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INRIA Grenoble - Rhone-Alpes and IBIS

« |BIS: systems biology group at INRIA/Université Grenoble-Alpes

— Analysis of bacterial regulatory networks by means of models and
experiments

— Biologists, computer scientists, mathematicians, physicists, ...
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Overview
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Gene reqgulatory networks in bacteria
Quantitative modeling of gene regulatory networks
Qualitative modeling of gene regulatory networks

|dentification of gene regulatory networks

Integrated models of the bacterial cell




Bacterial growth and metabolism

« Bacterial metabolism is flexible, allowing cells to grow on
different carbon sources

Preferential utilisation: diauxic growth on glucose and lactose
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Bettenbrock et al. (2006), J. Biol. Chem., 281(5):2578-84

« Adaptation of bacterial physiology to different carbon sources
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Growth transition and metabolism

« Adaptation to different carbon source involves changes in
metabolic fluxes

Different flux distribution in central metabolism of E. coli during
growth on glucose and galactose

A GLUCOSE

B GALACTOSE
8.13 217
2.39 0.60

FBP.
GLYCOLYSIS
6.46

FE PYR 9.14
-
a 0.23 '0.48 0.53>‘ i

o R
Tcacvcles A T8 oha TcacycLE s . Melw& 2430 ),
GLYOXYLATE 1-29 SO peecon  SLYOXYLATE 1'38/ AL -
SHUNT FUM :; SHUNT FUM 1.08

GOX. CIT g

1.29(

5.48 e( GOX; CIT o0
p 2.20) 13 1.67
. . st ACE ACE
Haverkorn van Rijsewijk et al. (2011), Mol. - s S— - i - )/cr
Syst. Biol., 7:477 x 220 s
SUC-CoA._1.29 - 2-0G -CoA._0.30 — 2-0

SUC-CoA G
rd
- UNIVERSITE
2éaa—| [ Grenoble
it Alpes




Growth transition and gene expression
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Growth transition and gene expression
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» Adaptation to different carbon source
Involves genome-wide reorganisation
of gene expression

Gene expression during glucose-lactose
shift in E. coli
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Adaptation on multiple levels
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* Adaptation to different carbon source
Involves adjustments on multiple
levels at the same time!

Parallel measurement of enzyme and
metabolite concentrations, and metabolic
fluxes in a variety of experimental
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Coordination of adaptative responses

« Coordination of adaptative responses of bacterial cell
achieved by large and complex regulatory networks

— Variety of molecular mechanisms... (Changing) carbon

— ... operating on different time-
scales...
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Coordination of adaptative responses

« Coordination of adaptative responses of bacterial cell
achieved by large and complex regulatory networks

— Variety of molecular mechanisms... e isced
— ... operating on different time- y Metabolic master regulation
scales... ,;9;‘:'5

I
— ... Involving numerous feedback ,,,et”’”’
loops across levels
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No global view on network functioning

Coordination of adaptative responses of bacterial cell achieved
by large and complex regulatory networks

Abundant knowledge on biochemical mechanisms underlying
Interactions between network components

Accumulation of data on multi-level response of network to
external perturbations

Metabolic fluxes and cellular concentrations of metabolites, enzymes,
transcription factors, signalling molecules, ...

However, global view on functioning of entire network is
difficult to achieve and largely absent today

Use of models to analyse and predict dynamical behaviour of
system
Emergence of new discipline: systems biology
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Towards integrated models of cell

* Most systems biology studies have focused on isolated,
relatively small subsystems

* Increasing awareness that for answering many interesting
guestions, one needs to consider integrated models of the
cell:

— Multiple levels of regulation: metabolism, gene expression, signal
transduction, ...

— Relate cellular processes to growth

— Explicit modelling of interactions with environment and ecosystem
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Towards integrated models of the cell

* Integrated models of the cell are emerging, but some
Interesting precursors exist
Coarse-grained model of an E. coli cell
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FIGURE 7 An idealized sketch of the model of E. coli B/rA growing in a glucose-ammonium salts
medium with glucose or ammonia as the limiting nutriecnt. At the time shown the cell has just
completed a round of DNA replication and initiated cross-wall formation and a new round of DNA
replication. Solid lines indicate the flow of material, while dashed lines indicate flow of informarion.
Reproduced with permission from Shuler and Domach, 1983.

A, =ammonium ion M:, = messenger RNA
A, =glucose {and associated compounds in M, =DNA
the cell} M, =non-protein part of cell envelope (as-
W =waste products {CO,;, H,O, and ace- sume 16 7% peptidoglycan, 47.6%
tate) formed from energy metabolism lipid, and 35.7% polysaccharide)
during aerobic growth M = glycogen
P, = amino acids PG = ppGpp
P, = ribonucleotides E,, Ey = molecules mvolved in directing cross-
P, = deoxyribonucleotides wall formation and cell envelope
P, = cell envelope precursors synthesis—the approach used in the
M, = protein (both cytoplasmic and en- prototype model was used here but
velope) more recent experimental support s
D h I 1984 B h I . M, =immature “stable™ RN? LN arailnble
: - M,, . =mature “stable” RNA (r-RNA and /- = glutamine
omac et al. ( )' IOteC nol. B|Oeng., 26(3)203 16 e RNA-assume 85% r-RNA through- E, = gluta.nine synthetase
out) *—the matenal is present in the cxternal environment.
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Growth of microbial populations

* Growth can be considered on the level of number of
Individual cells or aggregated volume of growing
population Vol [L]

Segregated vs nonsegregated models




Growth of microbial populations

* Ordinary differential equation (ODE) model of the growth of a
population of microorganisms
Growth rate p [h™!]

Vol = 11 - Vol

 Solution of growth model for constant growth rate y = u*

Vol(t) = Vol(0) - et

Half-life £y = In2/p”




Growth of microbial populations

 If all cells have same growth rate, segregated and
nonsegregated models are identical

« But: growth rate of cells in population may be heterogeneous
— Bacterial persistence after antibiotics treatment
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Growth of microbial populations

 |f all cells have same growth rate, segregated and
nonsegregated models are identical

« But: growth rate of cells in population may be heterogeneous
— Bacterial persistence after antibiotics treatment

C 0:00 D 0:59 E 1:45 F 6:50 G 7:38 H 8:39

Growth medium (GM1) [Ampicillin (A)|  Growth medium (GM2)

Balaban et al. (2004), Science, 305(5690):1622-5
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Growth of microbial populations

 If all cells have same growth rate, segregated and
nonsegregated models are identical

« But: growth rate of cells in population may be heterogeneous

— Bacterial persistence after antibiotics treatment
— Persister cellss have lower growth rate before antibiotics treatment
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Volume and macromolecular contents

* Growth is fueled by biochemical processes

* Models describing molecular constituents and biochemical
reactions in which they are involved
Structured vs unstructured models

Vol C,‘, Ci




Volume and macromolecular contents

« Basic assumption: volume proportional to biomass (total
mass of molecular constituents in cells)

Dry mass of constituenti Cj |g]
Biomass B [g]

VOZNZC%ZB

* In other words, biomass density 1/§ [g L~1]is constant:

Vol=0-% C;j=06-B




Volume and macromolecular contents

« Assumption of constant biomass density supported by
experimental data

Biomass density approximately 300 g L=}
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Volume and macromolecular contents

+ Concentration ¢; [g] of molecular constituent i in population
C; — Cz/ Vol

 If all cells have same concentration, then ¢; also applies to
iIndividual cells
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Volume and macromolecular contents

» Concentration ¢; [g] of molecular constituent i in population
C; — Cz/ Vol
 If all cells have same concentration, then ¢; also applies to
iIndividual cells

« Consequence of proportionality of mass and volume: total
concentration Is constant

Y =) Ci/Vol=DB/Vol=1/§




Volume and macromolecular contents

 ODE model of dynamics of molecular constituent i :
Ci- Vol—Ci- Vol C;  Cy Vol
Vol? ~ Vol Vol Vol

C; =
e
" Vol

Appearance of term for growth dilution of individual constituents
* Growth rate follows from dynamics of molecular constituents

Vol B
~ Vol =0 Z Vol =0 Vol

— - G

No growth dilution if mass of all constituents remains constant




Volume and macromolecular contents

« Growth dilution may have an important effect on the
concentration of cellular constituents
— Changes in rate of protein synthesis and decay of constitutive gene
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Volume and macromolecular contents

« Growth dilution may have an important effect on the
concentration of cellular constituents
— Changes in rate of protein synthesis and decay of constitutive gene

— Concentration of gene product is growth-rate dependent
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Biochemical reactions underlying growth

« Term C;/ Vol represents net effect of biochemical reactions
on concentration of molecular constituent i

 Change of variables: X; = C;/a; [mol]
Rate of reactions based on physical encounters of molecules
= Xz/ Vol
 ODE model of dynamics of molecular constituent i :

xXr; — X,
Vol B




Biochemical reactions underlying growth

» Reformulation of reaction rates X;/ Vol
— Rate of reactionj: v; [mol L=' h™']
— Stoichiometry of constituent i in reaction j : [V,




Biochemical reactions underlying growth

» Reformulation of reaction rates X;/ Vol

— Vector of reaction rates: v
— Row in stoichiometry matrix for constituent i : [V;
— Vector of molecular constituents: 2

« Reformulation of ODE model

i =N;-v—|-x;




Biochemical reactions underlying growth

+ Reformulation of reaction rates X;/ Vol

— Vector of reaction rates: v
— Row in stoichiometry matrix for constituent i : [V;
— Vector of molecular constituents: 2

« Reformulation of ODE model
i =N;-v—|-x;
« Stoichiometry model of biochemical reactions

r=N-v—pu-x




Biochemical reactions underlying growth
« Stoichiometry matrix N describes structure of reaction

network
Internal reactions and exchange reactions, reversible and irreversible
(Y
"
N .
-1 0 0 0 0 0 -1 0o o o] |
1 -1 1 0 0 o0 O0 -1 0 O] |4y
0 1 -1 -1 1 -1 9 0 o O0f |es
00 0 1 -1 0 © -1 0| |y
(00 0 0 0 1 0 0 0 -1 (5
b2
b3
b

Schilling et al. (2000), J. Theor. Biol., 203(3):229-48
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Biochemical reactions underlying growth

« Stoichiometry model of biochemical reactions

r=N-v—p-x
* Expression of growth rate
C; X;
RUIDIE AP DR
:5-Zai-Ni-v(a¢).

— Rate of accumulation of (mass of) constituents (within unit volume per
unit time) relative to total amount of constituents (within unit volume)

— Not ad-hoc definition, but derived from basic assumptions
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Biochemical reactions underlying growth

 ODE model for growth of microbial populations:
t=N-v(x)— -,
uzé-Zai-N@--v(aﬁ).

1

* Reaction rates depend on concentrations x of substrates,
products, effectors




Biochemical reactions underlying growth

 ODE model for growth of microbial populations:
t=N-v(x)— -,
u:(S-Zai-Ni-v(aﬁ).

* Reaction rates depend on concentrations x of substrates,
products, effectors

Mass-action kinetics, Henri-Michaelis-Menten kinetics, Monod-
Wyman-Changeux kinetics, ...

v(x,e) = Vipar @/ (Kp + )

Vmam — kcai ‘€

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall
. Enidin ,.‘ ! it
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Growth in a changing environment

* No explicit model of the environment
Some reactions in v correspond to uptake of substrates or secretion

of products
* Environment modeled as bioreactor filled by liquid medium

of fixed volume ]
— Substrate/product concentrations in medium: y [g L_l]

— Volume of medium: Volpedivm [L]

Agitation system
AN

o=




Growth in a changing environment

* No explicit model of the environment

Some reactions in v correspond to uptake of substrates or secretion
of products

* Environment modeled as bioreactor filled by liquid medium
of fixed volume

— Substrate/product concentrations in medium: y |g L__l]
— Volume of medium: Volpedivm [L]

 ODE model for dynamics of substrate/product
concentrations in medium

y=oy, - E-v(x,y)- (Vol/ Volyedium)

— Stoichiometry matrix for exchange reactions: FE

— Diagonal matrix of molar mass coefficients: oy,
oo B —
it Alpes



Growth in a changing environment

* No explicit model of the environment
Some reactions in v correspond to uptake of substrates or secretion
of products
* Environment modeled as bioreactor filled by liquid medium
of fixed volume

— Substrate/product concentrations in medium: y |g L__l]
— Volume of medium: Volpedivm [L]

 ODE model for dynamics of substrate/product
concentrations in medium

Vol medium Vol medium

‘! y=20-a,-FE-v(x,y)-b.

— 5D,




Growth in a changing environment

 ODE model for growth of microbial populations:
t=N-v(r,y) —p-w,
y:(SOéyE’U(.’L',y)b,

p=206-> ai-Ni-v(a,y),

b:,u,-b,
Y




Growth in a changing environment

 ODE model for growth of microbial populations:
t=N-v(r,y) —p-w,
y:(SayEv(x,y)b,

p=206-> ai-Ni-v(a,y),

Z}:,u,-b,

* Model applies to batch cultivation, but can be easily adapted
for continuous culture or fed-batch culture

Bastin and Dochin (1990), On-Line Estimation and Adaptive Control of Bioreactors, Elsevier, 1990




Growth in a changing environment

* Bioreactor models have been mostly used in context of
biotechnological applications

« But: they also apply to complex natural environments, such
as digestive tracts of vertebrates and insects

Organ shape and location Example of organ

in horse digestive tract names
Stomach (human)
Rumen (cow) Open sac-like reactor

Reactor shape Modelized reactor Scheme

Crop (hoazin)
Saccular forestomach

(kangaroo)
Proctodeum P3 (termite)

Caecum Closed sac-like reactor Batch reactor @
(rabbit)

intestine Large tubular reactor CSTR in series D'[H]'G
n

Small intestine (human)  Narrow tubular reactor ~ Plug-flow reactor

Tubiform forestomach
| o = S
Godon et al. (2013), BioEnergy Res., 6(3):1063-81 ‘:\_Z
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Towards integrated models of the cell

* Integrated models of the cell are emerging, but some
Interesting precursors exist
Coarse-grained model of an E. coli cell
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FIGURE 7 An idealized sketch of the model of E. coli B/rA growing in a glucose-ammonium salts
medium with glucose or ammonia as the limiting nutriecnt. At the time shown the cell has just
completed a round of DNA replication and initiated cross-wall formation and a new round of DNA
replication. Solid lines indicate the flow of material, while dashed lines indicate flow of informarion.
Reproduced with permission from Shuler and Domach, 1983.

A, =ammonium ion M:, = messenger RNA
A, =glucose {and associated compounds in M, =DNA
the cell} M, =non-protein part of cell envelope (as-
W =waste products {CO,;, H,O, and ace- sume 16 7% peptidoglycan, 47.6%
tate) formed from energy metabolism lipid, and 35.7% polysaccharide)
during aerobic growth M = glycogen
P, = amino acids PG = ppGpp
P, = ribonucleotides E,, Ey = molecules mvolved in directing cross-
P, = deoxyribonucleotides wall formation and cell envelope
P, = cell envelope precursors synthesis—the approach used in the
M, = protein (both cytoplasmic and en- prototype model was used here but
velope) more recent experimental support s
D h I 1984 B h I . M, =immature “stable™ RN? LN arailnble
: - M,, . =mature “stable” RNA (r-RNA and /- = glutamine
omac et al. ( )' IOteC nol. B|Oeng., 26(3)203 16 e RNA-assume 85% r-RNA through- E, = gluta.nine synthetase
out) *—the matenal is present in the cxternal environment.
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Towards integrated models of the cell

* Integrated models of the cell are emerging, but some
Interesting precursors exist

Coarse-grained model of an E. coli cell

. Model structure Count Examples
’ M O d e | h aS evo Ive d In to Compan‘fnf.ehts 7 S Qytépiésm;rceﬂ*msmbﬁhgﬁ- whole cell, medium
minimal, functionally | RECS AR, i i
570 Fructose6P synthesis, TP synthesis
C O m p I et e m O d eI Of Ii#t;: p;m@ctcm ' 570 Mass action or -Michaclis—Mcntcn rate constants
. Satﬁ'ﬁi&ﬁ pﬁﬁmeters SEERLY chhachsr-MentenJikc saturation parameters
C h e m O h ete rOt ro p h I C Inhlbmon parameters 25 Michaelis-Menten-like inhibition parameters
' arerules 1 Methyltion statc of chromosome.
bacterium ‘

1 Ccll w1dth (CW)
=yl TN 0
AR

: 408

1 W ":"'"‘f'f"i".f’??%‘[;' A "r*.'"" y $ A
R x\ﬂ :—’i{ﬁ‘ "‘v - '_s'y',ﬁ'r, AUl = O 5 "x“ LA
Smgle codmg gencs Y102 dsz pg'l, etc,
IS o :ye'h'.'\" o RSN = o i " =& " A M
Genes in clusters 139 R:bosomal prmcms, atnaE, etc,

Shuler et al. (2012), Methods Mol. Biol., 881:573-610
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Towards integrated models of the cell

* Integrated models of the cell are emerging, but some
Interesting precursors exist
Coarse-grained model of an E. coli cell

 Model has evolved into
. . . .— - = ] Precursors | - :
minimal, functionally o] ey (] R

lons q '

complete model of
chemoheterotrophic
bacterium

Shuler et al. (2012), Methods Mol. Biol., 881:573-610
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Whole-cell model M. genitalium
« Metabolic networks are integrated with gene networks and

signalling networks
Complex multi-level system with feedback across different time-

oS

scales

External
environment RNA
co modfication
RMA Ribosome ]
' : assembly Tefmégleomr\gﬁnelle
Protein
transloca

Metabolism ~ decay .
: tRNA
aminoacylation .

RMNA processing Prof
processing interaction

Host epithelium

it

Transcription T
o ranscr‘iapﬁonaI Macromolecular . Translation
ODNA regulation complexation Protein
upercoilin . modj ication Prokeid
A e i ol
rgga'?rj DNA L&
damage
Protein 1 Metabolites
0 m RNA
"". W Protein
- B DNA

Chromosome
condensation

eplication
inttiation

FisZ
polymernzatio
Cytokinesis

Whole-cell model of
Mycoplasma genitalium

repwga'%on

Chromosgme
seqgregafion

Karr et al. (2012), Cell, 150(2): 389-401
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Whole-cell model M. genitalium

« Whole-cell model represents huge modelling effort:

— Whole-genome model including complete known metabolic, gene, and
signalling networks

100% 900+ 1900+ 28
of genes publications parameters processes

L L ] J
!

[ v v
Predictive Novel Biological Rational
Karr et al. (2012), Cell, 150(2): 389-401 capacity hypotheses discovery  design

— Variety of formalisms to model the 28 modules: FBA, kinetic ODE
models, Boolean models, Markov chains, ...

— Cell cycle simulated for >100 cells, >30 mutants on 128-core machine
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Whole-cell model M. genitalium

« Whole-cell simulation of M. genitalium cell cycle




Whole-cell model M. genitalium

* Whole-cell simulations have provided new insights into
robustness of cell-cycle duration
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Whole-cell model M. genitalium

* Whole-cell simulations have provided new insights into
global use and allocation of energy
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: T ey worth et (1)
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Large-scale integrated models:

conclusions

« Large-scale integrated models help analyze the dynamics of
Interactions between multiple functions of the cell
Models allow predictions to be confronted with experimental data and
performance of thought experiments
« But large-scale integrated models have problems as well!

— Models difficult to construct, to debug and to maintain

— Huge number of parameters, many unknown: parameter estimation
IS a difficult problem requiring many data of high quality

— How do we extract fundamental insights on cell functioning from
large, mechanistic models?
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Large-scale integrated models:
conclusions

« Large-scale integrated models help analyze the dynamics of
Interactions between multiple functions of the cell
Models allow predictions to be confronted with experimental data and
performance of thought experiments

« But large-scale integrated models have problems as well!

On Exactitude in Science

Jorge Luis Borges, Collected Fictions, translated by Andrew Hurley.

...In that Empire, the Art of Cartography attained such Perfection that the map of a
single Province occupied the entirety of a City, and the map of the Empire, the entirety
of a Province. In time, those Unconscionable Maps no longer satisfied, and the

Cartographers Guilds struck a [Map of the Empire whose size was that of the EmpireJand

which coincided point for point with it. The following Generations, who were not so
fond of the Study of Cartography as their Forebears had been, saw that that vast Map
was Useless, and not without some Pitilessness was it, that they delivered it up to the
Inclemencies of Sun and Winters. In the Deserts of the West, still today, there are
Tattered Ruins of that Map, inhabited by Animals and Beggars; in all the Land there is
no other Relic of the Disciplines of Geography.

—Suarez Miranda,Viajes de varones prudentes, Libro IV,Cap. XLV, Lerida, 1658
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Resource allocation models

 Difficulties encountered with large-scale integrated models
have motivated simplified models

« Example of simplified models: resource allocation models

* Reorganization of gene expression in response to changes
In environment is resource allocation problem
How does cell distribute available resources over cellular functions?
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Resource allocation In bacteria

 Empirical growth laws quantify resource allocation in
bacteria

— Different protein categories
— Mass fraction (at steady state) is growth-rate dependent
— Mass fraction (at steady state) varies with translation capacity

Scott et al. (2014), Mol. Syst. Biol., 10:747

R: Ribosome and

Translational ribosome-affiliated

Sy Q: Fixed
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Resource allocation In bacteria

 Empirical growth laws quantify resource allocation in

i
g

bacteria \ .\
b = O+ by = OR™ — =
R R y R v
— Translation efficiency y
— Nutritional efficiency v
— Growth rate A Scott et al. (2014), Mol. Syst. Biol., 10:747
u E R: Ribosome and
& .o Translational Q: Fixed ribosome-affiliated
A A\ N
;E_J Proteome partition
° constraint
g e bpt =P
2 -="" Nutrient quality (@ =1-¢,)
§
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P: Metabolic proteins
(including catabolic and anabolic enzymes)

Growth rate, A
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Resource allocation In bacteria

 Empirical growth laws quantify resource allocation in
bacteria )

l max
dr = manF? dr = O 3

* Which mechanisms underlie these growth laws?

* Resource allocation and growth laws can be studied using
coarse-grained self-replicator models

Molenaar et al. (2009), Mol. Syst. Biol., 5:323
Hinshelwood (1952), J. Chem. Soc. (Res.), 745-55
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Self-replicator model of bacterial growth

* Reorganization of gene expression in response to changes
In environment Is resource allocation problem

* Resource allocation in bacteria can be studied using coarse-
grained self-replicator models

S: substrate

P: precursor metabolites

M: metabolic machinery (enzymes)

R: gene expression machinery (ribosomes)

Giordano et al. (2016), PLoS Comput. Biol., 12(3): €1004802
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Self-replicator model of microbial growth

* Model of self-replicator falls within modeling framework
developed above

D -np —Ny —MNm -Up(ma 3)- p
ri =10 1 0 do(rp) | —p- ],
7 0 0 1 | [vm(r,Dp) m |
§=—0-as-vy(m,s)-b,

p=29-ay,-ny,-vy(m,s),

b=p-b,

Giordano et al. (2016), PLoS Comput. Biol., 12(3): €1004802




Self-replicator model of microbial growth

* Model of self-replicator falls within modeling framework
developed above

* Rate equations

— Definition of total protein synthesis rate vps = 1y« Up + Ny, + Uy
— Rate equations: D
Vps(py 1) = kyp -1 TR
S
s + K,

UP(Svm):km°m' ’

* Resource allocation parameter «

nrr'/Ufr:ia'/UpS

N+ U, = (1 — 00) + s

0<o<1
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Self-replicator model and growth laws

« Self-replicator model reproduces steady-state growth laws
under assumption of growth-rate maximization
— Reasonable parameter values from literature
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Self-replicator model and growth laws

« Self-replicator model reproduces steady-state growth laws
under assumption of growth-rate maximization

— Reasonable parameter values from literature

— RNA/protein fraction proxy for resource allocation parameter a
B A B,
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Feedback growth control strategies

* Which mechanisms allow bacteria to adapt resource
allocation over various environments?

« Different strategies can implement feedback growth control
Exploit information on system variables and/or environment
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Feedback growth control strategies

* On-off control strategy maintains balance between
precursors and gene expression machinery at all times

« On-off strategy resembles ppGpp regulation in bacteria

Effect of ppGpp regulation derived from kinetic model of ppGpp
system

Bosdriesz et al. (2015), FEBS J., 282:209-

On-off strategy ppGpp regulation
B
1.0] =
0.8 7
0.6 ,/,,/////// |
s &) /‘ ‘ 10
6 04 '
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Conclusions

Adaptation of bacteria to their environment involves
reorganisation of cellular physiology

Increasingly powerful methods have become available to
experimentally quantify cellular adaptation

Transcriptomics, proteomics, fluxomics, metabolomics, ...
Adaptation process achieved by large and complex
regulatory networks

Nonlinear dynamical systems with feedback across different time-
scales

Fundamental questions on network functioning remain
unanswered and require integrated models of the cell

Multiple functions, multiple regulatory levels, interactions with
environment and ecosystem, ...
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Conclusions

« Several approaches have been tried to develop and exploit
Integrated models of the cell

— Flux balance models
— Kinetic models of cellular functions: towards whole-cell models
— Resource allocation models

 |ssues for development of such models:
— Scope
— Granularity
— Mathematical methods
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Conclusions

° M Od e I I N g fram ewo rk comes Segregated models  vs nonsigfiarted rr:)dels
with number of fundamental é )_?7
assumptions X v—

Nonstructured models  vs structured models
: eIV
X \Y;
Deterministic models Vs stochastic models
S 2
V Time X Time

* Most importantly, models are tools for a purpose: a different
model for a different question
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Most fundamental questions are still open

 How does the multi-level feedback structure of the network
give rise to dynamical properties of adaptive response?

Can we formulate general laws that explain a variety of phenomena on the
molecular level?

 How does repertoire of dynamical properties of the cell respond
to challenges from ecosystem?

Why have these properties been evolutionary conserved in environment?

How do bacterial cells cooperate and evolve in consortia of microorganisms?
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