that
such loading effects can be alleviated in environments richer in
nutrients (SI Appendix, Fig. S3).

Weiße et al. PNAS | Published online February 17, 2015 | E1043

SY
ST

EM
S
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1416533112/-/DCSupplemental/pnas.1416533112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1416533112/-/DCSupplemental/pnas.1416533112.sapp.pdf


Trade-offs can explain the evolution of gene regulation.Why one form of
gene regulation has been selected over another is a fundamental
question in both systems and evolutionary biology (38, 39, 40).
With our model’s ability to link intracellular mechanisms to the
growth of a cell population, we can investigate evolutionarily
stable strategies by competing rival populations in silico. An
evolutionarily stable strategy allows a population to resist invasion
by any mutant population that uses an alternative strategy (41).
We consider the potential invasion of a resident population by
mutant populations one at a time with deterministic simulations
(42) (SI Appendix, section S6). The corresponding evolutionary
assumptions, of weak rates of mutation and of large populations,
are approximate and will not hold in general (43).
We let the maximum transcription rate of the enzymes be the

evolvable trait (Fig. 4A and we in Eq. 8) and model competitions
between a resident strain with a particular we and a mutant strain
with a different value of we. The resident population is allowed
to reach steady-state in a chemostat (cf. Eq. 15) before a smaller
mutant population appears. The two populations compete for
the available nutrient and three outcomes are possible once the
system reaches a new steady-state: (i) the mutant goes extinct
and the resident resists invasion; (ii) the resident goes extinct
and the mutant successfully invades; or (iii) neither the resident
nor the mutant goes extinct but both coexist. By discretizing the
range of values of we, we simulate all possible resident–mutant
competitions and graphically show the results using invasion
plots (42) (see Fig. 4B for an example).
First we consider growth in an environment with a constant

influx of a single nutrient and find that the evolutionarily stable
strategy is to have as high an expression of the enzymes as pos-
sible. We observe that a resident population with a maximal we is

evolutionarily stable (Fig. 4C). The evolutionarily stable pop-
ulation has maximum expression of the transporter enzymes,
reminiscent of the amplification of genes for transporters for
nutrients limiting growth observed during adaptation in yeast
(44). Levels of enzymes are not tuned to match the availability of
nutrients but are always as high as possible to allow the pop-
ulation to outcompete any mutants. Growth of the resident pop-
ulation causes extracellular nutrients to fall until, at steady-state,
each cell imports just enough energy to replicate over the time-
scale determined by the dilution rate of a chemostat. A mutant
with fewer transporters will be unable to import sufficient nutrient
to match its growth rate to the chemostat’s rate of dilution and
will be lost.
This strategy, although competitive, is inefficient and gen-

erates a resident population with the smallest steady-state
number of cells compared with resident populations with other
values of the trait. Indeed, we see a rate–yield trade-off (45, 46)
(Fig. 4D), where a higher rate (proportional to the numbers of
transporter enzymes) necessitates a lower yield (the numbers of
cells in the population). This trade-off in rate versus yield at the
level of the population is a consequence of the fundamental
trade-offs in energy, free ribosomes, and proteins that act at the
molecular level.
Regulated rather than constitutive expression seems almost

universal. We postulated that a more nuanced strategy may arise
when cells grow in environments with two nutrients because
expressing genes to import and metabolize one nutrient will
necessarily reduce expression of genes to import and metabolize
the other. We therefore added to the model a second nutrient
and a second set of constitutively expressed enzymes to import
and metabolize that nutrient (Fig. 4E).

A B

C

D

Fig. 3. The model predicts interactions between a synthetic circuit and its host cell. (A) A schematic of the interplay between the environment, host cell, and
the repressilator as an example of a synthetic circuit. (B) Growth rate and resources for host proteins decrease with increasing induction of the synthetic
circuit. The strength of induction corresponds to the maximal rate of transcription of the repressilator genes. Stacked plots are the translation rates of
different classes of proteins. Gray shading indicates induction levels where the levels of the repressilator proteins do not oscillate. Growth rate (linearly
related to the total rate of translation, Eq. 9, equals the total height of the bars and is shown on the right-hand axis. (C) The range of induction needed for
oscillations expands with a higher quality of nutrients and faster growth. The bifurcation curve between steady-state and oscillations is shown in white for
different levels of induction and nutrient qualities. (D) The repressilator behaves differently when simulated in isolation (Lower) and within the cell model
(Upper): The host-aware model predicts a nonmonotonic response that can be linked to loading of the host (B).
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With a constant influx of two extracellular nutrients, an in-
termediate value of the maximum transcription rate can be
evolutionarily stable, allowing the cell to balance the trade-off
between exploiting one nutrient over another. Denoting the two
nutrients by sa and sb, we let the maximum transcription rate for
the sa enzymes, wa, be the evolvable trait and fix the maximum
transcription rate for the sb enzymes. Invasion plots for different
influxes of sa but a constant influx of sb are shown in Fig. 4F.
When the influx of sa is lower than that of sb, the evolutionarily
stable strategy is to minimize levels of the sa enzymes (wa is

a minimum). The energetic cost of synthesizing the sa pathway is
not compensated by the energy gained through metabolizing sa,
and expression of the pathway is minimized (Fig. 4F, left).
Correspondingly, maximal cellular resources are freed for ex-
pression of the sb enzymes, suggesting that the competition for sb
determines survival. In contrast, for a high relative influx of sa,
we find that the evolutionarily stable strategy is to maximize
levels of the sa enzymes (wa takes its maximum value: Fig. 4F,
right). Winning the competition for importing sa dominates, and
the evolutionarily stable strategy maximizes expression of the sa

A B

DC

E HG

F

Fig. 4. Gene regulation is evolutionarily stable in changing environments because of a trade-off between metabolizing one type of nutrient over another.
(A) The maximum rate of transcription of the genes for the enzymes is an evolvable trait. (B) An invasion plot (Left) for an evolvable trait shows the results of
all possible competitions between resident and mutant strains. The trait is assumed to take 20 discrete values and each square shows the result of one
simulated competition. Colors indicate the steady-state mutant frequency Nm=ðNr +NmÞ, with Nr and Nm being the number of residents and mutants. White
indicates that a mutant goes extinct; dark blue indicates that a mutant invades; light blue indicates coexistence. The result of a series of mutations is shown as a
“cobweb” plot, returning to the diagonal after each competition and repeating the process for the next mutation. Here the resident initially has a minimum
value of the trait and is invaded by a mutant (blue circle). This mutant is itself invaded (gray circle), and the process repeats two more times (orange and purple
circles). The evolutionarily stable value of the trait (orange square with white squares above and below) resists invasion of all possible mutants (two invasion
attempts occur here). The simulations for the competitions for each mutation as a function of time are also shown (Right). (C) With a constant influx of a single
nutrient, maximum expression of the enzymes is evolutionarily stable (we is a maximum). (D) The resident that has an evolutionarily stable we (orange square)
has a maximum rate of import of nutrients per cell (vtet , SI Appendix, Eq. 7) but a minimum yield. All possible residents for five different influx rates of nutrient
are shown (x axis in log scale). (E) With two nutrients, cells have two sets of enzymes, each specialized to import and metabolize one of the nutrients. Only the
maximum rate of transcription of the enzymes for sa ðwaÞ is assumed evolvable. (F) Invasion diagrams for wa from models with two metabolic pathways show
that an intermediate value can be evolutionarily stable. The influx of sa increases from left to right (kðaÞ

in =kðbÞ
in = 0.04, 0.7, 13, 55, 113, and 234 with

kðbÞ
in = 107min−1). (G) The steady-state enzymes levels are confined to a Pareto-like front (x axis in log scale). The insets (similar to D) show that simple trade-offs

in rate versus yield do not exist: The evolutionarily stable values of wa can have low or high yields. (H) The evolutionarily stable levels of enzymes for the sa
pathway as a function of relative influx rate suggest an evolutionarily stable strategy of regulation for changing environments (y axis in log scale).
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transporters. For an intermediate influx of sa (Fig. 4F, middle),
competition for both nutrients determines whether a mutant
invades. An intermediate value of wa is evolutionarily stable, and
this value increases with the influx of sa because of the greater
importance of expressing sufficient sa transporters.
The steady-state dynamics is confined to a Pareto-like surface

(47, 48) (Fig. 4G): Maximal import of both sa and sb is impossible
because trade-offs at the cellular level mean that increasing ex-
pression of one type of enzymes necessarily reduces expression
of the other type. For different rates of influx of sa the evolu-
tionarily stable strategy moves on this surface, reflecting the
shifting importance of importing sa compared with sb as their
relative abundances change, and we no longer see simple rate–
yield trade-offs (Fig. 4G, Insets).
Our results point toward gene regulation being favored in

changing environments with multiple nutrients. For a single
nutrient, the model suggests that constitutive expression should
be selected because the evolutionarily stable strategy is to max-
imally express the enzymes regardless of environmental changes
(modeled as changes in nutrient influx). With two nutrients, we
see that constitutive expression is no longer evolutionarily stable,
but instead that the expression of the sa enzymes should be
regulated (and follow the relation in Fig. 4H).

Discussion
By constructing a model based around three fundamental trade-
offs that are faced by all living cells in their use of energy, ribo-
somes, and mass, we have shown that we can explain both
empirically derived growth relations for bacteria and potentially
dosage compensation by paralogs in budding yeast. Further, our
model predicts the effects of similar trade-offs generated by
synthetic circuits in host cells and can be extended to include the
growth of cell populations.
We have adopted a coarse-grained approach to increase the

generality of the model and to highlight basic mechanisms
driving phenotypic change, but our model can be extended in
multiple ways. For example, explicit mechanisms for the de-
pendence of both transcription on energy and translation on
levels of tRNAs, which are known to change with growth rate
(49, 50), could be included. Such additions, however, lead toward
whole-cell modeling (11), and our approach has been to try to
include the minimal biochemistry necessary to answer the
questions of interest. Our framework could be adapted to de-
scribe different organisms by, ideally, changing parameter values,
whereas a whole-cell model is inherently specific to a particular
cell type.
Through its coupling of biochemistry to growth rate to pop-

ulations the modeling framework we propose has several im-
mediate translational applications. First, many antibiotics target
dividing cells. By including the action of these antibiotics in the
model, we should be able to predict the effects of suppressive
drug interactions (51), where one drug can ameliorate the con-

sequences of another, and of any feedback between growth rate
and gene expression generated by antibiotics affecting trans-
lation (52). Second, we have illustrated how to predict trade-offs
between the induction level of a synthetic circuit, its function,
and the growth of the host. We can therefore benchmark dif-
ferent designs aimed at producing chemicals in biotechnology,
where circuits must operate robustly in different growth con-
ditions (53, 54). Third, disregulated biogenesis of ribosomes has
been suggested as a driver for cancer development (55), and our
model may help select, for example, therapeutic targets in the
translation machinery.
Genes are not expressed in isolation but through all stages of

expression interact with the surrounding molecules that comprise
living cells. These interactions create the potential for trade-offs,
and including such aspects of cell physiology has great promise
for predicting phenotypic quantities from genotypic specifica-
tions, a long-term goal of both systems and evolutionary biology.
Finally, we also should highlight two studies with similar mod-

eling approaches, although different in scope, that were published
while our work was under review (56, 57).

Methods
Simulations. Details of all model assumptions and equations (Eqs. 1–10) along
with the parameter values taken from the literature is given in SI Appendix,
section S1. SBML and MATLAB versions of the model are also available. To
simulate the model, we used ode15s from MATLAB’s stiff integration suite.
For the synthetic gene circuit, we adapt the original repressilator model (36),
adding equations for the three synthetic proteins, together with their free
and ribosome-bound mRNA, to the model and modify the energy and ri-
bosome use and the growth rate accordingly (SI Appendix, section S5.1). To
study the dynamics of competing strains, we duplicate all model variables,
except those for extracellular nutrients, to describe the resident and mutant
populations and include consumption of nutrients by both populations (SI
Appendix, section S6).

Parameter Fitting. To fit the undetermined parameter values to the data from
Scott et al. (2), we used a Bayesian approach with an adaptive Markov chain
Monte Carlo sampling procedure (58). We simulated the model for various
(fixed) nutrient quality values ðnsÞ at the given concentrations of chloram-
phenicol to predict growth rates and the fractions of ribosomal protein mass
at steady-state and so calculate the likelihood of the parameters given the
data. The final parameter values chosen correspond to the modes of the
marginal posterior distributions. From the posterior distribution we further
estimated the Fisher information matrix and parameter sensitivities (59),
which indicated a robust fit to the data (SI Appendix, Fig. S2).
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