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« |BIS: systems biology group at INRIA/Universitée Joseph Fourier/CNRS

— Analysis of bacterial regulatory networks by means of models and
experiments

— Biologists, computer scientists, mathematicians, physicists, ...
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Overview
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Gene regulatory networks in bacteria
Quantitative modeling of gene regulatory networks
Qualitative modeling of gene regulatory networks

|dentification of gene regulatory networks

Towards integrated models of the cell




Bacterial growth and metabolism

« Bacteria are unicellular organisms geared towards
growth and division
Escherichia coli cells have doubling times up to 20 min

Stewart et al. (2005), PLoS Biol., 3(2): e45

 Metabolism fuels growth by production of energy and building
blocks for macromolecules, using nutriments from environment

ATP, amino acids, nucleotides, ...
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Bacterial growth and metabolism

« Bacterial metabolism is flexible, allowing cells to grow on
different carbon sources

Preferential utilisation: diauxic growth on glucose and lactose
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Bettenbrock et al. (2006), J. Biol. Chem., 281(5):2578-84

« Adaptation of bacterial physiology to different carbon sources
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Growth transition and metabolism

« Adaptation to different carbon source involves changes in
metabolic fluxes

Different flux distribution in central metabolism of E. coli during
growth on glucose and galactose
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Growth transition and gene expression
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Growth transition and gene expression
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» Adaptation to different carbon source
Involves genome-wide reorganisation
of gene expression

Gene expression during glucose-lactose
shift in E. coli
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Traxler et al. (2006), Proc. Natl. Acad. Sci. USA, 103(7):2374-9
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Adaptation on multiple levels
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* Adaptation to different carbon source
Involves adjustments on multiple
levels at the same time!

Parallel measurement of enzyme and
metabolite concentrations, and metabolic
fluxes in a variety of experimental
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Molecular bases of adaptative responses

« Adaptative responses of bacterial cell brought about by
large and complex networks of biochemical reactions

— Variety of reaction mechanisms... (Changing) carbon

— ... operating on different time-
scales...

— ... Involving numerous feedback
loops across levels
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Metabolic, signalling, gene networks

 Different types of networks distinguished by function, types
of biochemical reactions and time-scale of dynamics

. (Changing) carbon
— Metabolic networks: sources

conversion of substrate into
precursors and energy

— Enzymatic reactions and
regulation of enzyme activity

— Time-scale: msto s

uction
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Metabolic, signalling, gene networks

 Different types of networks distinguished by function, types
of biochemical reactions and time-scale of dynamics

. . (Changing) carbon
— Signalling networks: sources

transmission of information on
state of environment and
cellular physiology

— Reactions involved in protein : i -
(enzyme) modification and their | 3% = , v-i-“”” 7:9
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Metabolic, signalling, gene networks

 Different types of networks distinguished by function, types
of biochemical reactions and time-scale of dynamics

(Changing) carbon
— Generegulatory networks: sources

gene expression in response to
changes in environment and
cellular physiology

— Reactions involved in
transcription and translation and
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Gene expression

* Typically, and simplifying quite a bit, gene expression in
bacteria involves:

— Transcription by RNA polymerase (MRNA)
— Translation by ribosomes (proteins)
— Degradation of mRNA and protein
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Gene expression

* Typically, and simplifying quite a bit, gene expression in
bacteria involves:
— Transcription by RNA polymerase (MRNA)
— Translation by ribosomes (proteins)
— Degradation of mRNA and protein

Simplified view:

transcription translation
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Regulation of gene expression

* Typically, and simplifying quite a bit, regulation of gene
expression in bacteria involves:
— Transcription regulation by transcription factors
— Translation regulation by small RNAs
— Regulation of degradation by proteases
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Gene regulatory networks

 Gene regulatory networks control changes in expression
levels in response to environmental perturbations
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Jacob and Monod (1961), J. Mol. Biol., 3(3):318-56
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Gene regulatory networks

 Gene regulatory networks control changes in expression
levels in response to environmental perturbations
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Gene regulatory networks

 Gene regulatory networks control changes in expression
levels in response to environmental perturbations

Sporulation and competence
network in B. subtilis

Schultz et al. (1961), Proc. Natl. Acad. Sci. USA, 106(50):21027-34
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Gene regulatory networks

 Gene regulatory networks control changes in expression
levels in response to environmental perturbations

Cauleobacter cell cycle network
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Broader view on gene regulatory networks

* (Gene regulatory networks control changes in expression levels
IN response to environmental perturbations

(Changing) carbon

- But: adaptation of gene
expression leads to changes in
metabolism which feed back
Into regulatory network

Metabolic master regulation

Indirect regulatory interactions:
metabolic coupling

Baldazzi et al. (2010), PLoS Comput.
Biol., 6(6):€1000812
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Broader view on gene regulatory networks

* (Gene regulatory networks control changes in expression levels
IN response to environmental perturbations

walesme o But: adaptation of gene
vetbotte 1 et expression leads to changes in
yd | metabolism which feed back
o T— into regulatory network
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Complexity of gene regulatory networks

* Most gene regulatory networks of biological interest are large
and complex

E. coli has 4200 genes coding for several hundreds of transcription factors

Cases and de Lorenzo (2005), Nat. Rev.
Microbiol., 3(2):105-18
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Martinez-Antonio et al. (2003), Curr. Opin. Microbiol., 6(5):482-9
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Systems biology

 Most gene regulatory networks of biological interest are large
and complex

* No global view of functioning of network available, despite
abundant knowledge on network components

Understanding of dynamics requires experimental tools for monitoring
gene expression over time

Understanding of dynamics requires mathematical modeling and
computer analysis and simulation

Discipline now often referred to as systems biology

Alon (2007), An Introduction to Systems Biology, Chapman & Hall/CRC Press
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Experimental tools

» A variety of experimental tools allow gene expression to be
measured, by quantifying mRNA and protein abundancies

Peng and Shimizu (2003),
App. Microbiol. Biotechnol., 61:163-78
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Ali Azam et al. (1999), J. Bacteriol., 181(20):6361-70
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Fluorescent reporter genes

« Use of fluorescent reporter genes
allows expression from host promoter 0 wssoysusan sgorsrsre
be monitored in vivo and in real time

(e.g. a gene’s promoter) luciferase)

- DNA

i

— Different colors (emission peaks): GFP, YFP, —
RFP, ... 4 |
. . Amoﬁ:t!?:;i:ls':z::ured
— Reporter genes on plasmids and on (e GFP by fuorescence
chromosome .
— Transcriptional and translational
reporters 82

 Library of fluorescent transcrlptlonal
reporter genes in E. coli

dGFP/dO
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Zaslaver et al. (2006), Nat. Methods, 3(8):623-8
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Microplate readers

Real-time monitoring of gene expression ° M O n |t0 rl n g Of g e n e
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A using fluorescent
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Exponential growth automat ed
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activities ; fluorescence data

Berthoumieux et al. (2013), Mol. Syst. Biol., 9:634
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Single-cell microscopy

* Monitoring of gene expression in single cells using
fluorescent reporters, automated time-lapse microscopy,
and image analysis

* Monitoring onset of competence in B. subtilis
Suel et al. (2006), Nature, 440:545-50 &
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Single-cell microscopy

* Monitoring of gene expression in single cells using
fluorescent reporters, automated time-lapse microscopy,
and image analysis

* Monitoring onset of competence in B. subtilis
Suel et al. (2006), Nature, 440:545-50
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Single-cell microscopy and microfluidics

* Microfluidic trapping devices for long-term acquisition of

single-cell data
©)
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Rl TR TR TRl
¥ A\ w v ' 5
]

\f Y "Rl
WO W W W
A 9] s \

A6

Daughter PDMS PDMS
Mother Budding Ve & Streamlines u 3?:?;22%5 i

& & —Es- g 4
Jail’ bars m Glass Glass N ) O

* Microfluidic devices allow tight control of environmental

perturbations
Bennett and Hasty (2009), Nat. Rev. Genet., 10(9):628-38
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Single-cell microscopy and microfluidics

* Microfluidic trapping devices for long-term acquisition of
single-cell data

* Microfluidic devices allow tight control of environmental
perturbations

Izard, Gomez Balderas et al. (2015), Mol. Syst. Biol., 11:840




Single-cell microscopy and microfluidics

* Microfluidic trapping devices for long-term acquisition of
single-cell data

* Microfluidic devices allow tight control of environmental

perturbations
Izard, Gomez Balderas et al. (2015), Mol. Syst. Biol., 11:840




Single-cell microscopy and microfluidics

* Microfluidic trapping devices for long-term acquisition of
single-cell data
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* Microfluidic devices allow tight control of environmental
perturbations

Izard, Gomez Balderas et al. (2015), Mol. Syst. Biol., 11:840
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Single-molecule quantification

 Measurement of gene B o Ty by €
expression at single- crvomosone | IRCHRRINERY
molecule level using
fluorescence reporter
genes, microfluidic device,
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 Measurement of
expression of thousand E.
coli genes using YFP-
tagged chromosomal oo
reporters
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Taniguchi et al. (2010), Science, 329(5991):533-9
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RNA sequencing

* RNA sequencing (RNA-seq) exploits new generation of
sequencing technologies for quantifying RNA levels

o

Reverse Mapping to 9 W A ~r
"SN/IVttBNA transcription e — Library g:r‘\)on?e
epletion o Av/Ov A E—— amplification o {58 .
c W— - Reads count 1Y "W
(eg., ANA [—) = fragmentation g < =E per position = !{E‘é:‘... L 4
capture and i —— Sequencing ‘ (digital) b 410 I ——"
pull down) rRNA/tRNA apterfigation .\ fragments with o — y §
depleted sample (nﬂ(::saggzrs) in sequencing adapters Vistmlization r——
RNA-seq

Mader et al. (2010), Curr. Opin. Biotechnol., 22(1):32-41

« Use of RNA-seq data to discover new genes and detect
operon structure

Sorek and Cossart (2010), Nat. Rev.
Genet., 11(1):9-16

Discovery of new genes

New gene

I—I—|

Gene coding for short peptide New non-coding RNA
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RNA sequencing

* RNA sequencing (RNA-seq) exploits new generation of
sequencing technologies for quantifying RNA levels

o
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Mader et al. (2010), Curr. Opin. Biotechnol., 22(1):32-41

« Use of RNA-seq data to discover new genes and detect
Operon Structure d Operon structures

Sorek and Cossart (2010), Nat. Rev.
Genet., 11(1):9-16
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RNA sequencing

* RNA sequencing (RNA-seq) exploits new generation of
sequencing technologies for quantifying RNA levels
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Mader et al. (2010), Curr. Opin. Biotechnol., 22(1):32-41

« Use of RNA-seq to R e e

determine correlation B

between mean RNA and g
mean protein levels 5.0

Taniguchi et al. (2010), Science, 329(5991):533-9 10 03555 071 0 o

Mean mRNA level by RNA-seq (AU)
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Quantitative proteomics

« Measurement of protein abundance using mass-spectrometry-
based technigues (quantitative proteomics)

Use of calibration standards to achieve absolute quantification

Digestion
with
trypsin
I ° N iy 2 Database
—_ —> -mm— © >0 0 —» = earch
/ I ° oo &
Protein Peptides LC/ESI MS Cip MS/MS m/z

Gstaiger and Aebersold (2009), Nat. Rev. Genet., 10:617-27
e Several targeted proteomics techniques developed to improve
guantification of low-abundance proteins

‘ List of proteotypic peptides (PTPs) ‘

Dlgestlon Q1 Q2 Q3
with =
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Quantitative proteomics

ficati = V(. o))
* Absolute quantification of e .
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Trachessec et al. (2014), Mol. Cell. Proteom., 13(4):954-68
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Systems biology

 Most gene regulatory networks of biological interest are large
and complex

* No global view of functioning of network available, despite
abundant knowledge on network components

Understanding of dynamics requires experimental tools for monitoring
gene expression over time

Understanding of dynamics requires mathematical modeling and
computer analysis and simulation

Discipline now often referred to as systems biology

Alon (2007), An Introduction to Systems Biology, Chapman & Hall/CRC Press
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Modeling of gene regulatory networks

 Modeling of gene regulatory networks amount to modeling of
gene expression and regulation of gene expression

transcription translation

F o E—
o R

promoter gene protein

deqgradation degradation

Z 2
* Possible aims of modeling of gene regulatory networks:

— Understanding role of individual components and interactions
— Suggesting missing components and interactions

« Advantages of mathematical and computer tools:

— Precise and unambiguous description of network
— Systematic derivation of predictions of network behavior
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Modeling of gene regulatory networks

 Modeling of gene regulatory networks amount to modeling of
gene expression and regulation of gene expression

transcription translation

F o E—
o R

promoter gene protein

deqgradation degradation

i Z
« First models of gene regulatory networks date back to early

days of molecular biology
Feedback circuits and oscillators




Modeling of gene regulatory networks

 Different modeling formalisms exist, describing gene
expression on different levels of detalil

detailed coarse-grained
Stochastic master Ordinary differential Boolean
equations equations (ODES) networks

Smolen et al. (2000), Bull. Math. Biol., 62(2):247-292

Hasty et al. (2001), Nat. Rev. Genet., 2(4):268-279

de Jong (2002), J. Comput. Biol., 9(1): 69-105

Szallassi et al. (2006), System Modeling in Cellular Biology, MIT Press

Bolouri (2008), Computational Modeling of Gene Regulatory Networks,
Imperial College Press

Karleback and Shamir (2008), Nat. Rev. Mol. Cell Biol., 9(10):770-80
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Conclusions

« (Gene regulatory networks control adaptive response of
bacteria to changes in environment

* (Gene regulatory networks are intertwined with metabolic
and signaling networks

« Technology for measuring gene expression over time, and
thus functioning of gene regulatory networks, are rapidly
developing

* Modeling necessary for understanding dynamics of complex
networks: systems biology

* A variety of formalisms for modeling gene regulatory
networks, in a detailed or coarse-grained way, have been
developed
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