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INRIA Grenoble - Rhône-Alpes and IBIS 

• IBIS: systems biology group at INRIA/Université Joseph Fourier/CNRS 

– Analysis of bacterial regulatory networks by means of models and 

experiments 

– Biologists, computer scientists, mathematicians, physicists, … 
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Overview 

1. Gene regulatory networks in bacteria 

2. Quantitative modeling of gene regulatory networks 

3. Qualitative modeling of gene regulatory networks  

4. Identification of gene regulatory networks 

5. Towards integrated models of the cell 

 

 

 3 



Gene regulatory networks 

• Gene regulatory networks control changes in gene 

expression levels in response to environmental perturbations 

Kotte et al. (2010), Mol. Syst. Biol., 6:355 

• Gene regulatory networks 

consist of genes, gene 

products, signalling 

metabolites, and their mutual 

regulatory interactions  

 Global regulators of transcription 

involved in glucose-acetate 

diauxie in E. coli 
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Modeling of gene regulatory networks 

• Well-established theory for modeling of gene regulatory 

networks using ordinary differential equation (ODE) models 

 

 

• Practical problems encountered by modelers: 

– Knowledge on molecular mechanisms rare 

– Quantitative information on kinetic parameters and molecular 

concentrations absent 

– Large models 

Polynikis et al. (2009), J. Theor. Biol., 261(4):511-30 

Bolouri (2008), Computational Modeling of Gene Regulatory Networks, Imperial College Press 
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Lack of quantitative information: strategies 

• Three main strategies to deal with lack of quantitative data: 

– Test of parameter sensitivity 

– Model reduction and simplification 

– Parameter estimation from time-series data 

De Jong and Ropers (2006), Brief. Bioinform., 7(4):354-363 
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Test of parameter sensitivity 

• Important dynamic properties are expected to be robust over 

large ranges of parameter values 

 Important dynamic properties should be insensitive to moderate 

variations in parameter values 
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Stelling et al. (2004), Cell, 118(6):675-685 
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Test of parameter sensitivity 

• Important dynamic properties are expected to be robust over 

large ranges of parameter values 

 Important dynamic properties should be insensitive to moderate 

variations in parameter values 

 

• Large variety of techniques for assessing sensitivity of models 

to changes in parameter values 

Stelling et al. (2004), Cell, 118(6):675-685 
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Saltelli et al. (2008), Global Sensitivity Analysis: The Primer. John Wiley & Sons. 



Model reduction and simplification 
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de Jong et al. (2004), Bull. Math. Biol., 66(2):301-40 

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29 

. 

. 

• Use model reduction and simplification to obtain models that 

can be analyzed with less information on parameter values 

─ Piecewise-linear instead of nonlinear models 

─ Also: Boolean models 

 

 

 

 

 

 

 

 

 



Parameter estimation 

• Estimate parameter values from experimental time-series data 

 Systems identification in control and engineering 

• Given model structure, search parameter values for which 

model predictions best fit experimental data 

 

 

• Minimization of objective function, for instance sum of squared 

errors:  

 Possibility to add constraint or penalty terms to restrict parameter space 
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Walter and Pronzato (1997), Identification of Parametric Models, Springer 
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Parameter estimation problem 

• Differential algebraic equation (DEA) models 

 

 

 

– Selection matrix 

– State variables 

– Input variables 

– Parameters 

– Rate functions 
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Parameter estimation problem 

• Differential algebraic equation (DEA) models 

 

 

 

• Observables: 

 

• (Non)linear constraints: 
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Parameter estimation problem 

• Model predictions at time  

 

• Measurements of observables at time  

 

 

• Model discrepancies 
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Parameter estimation problem 

• Objective function 

 

 

 

 

 Other objective functions possible, more adapted to other 

measurement models or practical considerations! 

• Parameter estimation problem:  
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Parameter estimation methods  

• Parameter estimation is a complex optimization problem 

• Methods for solving optimization problem: 

– Global methods: 

 

 

for all     in parameter space 
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Parameter estimation methods  

• Parameter estimation is a complex optimization problem 

• Methods for solving optimization problem: 

– Global methods: 

– Local methods: 

 

 

for all     in a neighborhood of  
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Global optimization methods 

• Variety of global optimization methods: 

– Evolutionary algorithms 
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Global optimization methods 

• Variety of global optimization methods: 

– Evolutionary algorithms 

– Simulated annealing 

– … 

• Search of entire parameter space, but generally no 

convergence proof 

• Mostly stochastic algorithms 
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Local optimization methods 

• Variety of local optimization methods 

– Gradient methods 

 

Gradient: 

 

 

Hessian: 

 

 

Necessary condition for local minimum: 
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Local optimization methods 

• Variety of local optimization methods 

– Gradient methods 

 

Gradient: 

 

 

Hessian: 

 

 

Necessary condition for local minimum: 

 

Sufficient condition for local minimum: 

               and            for all  
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Local optimization methods 

• Variety of local optimization methods 

– Gradient methods 

 

 

Steepest descent 

 

 

Newton’s method 

 

 

Other choices for  

Adaptive choice of  
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Local optimization methods 

• Variety of local optimization methods 

– Gradient methods 

– Direct search 

– … 

• Local search of parameter space, but proof of (speed of) 

convergence  

• Mostly deterministic algorithms 
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Hybrid optimization method 

• Hybrid optimization: global followed by local optimization 

• In practice, hybrid optimization methods work well on large 

nonlinear models used in systems biology 

Test on benchmark identification problems 

 

Rodriquez-Fernandez et al. (2006), Biosystems, 83: 248–65 
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Constrained optimization methods 

• Differential algebraic equation (DEA) models 

 

 

 

• (Non)linear constraints: 

 

 

• Constraints can be implemented in different ways 

– Penalty term in objective function 

– Search in subspace defined by (in)equality constraints 

– …. 
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Parameter estimation tools 

• Large number of dedicated parameter estimation tools in 

systems biology, in addition to general-purpose tools 

Hoops et al. (2006), Bioinformatics, 22:3067-74  
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• Coupling of gene expression and metabolism into a single 

integrated model of E. coli metabolism 

Kinetic model with 47 variables and 193 parameters 

 

Kotte et al. (2010), Mol. Syst. Biol., 6: 355 

Integrated model of E. coli metabolism 
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• Estimation of model parameters using steady-state data: 

algebraic equations 

Published data sets for balanced growth on either glucose or acetate 

 

• Divide-and-conquer strategy based on model structure 

1. Estimate reaction rates at steady state 

2. Identify model parameters for individual reactions from reaction rate 

estimations and measurements of concentrations 

3. Re-estimate integrated model 

 

 

 

Multi-scale network of E. coli metabolism 
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• Estimation of model parameters using steady-state data: 

algebraic equations 

Published data sets for balanced growth on either glucose or acetate 

 

• Divide-and-conquer strategy based on model structure 

1. Estimate reaction rates at steady state 

2. Identify model parameters for individual reactions from reaction rate 

estimations and measurements of concentrations 

3. Re-estimate integrated model 

 

 

 

Multi-scale network of E. coli metabolism 
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• Estimation of model parameters using steady-state data: 

algebraic equations 

Published data sets for balanced growth on either glucose or acetate 

 

• Divide-and-conquer strategy based on model structure 

1. Estimate reaction rates at steady state 

2. Identify model parameters for individual reactions from reaction rate 

estimations and measurements of concentrations 

3. Re-estimate integrated model 

 

 

 

Multi-scale network of E. coli metabolism 
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• Estimation of model parameters using steady-state data: 

algebraic equations 

Published data sets for balanced growth on either glucose or acetate 

 

• Model reproduces known physiological behavior of E. coli: 

diauxic growth and carbon catabolite repression 

 

 

Multi-scale network of E. coli metabolism 
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Identifiability analysis 

• Parameter       is (globally) identifiable, if it can be uniquely 

determined from given model input          and error-free data 

• Model is (globally) identifiable, if all of its parameters are 

• A-priori identifiability analysis 

Structural problems of model 

 

 

 

 

 Given measurements of     , it is not possible to obtain independent 

estimates of both parameters 
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Identifiability analysis 

• Parameter       is (globally) identifiable, if it can be uniquely 

determined from given model input          and error-free data 

• Model is (globally) identifiable, if all of its parameters are 

• A-priori identifiability analysis 

Structural problems of model 

• Practical or a-posteriori identifiability analysis 

– Problems with precision and quality of data 

– Correlation between variables 

• Parameter       is practically identifiable if its confidence 

interval is of finite size 

• Model is practically identifiable, if all of its parameters are 
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Identifiability analysis using profile 

likelihood 

• Objective function        

 

 

 

 is proportional to log-likelihood 

 Minimization of           corresponds to maximum likelihood estimation 

• Profile likelihood for parameter       ranging over interval                

                   is defined as 

 

• Likelihood-based confidence interval 

   Threshold given by distribution 
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Identifiability analysis using profile 

likelihood 

• Intuition: for each parameter, explore the parameter space 

in direction of least increase of objective function 
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Identifiability analysis using profile 

likelihood 

• Intuition: for each parameter, explore the parameter space 

in direction of least increase of objective function 
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Identifiability analysis of E. coli metabolism 

• Simplified model of central carbon metabolism in E. coli 

• Model at steady state and lin-log kinetics for describing 

reactions 

• Measurements: 

− Metabolite concentrations 

− Enzyme concentrations 

− Metabolic  fluxes (reaction rates at 

steady state)  

• Parameters to estimate: 

 Berthoumieux et al. (2011), Bioinformatics, 27(13):i186–93 
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Identifiability analysis of E. coli metabolism 

• Simplified model of central carbon metabolism in E. coli 

• Model at steady state and lin-log kinetics for describing 

reactions 

• Solution by minimal regression 

 More complicated methods if data are 

incomplete 

 

Berthoumieux et al. (2011), Bioinformatics, 27(13):i186–93 
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Identifiability analysis of E. coli metabolism 

• Simplified model of central carbon metabolism in E. coli 

• Most parameters are not identifiable as determined from 

profile likelihood! 

Berthoumieux et al. (2013), J. Math. Biol., 67:1759-1832 
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Structural vs parametric identification 

• Parametric identification assumes model structure given 

• Structural identification provides joint estimate of model 

structure and parameters 

 

 

 

• Structural identification very difficult problem, based on 

exploration of a-priori defined model space 
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Structural vs parametric identification 

• Method for structural and parametric identification of 

gene regulatory networks from time-series data 

– Exploits monotonicity properties of switch-like regulation functions g 

to invalidate interactions 

40 

xa  a h
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xb  b h
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n : steepness parameter Porreca et al. (2010), Bioinformatics, 

26(9):1239-45 



Structural vs parametric identification 

• Method for structural and parametric identification of 

gene regulatory networks from time-series data 

– Exploits monotonicity properties of switch-like regulation functions g 

to invalidate interactions 

41 

Observations x1 ↑ ,  x2 ↓ and  g(x1 , x2)↑ rule 

out pattern x1 activator and x2  inhibitor  

Porreca et al. (2010), Bioinformatics, 

26(9):1239-45 

x3  g(x1, x2 , p) – 3 x3  
. 

g(x1, x2 , p)  3 h
+(x1 ,1 ,n) h-(x2 ,2 ,n) 

. 



Structural vs parametric identification 

• Method for structural and parametric identification of 

gene regulatory networks from time-series data 

– Exploits monotonicity properties of switch-like regulation functions g 

to invalidate interactions 

– Looks for simplest interaction structures consistent with data 
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Subpatterns of inconsistent patterns 

are also inconsistent 

Superpatterns of consistent patterns 

are also consistent 

Porreca et al. (2010), Bioinformatics, 

26(9):1239-45 



Structural vs parametric identification 

• Method for structural and parametric identification of 

gene regulatory networks from time-series data 

– Exploits monotonicity properties of switch-like regulation functions g 

to invalidate interactions 

– Looks for simplest interaction structures consistent with data 

– Estimate parameters for selected interaction structure 
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Porreca et al. (2010), Bioinformatics, 

26(9):1239-45 
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Structural vs parametric identification 

• Method for structural and parametric identification of 

gene regulatory networks from time-series data 

– Exploits monotonicity properties of switch-like regulation functions g 

to invalidate interactions 

– Looks for simplest interaction structures consistent with data 

– Estimate parameters for selected interaction structure 

– Good results on benchmark data set in yeast 
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Structural vs parametric identification 

• Parametric identification assumes model structure given 

• Structural identification provides joint estimate of model 

structure and parameters 

 

 

 

• Structural identification very difficult problem, based on 

exploration of a-priori-defined model space 

• In certain cases, structural identification reduces to 

parametric identification 
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Parameter estimation from Drosophila data 

• Measurement of protein concentrations of gap genes during 

development of Drosophila embryon 

 

Jaeger et al. (2004), Nature, 430(6997):368-71 
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Parameter estimation from Drosophila data 

• Neural-network-like model of connections between gap 

genes 

– Model with 58 nuclei and 7 variables (proteins) per nucleus 

– Free diffusion of proteins because at early stages of development 

embryon is syncytium (multinucleate cell) 

– Sigmodial response functions 

– Connectivity pattern encoded in parameter matrix T, so parametric 

and structural identification 

 

 

Jaeger et al. (2004), Nature, 430(6997):368-71 
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Parameter estimation from Drosophila data 

• Neural-network-like model of connections between gap 

genes 

• Brute-force parameter estimation by fitting model to data 

Parallelized simulated annealing 

Jaeger and Reinitz (2006), BioEssays, 

28(11):1102-11 
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Shifts in gap gene domains 

• What is function of cross-inhibition between gap genes?  

Model predicts that they are important for shift in gap gene domains 

after their initial establishment 

Data Model predictions 
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Conclusions 

• Identification of models requires estimation of parameters 

– Optimization problem: minimization of objective function 

– Large variety of methods available: global vs local, deterministic vs 

stochastic, … 

• Identifiability issues: structural and practical identifiability 

• Structural vs parametric identification 

• Other issues: optimal experimental design, ensemble 

models 

• Large-scale parameter estimation problems in systems 

biology are very difficult to solve 

– Clever tricks 

– Model-dependent heuristics 

– Model reduction, … 
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Internships in IBIS 

• Challenging problems for biologists, physicists, computer 

scientists, mathematicians, … 

• … in a multidisciplinary working environment 

• Contact: Hidde.de-Jong@inria.fr and ibis.inrialpes.fr 
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