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INRIA Grenoble - Rhône-Alpes and IBIS 

• IBIS: systems biology group at INRIA/Université Joseph Fourier/CNRS 

– Analysis of bacterial regulatory networks by means of models and 

experiments 

– Biologists, computer scientists, mathematicians, physicists, … 
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http://team.inria.fr/ibis 
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Overview 

1. Gene regulatory networks in bacteria 

2. Quantitative modeling of gene regulatory networks 

3. Qualitative modeling of gene regulatory networks  

4. Identification of gene regulatory networks 

5. Towards integrated models of the cell 

 



Gene regulatory networks 

• Gene regulatory networks control changes in gene 

expression levels in response to environmental perturbations 
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Kotte et al. (2010), Mol. Syst. Biol., 6:355 

• Gene regulatory networks 

consist of genes, gene 

products, signalling 

metabolites, and their mutual 

regulatory interactions  

 Global regulators of transcription 

involved in glucose-acetate 

diauxie in E. coli 
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Modeling of gene regulatory networks 

• Well-established theory for modeling of gene regulatory 

networks using ordinary differential equation (ODE) models 

 

 

• Practical problems encountered by modelers: 

– Knowledge on molecular mechanisms rare 

– Quantitative information on kinetic parameters and molecular 

concentrations absent 

– Large models 

Polynikis et al. (2009), J. Theor. Biol., 261(4):511-30 

Bolouri (2008), Computational Modeling of Gene Regulatory Networks, Imperial College Press 
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Qualitative modeling and simulation 

• Intuition: essential properties of network dynamics robust 

against reasonable model simplifications 

• Qualitative modeling and simulation of large and complex gene 

regulatory networks using simplified models 

 

• Relation with discrete, logical models of gene regulation 
Thomas and d’Ari (1990), Biological Feedback, CRC Press 

de Jong, Gouzé et al. (2004), Bull. Math. Biol., 66(2):301-40 
 

Kauffman (1993), The Origins of Order, Oxford University Press 
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Ordinary differential equation models 

• Gene regulatory networks modeled by ODE models using 

sigmoid functions to describe regulatory interactions 

 

 

 

 

 

 

 

 

• Expressions of sigmoid functions account for combinatorial 

control of gene expression (AND, OR, NOR, …) 

xa  a h
-(xa ,a2 ,n) h-(xb ,b ,n) – a xa  

. 

xb  b h
-(xa ,a1 ,n) – b xb  

. 

x : protein concentration 

 ,  : rate constants 

  : threshold concentration 

x 

h-(x,θ,n) 

 
0 

1 

n : steepness parameter 
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PL differential equation models 

• ODE models approximated by means of step functions to 

describe regulatory interactions 

 

 

 

 

• Piecewise-linear (PL)DE models of gene regulatory networks 

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29 

xa  a s
-(xa ,a2 ) s

-(xb ,b ) – a xa  

xb  b s
-(xa ,a1 ) – b xb  

x : protein concentration 

 ,  : rate constants 

  : threshold concentration 

. 

. 

x 

s-(x,θ) 

 
0 

1 
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• Analysis of local dynamics of PL models 

 Monotone convergence towards focal point in regions separated by 

thresholds 

 

 

 

 

 

 
a1 

0 a2 maxa 

Mathematical analysis of PL models 

maxb 

b 

a/a 

b/b xa  a – a xa  

. 

xb  b – b xb  

. 

D1   

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29 

xa  a s
-(xa ,a2 ) s

-(xb ,b ) – a xa  

xb  b s
-(xa ,a1 ) – b xb  

. 

. 
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• Analysis of local dynamics of PL models 

 Monotone convergence towards focal point in regions separated by 

thresholds 

 

 

 

 

 

 

 

a1 
0 

maxb 

a2 

b 

maxa 

Mathematical analysis of PL models 

xa  a – a xa  

. 

xb  – b xb  

. 

a/a 

D5   

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29 

xa  a s
-(xa ,a2 ) s

-(xb ,b ) – a xa  

xb  b s
-(xa ,a1 ) – b xb  

. 

. 
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• Analysis of local dynamics of PL models 

Instantaneous crossing of regions located on thresholds, or … 

 

 

 

 

 

 

 

a1 
0 

maxb 

a2 

b 

maxa 

Mathematical analysis of PL models 

D3   

xa  a s
-(xa ,a2 ) s

-(xb ,b ) – a xa  

xb  b s
-(xa ,a1 ) – b xb  

. 

. 
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• Analysis of local dynamics of PL models 

… quasi-monotone convergence towards focal sets located on threshold 

hyperplanes 

 

 

 

 

 

 

 

• Extension of PL differential equations to differential inclusions 

using Filippov approach 

a1 
0 

maxb 

a2 

b 

maxa 

Mathematical analysis of PL models 

D7   

Gouzé and Sari (2002), Dyn. Syst., 17(4):299-316 

xa  a s
-(xa ,a2 ) s

-(xb ,b ) – a xa  

xb  b s
-(xa ,a1 ) – b xb  

. 

. 
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• Analysis of global dynamics obtained by piecing together 

local dynamics in regions 

PL approximation preserves bistability of cross-inhibition network 

 

 

 

 

 

 

 

Qualitative analysis of PL models 

a1 
0 

maxb 

a2 

b 

maxa a1 
0 

maxb 

a2 

b 

maxa 
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• State space can be partitioned into regions with unique 

derivative sign pattern 

• Qualitative abstraction yields state transition graph that 

provides discrete picture of continuous dynamics 

 

 

 

 

 

 a1 
0 

maxb 

a2 

b 

maxa 

Qualitative analysis of PL models 

. 

. xa > 0 

xb < 0 
D5: 

. 

. . 
. 
. 

. 
xa > 0 

xb > 0 

xa > 0 

xb < 0 

xa = 0 

xb < 0 D1: D5: D7: 

D12  
D22   

D23   

D24   

D17  

D18  
D21  D20  

D1   D3   D5   D7   D9   

D15   

D27   D26    D25   

D11  D13   D14   

D2   D4   D6     D8   

D10   
D16  

D19   

D1  D3  D5  D7 D9  

D15 

D27 D26 D25 

D11 D12 D13 D14 

D2  D4  D6 

D8  

D10 

D16 
D17 

D18 

D20 

D19 

D21 

D22 

D23 

D24 

de Jong et al. (2004), Bull. Math. Biol., 66(2):301-40 

Batt et al. (2008), Automatica, 44(4):982-9 

Alur et al. (2000), Proc. IEEE, 88(7):971-84 
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• State transition graph gives conservative approximation of 

continuous dynamics 

– Every solution of PL model corresponds to path in state transition graph 

– Converse is not necessarily true!  

• State transition graph is invariant for given inequality 

constraints on parameters 

Qualitative analysis of PL models 

D1  D3  

D11 D12 

a1 
0 

maxb 

a2 

b 

maxa a/a 

b/b 

D1   

D11   D12   

D3   

0 < a1 < a2 < a/a < maxa  

0 < b < b/b < maxb  

Batt et al. (2008), Automatica, 44(4):982-9 



16 

• State transition graph gives conservative approximation of 

continuous dynamics 

– Every solution of PL model corresponds to path in state transition graph 

– Converse is not necessarily true!  

• State transition graph is invariant for given inequality 

constraints on parameters 

Qualitative analysis of PL models 

D1  D3  

D11 D12 0 < a1 < a2 < a/a < maxa  

0 < b < b/b < maxb  

a1 
0 

maxb 

a2 

b 

maxa a/a 

b/b 

D1   

D11   D12   

D3   

Batt et al. (2008), Automatica, 44(4):982-9 
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• State transition graph gives conservative approximation of 

continuous dynamics 

– Every solution of PL model corresponds to path in state transition graph 

– Converse is not necessarily true!  

• State transition graph is invariant for given inequality 

constraints on parameters 

Qualitative analysis of PL models 

D1  

D11 

a1 
0 

maxb 

a2 

b 

maxa a/a 

b/b 

D1   

D11   D12   

D3   

0 <  a/a < a1 < a2 < maxa  

0 < b < b/b < maxb  

Batt et al. (2008), Automatica, 44(4):982-9 
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D16 

D18 

D20 

Use of state transition graph 

• Analysis of steady states and limit cycles of PL models 

– Attractor states in graph correspond (under certain conditions) to 

stable steady states of PL model 

– Attractor cycles in graph correspond (under certain conditions) to 

stable limit cycles of PL model 

a1 
0 

maxb 

a2 

b 

maxa 

D1  D3  D5  D7 D9  

D15 

D27 D26 D25 

D11 D12 D13 D14 

D2  D4  D6 

D8  

D10 

D17 

D19 

D21 

D22 

D23 

D24 

Casey et al. (2006), J. Math Biol., 52(1):27-56 

Glass and Pasternack (1978), J. Math Biol., 6(2):207-23 

Edwards (2000), Physica D, 146(1-4):165-99 
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• Paths in state transition graph represent predicted sequences 

of qualitative events 

• Model validation: comparison of predicted and observed 

sequences of qualitative events 

 

 

 

 

 

• Need for automated and efficient tools for model validation 

D1  D3  D5  D7 D9  

D15 

D27 D26 D25 

D11 D12 D13 D14 

D2  D4  D6 
D8  

D10 

D16 
D17 

D18 

D20 

D19 

D21 

D22 

D23 

D24 

Use of state transition graph 

. . 
xa < 0 

xb > 0 
xa > 0 

xb > 0 

xa= 0 

xb= 0 

. 

. . . D1: D17: D18: 

Concistency? 

Yes 0 

xb 

time 

time 

0 

xa 

xa  > 0 
. 

xb  > 0 
. 

xb  > 0 
. 
xa  < 0 
. 
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Model validation by model checking 

• Dynamic properties of system can be expressed in temporal 

logic (CTL) 

 

 

 

 

• Model checking is automated technique for verifying that state 

transition graph satisfies temporal-logic statements 

Efficient computer tools available for model checking 

There Exists a Future state where xa > 0 and xb > 0 

 and starting from that state,  

there Exists a Future state where xa < 0 and xb > 0 

. . 

. . 

EF(xa > 0  xb > 0  EF(xa < 0   xb > 0) ) 
. . . . 0 

xb 

time 

time 

0 

xa 

xa  > 0 
. 

xb  > 0 
. 

xb  > 0 
. 
xa  < 0 
. 

Batt et al. (2005), Bioinformatics, 21(supp. 1): i19-i28   
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Genetic Network Analyzer (GNA) 

http://www-helix.inrialpes.fr/gna 

• Qualitative analysis of PL models implemented in Java: Genetic 

Network Analyzer (GNA) 

de Jong et al. (2003), 

Bioinformatics, 19(3):336-44 
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Genetic Network Analyzer (GNA) 

• Model-checking technology made available to GNA user 

 

 

 

 

 

 

 

 

 

 

– Connect GNA to standard model checkers through a web-server 

connection  

 

 

Monteiro et al. (2008), Bioinformatics, 24(16):i227-33 

Mateescu et al. (2011), Theor. 

Comput. Sci., 412:2854-83 

Monteiro et al., (2009), BMC Bioinform., 10:450  

 

– Develop temporal 

logics tailored to 

biological questions 

 

 

– Develop temporal-logic 

patterns for frequently-

asked modeling 

questions 
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Analysis of bacterial regulatory networks 

• Applications of qualitative simulation 

in bacteria: 

– Initiation of sporulation in Bacillus subtilis  

 

 

– Quorum sensing in Pseudomonas 

aeruginosa 

 

 

– Onset of virulence in Erwinia 

chrysanthemi 

 

 

de Jong, Geiselmann et al. (2004), Bull. Math. Biol., 66(2):261-300 

Viretta and Fussenegger (2004), Biotechnol. 

Prog., 20(3):670-8 

Sepulchre et al. (2007), J. Theor. Biol., 244(2):239-57  



Biodegradation of polluants by P. putida 

• Soil bacterium Pseudomonas putida mt-2 is archetypal 

model for environmental biodegradation of aromatic 

pollutants 

 TOL network involved in degradation of m-xylene to intermediates for 

central carbon metabolism 
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Rocha-Silva et al. (2011), Environ. Microbiol., 13(9):2389-402 



Role of regulators of TOL network 

• Question: what is the role of the central, plasmid-encoded 

regulators XylR and XylS? 

 

 

 

 

 

 

 

• Development of PL model of TOL network 

 Translation of network diagram into regulatory logic and PL model 
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Rocha-Silva et al. (2011), BMC Syst. Biol., 5:191 



Role of regulators of TOL network 

• Validation of model by testing predictions under different 

perturbation conditions (mutants, metabolic inducers, …) 

 

 

 

 

 

• Plasmid-encoded regulators of TOL network act as 

regulatory firewall  

 Prevent toxic m-xylene and its biodegradation intermediates from 

intervening with indigenous metabolic pathways 
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Rocha-Silva et al. (2011), BMC Syst. Biol., 5:191 



IRMA: synthetic network in yeast 

• IRMA: synthetic network in 

yeast consisting of interlocked 

positive and negative 

feedback loops 

 Networks functions 

independently from host cell 

• Network can be externally 

controlled by growing cells in 

glucose or galactose 
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Cantone et al. (2009), Cell, 137(1):172-81 



IRMA: synthetic network in yeast 

• IRMA proposed as a 

benchmark for modeling and 

identification approaches 

• IRMA dynamics measured over 

time in galactose (switch-on) 

and glucose (switch-off) 

 Quantitative RT-PCR  

• Question: are measured 

dynamics consistent with 

constructed network structure? 

28 

Cantone et al. (2009), Cell, 137(1):172-81 



Test of consistency structure-dynamics 

• Development of (unparametrized) PL model representing 

network structure 

• Approach to test consistency between network structure and 

data based on automated parameter constraint search: 

– Generate temporal logic formulae encoding observed network dynamics 

29 

Batt et al. (2010), Bioinformatics, 

26(18):i603-10   



Test of consistency structure-dynamics 

• Development of (unparametrized) PL model representing 

network structure 

• Approach to test consistency between network structure and 

data based on automated parameter constraint search: 

– Generate temporal logic formulae encoding observed network dynamics 

– Test if there are any parametrizations of PL model satisfy temporal logic 

formulae 

30 



Test of consistency structure-dynamics 

• Development of (unparametrized) PL model representing 

network structure 

• Approach to test consistency between network structure and 

data based on automated parameter constraint search: 

– Generate temporal logic formulae encoding observed network dynamics 

– Test if there are any parametrizations of PL model satisfy temporal logic 

formulae 

– Analyze parametrizations for biological plausibility 
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« Activation threshold of CBF1 by Swi5 higher than activation 

threshold of ASH1 »: confirmed by independent experimental data 

Batt et al. (2010), Bioinformatics, 

26(18):i603-10   



Test of consistency structure-dynamics 

• Development of (unparametrized) PL model representing 

network structure 

• Approach to test consistency between network structure and 

data based on automated parameter constraint search: 

– Generate temporal logic formulae encoding observed network dynamics 

– Test if there are any parametrizations of PL model satisfy temporal logic 

formulae 

– Analyze parametrizations for biological plausibility 

• Automated approach for testing consistency based on model-

checking techniques 

 Symbolic encoding of model, dynamics and properties to make problem 

feasible 
 

32 
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PL differential equation models 

• ODE models approximated by means of step functions to 

describe regulatory interactions 

 

 

 

 

xa  a s
-(xa ,a2 ) s

-(xb ,b ) – a xa  

xb  b s
-(xa ,a1 ) – b xb  

x : protein concentration 

 ,  : rate constants 

  : threshold concentration 

. 

. 

x 

s-(x,θ) 

 
0 

1 

• Expressions of step functions account for combinatorial control 

of gene expression (AND, OR, NOR, …) 
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PL differential equation models 

• ODE models approximated by means of step functions to 

describe regulatory interactions 

 

 

 

 

xa  a s
-(xb ,b ) – a xa  

xb  b s
-(xa ,a ) – b xb  

x : protein concentration 

 ,  : rate constants 

  : threshold concentration 

. 

. 

x 

s-(x,θ) 

 
0 

1 
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Boolean models 

• Boolean models are discrete models of dynamics of gene 

regulatory networks 

 

 

• Boolean variables discretize state of gene regulatory network 

 

 

 

 

 

 

Xa = (xa > a ), Xb = (xb > b )  
 

Thomas and d’Ari (1990), Biological Feedback, CRC Press 

Kauffman (1993), The Origins of Order, Oxford University Press 

Wang et al. (2012), Phys. Biol., 9(5):055001 

Xa
t , Xb

t , t = 0, 1, 2, … 

 

Xa ϵ {0, 1}, Xb ϵ {0, 1} 
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Boolean models 

• Boolean models are discrete models of dynamics of gene 

regulatory networks 

 

 

• Boolean variables discretize state of gene regulatory network 

• Boolean functions represent control of gene expression 

 

 

 

 

Thomas and d’Ari (1990), Biological Feedback, CRC Press 

Kauffman (1993), The Origins of Order, Oxford University Press 

Wang et al. (2012), Phys. Biol., 9(5):055001 

Xa
t+1 = NOT Xb

t
  

 Xb
t+1 = NOT Xa

t
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Analysis of Boolean models 
• Boolean models can be analyzed in discrete state space 

 

 

 

 

 

• Synchrone and asynchrone dynamics 

 

 

 

 

 

 

Xa
t+1 = NOT Xb

t
  

 Xb
t+1 = NOT Xa

t
  

 0 

1 

0 1 Xa 

 

Xb 

0 

1 

0 1 Xa 

 

Xb 

0 

1 

0 1 Xa 

 

Xb 
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Analysis of Boolean models 
• Dynamics of Boolean models can also be represented in 

state transition graph 
– Different graphs for synchrone and asynchrone dynamics 

– Attractors (states or cycles) 

 

 

 

 

 

 

 

 

 

 

 

0 

1 

0 1 Xa 

 

Xb 

01 

00 10 

11 

01 

00 

11 

10 

01 

10 

11 

00 

synchrone 

asynchrone 



39 

Generalized logical models 

• Generalized logical models are discrete models of dynamics 

of gene regulatory networks 

 

 

• Logical variables discretize state of gene regulatory network 

 

 

 

 

 

Thomas and d’Ari (1990), Biological Feedback, CRC Press 

Chaouiya et al. (2012), Methods Mol. Biol., 804:463-79 

Xa
t , Xb

t , t = 0, 1, 2, … 

 

Xa ϵ {0, 1, 2, …}, Xb ϵ {0, 1, 2, …} 

0 

1 

0 1 2 
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Generalized logical models 

• Generalized logical models are discrete models of dynamics 

of gene regulatory networks 

 

 

• Logical variables discretize state of gene regulatory network 

• Boolean functions represent control of gene expression 

 

 

 

 

 

Thomas and d’Ari (1990), Biological Feedback, CRC Press 

Chaouiya et al. (2012), Methods Mol. Biol., 804:463-79 

0 

1 

0 1 2 

Xa
t+1 = 2, if (Xa

t = 0 OR Xa
t = 1) AND Xb

t = 0  

Xa
t+1 = 0, if Xa

t = 2 OR Xb
t = 1  

Xb
t+1 = 1, if Xa

t = 0 

Xb
t+1 = 0, if Xa

t = 1 OR Xa
t = 2  



41 

Generalized logical models 

• Generalized logical models are discrete models of dynamics 

of gene regulatory networks 

 

 

• Logical variables discretize state of gene regulatory network 

• Boolean functions represent control of gene expression 

• Dynamics can be represented by state transition graph 
Attractors (states and cycles) 

 

 

 

 

 

Thomas and d’Ari (1990), Biological Feedback, CRC Press 

Chaouiya et al. (2012), Methods Mol. Biol., 804:463-79 

01 

10 

11 

00 

asynchrone 

20 

21 
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Generalized logical models 

• Generalized logical models are discrete models of dynamics 

of gene regulatory networks 

 

 

• Logical variables discretize state of gene regulatory network 

• Boolean functions represent control of gene expression 

• Dynamics can be represented by state transition graph 

• Close correspondence between discrete abstractions of PLDE 

models and generalized logical models 

 

 

 

 

 

Thomas and d’Ari (1990), Biological Feedback, CRC Press 

Chaouiya et al. (2012), Methods Mol. Biol., 804:463-79 



GinSIM  

• GinSIM: computer tool for logical modeling of regulatory 

networks 

43 

Chaouiya et al. (2012), Methods Mol. Biol., 804:463-79 



Development of Drosophila embryon 

• Development of Drosophila melanogaster (fruit fly) 

44 

Purves et al. (1998), Life: The Science of Biology, Sinauer  



Development of Drosophila embryon 

• Development of Drosophila melanogaster (fruit fly) 

45 

Purves et al. (1998), Life: The Science of Biology, Sinauer  Tomer et al. (2012), Nat. Methods, 9(7):755–63 



Development of Drosophila embryon 

• Spatiotemporal gene expression 

patterns during early development 

of Drosophila (fruit fly) 

46 

Sanson (2001), EMBO Rep., 2(12):1083–8 



Development of Drosophila embryon 

• Spatiotemporal gene expression 

patterns during early development 

of Drosophila (fruit fly) 

• Gene classes and their 

interactions responsible for 

establishment of gene expression 

patterns 

47 

Schroeder et al. (2004), PLoS Biol., 4(2):e271 



Development of Drosophila embryon 

48 

Carroll (2008), Cell, 134(1):25-36 

• Spatiotemporal gene expression 

patterns during early development 

of Drosophila (fruit fly) 

• Gene classes and their 

interactions responsible for 

establishment of gene expression 

patterns 

• Complex gene regulatory 

networks 
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Model of Drosophila segmentation 

• Model of network of segment polarity genes in early 

development of Drosophila 

 

von Dassow et al. (2000), Nature, 406(6792): 188-92 
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Model of Drosophila segmentation 

• Model of network of segment polarity genes in early 

development of Drosophila 

13 ODEs per cell and 48 parameters 

 

von Dassow et al. (2000), Nature, 406(6792): 188-92 
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Robustness of gene expression patterns  

• Spatial expression pattern of segment polarity genes robustly 

reproduced over large ranges of parameter values  

 0.5% of sampled parameter combinations leads to solution compatible 

with data  

von Dassow et al. (2000), Nature, 406(6792): 188-92 



Logical model of Drosophila segmentation 

• Logical model of segment polarity network: variables take 

values 0/1 and Boolean functions to update variables 

52 

Albert and Othmer (2003), J. Theor. Biol., 223(1):1-18 



Logical model of Drosophila segmentation 

• Logical model of segment polarity network: variables take 

values 0/1 and Boolean functions to update variables 

• Logical models are based on topology of network only (no 

parametrization), but are capable of reproducing 

experimental data: robustness 
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Albert and Othmer (2003), J. Theor. Biol., 223(1):1-18 

Observed initial state 

(before stage 8) 

Predicted steady 

state state (during 

stages 9-11) 
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Conclusions 

• Modeling of genetic regulatory networks in bacteria often 

hampered by lack of information on parameter values 

• Use of coarse-grained discrete or discretized models that 

provide reasonable approximation of dynamics 

• Mathematical methods and computer tools for analysis of 

qualitative dynamics of discrete models  

• Use of discrete models may gain insight into functioning of 

large and complex networks 

• Discrete, coarse-grained  models provide first idea of 

qualitative dynamics that may guide quantitative modeling 



Merci ! 

team.inria.fr/ibis 


