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• IBIS: systems biology group at INRIA/Université Grenoble-Alpes 

– Analysis of bacterial regulatory networks by means of models and 

experiments 

– Biologists, computer scientists, mathematicians, physicists, … 
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http://team.inria.fr/ibis 



Overview 

1. Gene regulatory networks in bacteria 

2. Quantitative modeling of gene regulatory networks 

3. Qualitative modeling of gene regulatory networks  

4. Identification of gene regulatory networks 

5. Integrated models of the bacterial cell 
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Bacterial growth and metabolism 

• Bacterial metabolism is flexible, allowing cells to grow on 

different carbon sources 

Preferential utilisation: diauxic growth on glucose and lactose 

 

 

 

 

 

 

 

 

 

• Adaptation of bacterial physiology to different carbon sources 

 

 

 

Bettenbrock et al. (2006), J. Biol. Chem., 281(5):2578-84 
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Growth transition and metabolism 

• Adaptation to different carbon source involves changes in 

metabolic fluxes  

 Different flux distribution in central metabolism of E. coli during 

growth on glucose and galactose 
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Haverkorn van Rijsewijk et al. (2011), Mol. 

Syst. Biol., 7:477 



Growth transition and gene expression 

• Adaptation to different carbon source 

involves adjustment of expression of 

enzymatic genes 

 Difference in expression levels of genes 

encoding enzymes in central metabolism 

of E. coli during growth on glucose and 

acetate 
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Oh et al. (2002), J. Biol. Chem., 277(15):13175–83 



Growth transition and gene expression 

• Adaptation to different carbon source 

involves genome-wide reorganisation 

of gene expression 

 Gene expression during glucose-lactose 

shift in E. coli 
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Traxler et al. (2006), Proc. Natl. Acad. Sci. USA, 103(7):2374–9 



Adaptation on multiple levels 

• Adaptation to different carbon source 

involves adjustments on multiple 

levels at the same time! 

 Parallel measurement of enzyme and 

metabolite concentrations, and metabolic 

fluxes in a variety of experimental 

conditions 
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Ishii et al. (2007), Science, 316(5284):593-7 
 



• Coordination of adaptative responses of bacterial cell 

achieved by large and complex regulatory networks 
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Coordination of adaptative responses 

Kotte et al. (2010), Mol. Syst. Biol., 6: 355 

– Variety of molecular mechanisms… 

– … operating on different time-

scales… 

  

 

 



• Coordination of adaptative responses of bacterial cell 

achieved by large and complex regulatory networks 
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Coordination of adaptative responses 

Kotte et al. (2010), Mol. Syst. Biol., 6: 355 

– Variety of molecular mechanisms… 

– … operating on different time-

scales… 

– … involving numerous feedback 

loops across levels 

  

 

 



• Coordination of adaptative responses of bacterial cell achieved 

by large and complex regulatory networks 

• Abundant knowledge on biochemical mechanisms underlying 

interactions between network components 

• Accumulation of data on multi-level response of network to 

external perturbations 

Metabolic fluxes and cellular concentrations of metabolites, enzymes, 

transcription factors, signalling molecules, … 

• However, global view on functioning of  entire network is 

difficult to achieve and largely absent today 

• Use of models to analyse and predict dynamical behaviour of 

system 

 Emergence of new discipline: systems biology 

 

 

No global view on network functioning 
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Towards integrated models of cell 

• Most systems biology studies have focused on isolated, 

relatively small subsystems 

• Increasing awareness that for answering many interesting 

questions, one needs to consider integrated models of the 

cell: 

– Multiple levels of regulation: metabolism, gene expression, signal 

transduction,… 

– Relate cellular processes to growth 

– Explicit modelling of interactions with environment and ecosystem 

– … 

 

 

 12 



Towards integrated models of the cell 

• Integrated models of the cell are emerging, but some 

interesting precursors exist 

Coarse-grained model of an E. coli cell 
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Domach et al. (1984), Biotechnol. Bioeng., 26(3):203-16 



Growth of microbial populations 

• Growth can be considered on the level of number of 

individual cells or aggregated volume of growing 

population 

Segregated vs nonsegregated models 
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de Jong et al. (2017), J. Roy. Soc. Interface, 14(136):20170502 



Growth of microbial populations 

• Ordinary differential equation (ODE) model of the growth of a 

population of microorganisms 

Growth rate 

 

 

• Solution of growth model for constant growth rate 

 

 

Half-life              
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Growth of microbial populations 

• If all cells have same growth rate, segregated and 

nonsegregated models are identical 

• But: growth rate of cells in population may be heterogeneous 

– Bacterial persistence after antibiotics treatment 
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Balaban et al. (2004), Science, 305(5690):1622-5 



Growth of microbial populations 

• If all cells have same growth rate, segregated and 

nonsegregated models are identical 

• But: growth rate of cells in population may be heterogeneous 

– Bacterial persistence after antibiotics treatment 
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Balaban et al. (2004), Science, 305(5690):1622-5 



Growth of microbial populations 

• If all cells have same growth rate, segregated and 

nonsegregated models are identical 

• But: growth rate of cells in population may be heterogeneous 

– Bacterial persistence after antibiotics treatment 

– Persister cellss have lower growth rate before antibiotics treatment 
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Balaban et al. (2004), Science, 305(5690):1622-5 



Volume and macromolecular contents 

• Growth is fueled by biochemical processes 

• Models describing molecular constituents and biochemical 

reactions in which they are involved 

Structured vs unstructured models 
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Volume and macromolecular contents 

• Basic assumption: volume proportional to biomass (total 

mass of molecular constituents in cells) 

Dry mass of constituent i 

Biomass 

 

 

• In other words, biomass density                  is constant: 
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Volume and macromolecular contents 

• Assumption of constant biomass density supported by 

experimental data 

Biomass density approximately  
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Basan et al. (2015), Mol. Syst. Biol., 11:836-5 



Volume and macromolecular contents 

• Concentration            of molecular constituent i in population 

 

• If all cells have same concentration, then      also applies to 

individual cells 
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• But: concentrations may 

be heterogeneous, 

leading to different 

growth phenotypes 

 Enzymes for secondary 

carbon sources in E. coli 

 

 
Afroz et al. (2014), Mol. Microbiol., 93(6):1093-1103  



Volume and macromolecular contents 

• Concentration            of molecular constituent i in population 

 

• If all cells have same concentration, then      also applies to 

individual cells 

• Consequence of proportionality of mass and volume: total 

concentration is constant 
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Volume and macromolecular contents 

• ODE model of dynamics of molecular constituent i : 

 

 

 

 

Appearance of term for growth dilution of individual constituents 

• Growth rate follows from dynamics of molecular constituents 

 

 

 

No growth dilution if mass of all constituents remains constant 
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Volume and macromolecular contents 

• Growth dilution may have an important effect on the 

concentration of cellular constituents 
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Klumpp et al. (2009), Cell, 139(7):1366-75 

− Changes in rate of protein synthesis and decay of constitutive gene 

 

 



Volume and macromolecular contents 

• Growth dilution may have an important effect on the 

concentration of cellular constituents 
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− Changes in rate of protein synthesis and decay of constitutive gene 

− Concentration of gene product is growth-rate dependent 

 

 

Klumpp et al. (2009), Cell, 139(7):1366-75 



Biochemical reactions underlying growth 

• Term              represents net effect of biochemical reactions 

on concentration of molecular constituent i 

• Change of variables: 

Rate of reactions based on physical encounters of molecules 

 

• ODE model of dynamics of molecular constituent i : 
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Biochemical reactions underlying growth 

• Reformulation of reaction rates 

– Rate of reaction j : 

– Stoichiometry of constituent i in reaction j : 
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Biochemical reactions underlying growth 

• Reformulation of reaction rates 

– Vector of reaction rates: 

– Row in stoichiometry matrix for constituent i : 

– Vector of molecular constituents: 

• Reformulation of ODE model 
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Biochemical reactions underlying growth 

• Reformulation of reaction rates 

– Vector of reaction rates: 

– Row in stoichiometry matrix for constituent i : 

– Vector of molecular constituents: 

• Reformulation of ODE model 

 

• Stoichiometry model of biochemical reactions 
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Biochemical reactions underlying growth 

• Stoichiometry matrix       describes structure of reaction 

network 

   Internal reactions and exchange reactions, reversible and irreversible 
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Schilling et al. (2000), J. Theor. Biol., 203(3):229-48 



Biochemical reactions underlying growth 

• Stoichiometry model of biochemical reactions 

 

 

• Expression of growth rate 

 

 

 

 

– Rate of accumulation of (mass of) constituents (within unit volume per 

unit time) relative to total amount of constituents (within unit volume) 

– Not ad-hoc definition, but derived from basic assumptions 
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Biochemical reactions underlying growth 

• ODE model for growth of microbial populations: 

 

 

 

 

 

 

 

 

• Reaction rates depend on concentrations    of substrates, 

products, effectors 
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Biochemical reactions underlying growth 

• ODE model for growth of microbial populations: 

 

 

 

• Reaction rates depend on concentrations     of substrates, 

products, effectors 

 Mass-action kinetics, Henri-Michaelis-Menten kinetics, Monod-

Wyman-Changeux kinetics, … 
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Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall 



Growth in a changing environment 

• No explicit model of the environment 

 Some reactions in      correspond to uptake of substrates or secretion 

of products 

• Environment modeled as bioreactor filled by liquid medium 

of fixed volume 

– Substrate/product concentrations in medium: 

– Volume of medium: 
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Source: wikpedia 



Growth in a changing environment 

• No explicit model of the environment 

 Some reactions in      correspond to uptake of substrates or secretion 

of products 

• Environment modeled as bioreactor filled by liquid medium 

of fixed volume 

– Substrate/product concentrations in medium: 

– Volume of medium: 

• ODE model for dynamics of substrate/product 

concentrations in medium 

 

 

– Stoichiometry matrix for exchange reactions: 

– Diagonal matrix of molar mass coefficients: 
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Growth in a changing environment 

• No explicit model of the environment 

 Some reactions in      correspond to uptake of substrates or secretion 

of products 

• Environment modeled as bioreactor filled by liquid medium 

of fixed volume 

– Substrate/product concentrations in medium: 

– Volume of medium: 

• ODE model for dynamics of substrate/product 

concentrations in medium 
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Growth in a changing environment 

• ODE model for growth of microbial populations: 
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Growth in a changing environment 

• ODE model for growth of microbial populations: 

 

 

 

 

 

• Model applies to batch cultivation, but can be easily adapted 

for continuous culture or fed-batch culture 
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Bastin and Dochin (1990), On-Line Estimation and Adaptive Control of Bioreactors, Elsevier, 1990 



Growth in a changing environment 

• Bioreactor models have been mostly used in context of 

biotechnological applications 

• But: they also apply to complex natural environments, such 

as digestive tracts of vertebrates and insects 
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Godon et al. (2013), BioEnergy Res., 6(3):1063-81 



Towards integrated models of the cell 

• Integrated models of the cell are emerging, but some 

interesting precursors exist 

Coarse-grained model of an E. coli cell 
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Domach et al. (1984), Biotechnol. Bioeng., 26(3):203-16 



Towards integrated models of the cell 

• Integrated models of the cell are emerging, but some 

interesting precursors exist 

Coarse-grained model of an E. coli cell 
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Shuler et al. (2012), Methods Mol. Biol., 881:573-610 

• Model has evolved into 

minimal, functionally 

complete model of 

chemoheterotrophic 

bacterium 



Towards integrated models of the cell 

• Integrated models of the cell are emerging, but some 

interesting precursors exist 

Coarse-grained model of an E. coli cell 
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Shuler et al. (2012), Methods Mol. Biol., 881:573-610 

• Model has evolved into 

minimal, functionally 

complete model of 

chemoheterotrophic 

bacterium 



Whole-cell model M. genitalium 

• Metabolic networks are integrated with gene networks and 

signalling networks 

 Complex multi-level system with feedback across different time-

scales 

  

 

 

 

 

 

 

 

 Karr et al. (2012), Cell, 150(2): 389-401 
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Whole-cell model of 

Mycoplasma genitalium 



Whole-cell model M. genitalium 

• Whole-cell model represents huge modelling effort: 

– Whole-genome model including complete known metabolic, gene, and 

signalling networks 

 

 

 

 

 

 

 

 

 

– Variety of formalisms to model the 28 modules: FBA, kinetic ODE 

models, Boolean models, Markov chains, … 

– Cell cycle simulated for >100 cells, >30 mutants on 128-core machine 

  

 

 

Karr et al. (2012), Cell, 150(2): 389-401 
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Whole-cell model M. genitalium 

• Whole-cell simulation of M. genitalium cell cycle 
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Whole-cell model M. genitalium 

• Whole-cell simulations have provided new insights into 

robustness of cell-cycle duration 

 

 

 

 

 

 

 

Karr et al. (2012), Cell, 150(2): 389-401 

– High variability of replication 

initiation buffered by dNTP-

dependent duration of replication 

– This metabolic control of 

replication leads to decreased 

variability of cell-cycle length  
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Whole-cell model M. genitalium 

• Whole-cell simulations have provided new insights into 

global use and allocation of energy 

 

 

 

 

 

 

 

Karr et al. (2012), Cell, 150(2): 389-401 

– Transcription and translation most 

costly processes 

– Energy use largely independent of 

cell-cycle length 

– Usage of almost half of produced 

energy not accounted for!  
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Large-scale integrated models: 

conclusions 

• Large-scale integrated models help analyze the dynamics of 

interactions between multiple functions of the cell 

 Models allow predictions to be confronted with experimental data and 

performance of thought experiments 

• But large-scale integrated models have problems as well! 

– Models difficult to construct, to debug and to maintain 

– Huge number of parameters, many unknown: parameter estimation 

is a difficult problem requiring many data of high quality 

– How do we extract fundamental insights on cell functioning from 

large, mechanistic models? 
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Large-scale integrated models: 

conclusions 

• Large-scale integrated models help analyze the dynamics of 

interactions between multiple functions of the cell 

 Models allow predictions to be confronted with experimental data and 

performance of thought experiments 

• But large-scale integrated models have problems as well! 

 

 50 



Resource allocation models 

• Difficulties encountered with large-scale integrated models 

have motivated simplified models 

• Example of simplified models: resource allocation models 

• Reorganization of gene expression in response to changes 

in environment is resource allocation problem 

 How does cell distribute available resources over cellular functions? 
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Resource allocation in bacteria 

• Empirical growth laws quantify resource allocation in 

bacteria 

– Different protein categories 

– Mass fraction (at steady state) is growth-rate dependent  

– Mass fraction (at steady state) varies with translation capacity 
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Scott et al. (2014), Mol. Syst. Biol., 10:747 



Resource allocation in bacteria 

• Empirical growth laws quantify resource allocation in 

bacteria 

 

– Translation efficiency γ 

– Nutritional efficiency ν 

– Growth rate λ 
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Scott et al. (2014), Mol. Syst. Biol., 10:747 



Resource allocation in bacteria 

• Empirical growth laws quantify resource allocation in 

bacteria 

 

• Which mechanisms underlie these growth laws? 

• Resource allocation and growth laws can be studied using 

coarse-grained self-replicator models 

 

 

 54 

Molenaar et al. (2009), Mol. Syst. Biol., 5:323 

Hinshelwood (1952), J. Chem. Soc. (Res.), 745-55 



Self-replicator model of bacterial growth 

• Reorganization of gene expression in response to changes 

in environment is resource allocation problem 

• Resource allocation in bacteria can be studied using coarse-

grained self-replicator models 
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Giordano et al. (2016), PLoS Comput. Biol., 12(3): e1004802 

S: substrate 

P: precursor metabolites 

M: metabolic machinery (enzymes) 

R: gene expression machinery (ribosomes) 



Self-replicator model of microbial growth 

• Model of self-replicator falls within modeling framework 

developed above 
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Giordano et al. (2016), PLoS Comput. Biol., 12(3): e1004802 

de Jong et al. (2017), J. Roy. Soc. Interface, 14:20170502 



Self-replicator model of microbial growth 

• Model of self-replicator falls within modeling framework 

developed above 

• Rate equations 

– Definition of total protein synthesis rate 

– Rate equations: 

 

 

 

• Resource allocation parameter α 
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Self-replicator model and growth laws 

• Self-replicator model reproduces steady-state growth laws 

under assumption of growth-rate maximization 

– Reasonable parameter values from literature 
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Self-replicator model and growth laws 

• Self-replicator model reproduces steady-state growth laws 

under assumption of growth-rate maximization 

– Reasonable parameter values from literature 

– RNA/protein fraction proxy for resource allocation parameter α 

 

59 

Scott et al. (2010), Science, 330(6007):1099-102 



Feedback growth control strategies 

• Which mechanisms allow bacteria to adapt resource 

allocation over various environments? 

• Different strategies can implement feedback growth control 

Exploit information on system variables and/or environment 
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Feedback growth control strategies 

• On-off control strategy maintains balance between 

precursors and gene expression machinery at all times 

• On-off strategy resembles ppGpp regulation in bacteria 

 Effect of ppGpp regulation derived from kinetic model of ppGpp 

system 
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Bosdriesz et al. (2015), FEBS J., 282:209- 



Conclusions 

• Adaptation of bacteria to their environment involves 

reorganisation of cellular physiology 

• Increasingly powerful methods have become available to 

experimentally quantify cellular adaptation 

Transcriptomics, proteomics, fluxomics, metabolomics, … 

• Adaptation process achieved by large and complex 

regulatory networks 

 Nonlinear dynamical systems with feedback across different time-

scales 

• Fundamental questions on network functioning remain 

unanswered and require integrated models of the cell 
Multiple functions, multiple regulatory levels, interactions with 

environment and ecosystem, … 
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Conclusions 

• Several approaches have been tried to develop and exploit 

integrated models of the cell 

– Flux balance models 

– Kinetic models of cellular functions: towards whole-cell models 

– Resource allocation models 

• Issues for development of such models: 

– Scope 

– Granularity 

– Mathematical methods 

– … 
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Conclusions 

 

 

 

 

 

 

 

 

 

• Most importantly, models are tools for a purpose: a different 

model for a different question 
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• Modeling framework comes 

with number of fundamental 

assumptions 

 

 



Most fundamental questions are still open 

• How does the multi-level feedback structure of the network 

give rise to dynamical properties of adaptive response?  
 Can we formulate general laws that explain a variety of phenomena on the 

molecular level? 

• How does repertoire of dynamical properties of the cell respond 

to challenges from ecosystem? 

Why have these properties been evolutionary conserved in environment? 

How do bacterial cells cooperate and evolve in consortia of microorganisms? 
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Merci ! 

team.inria.fr/ibis 


