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Gene expression

« Typically, and simplifying quite a bit, gene expression in
bacteria involves:

— Transcription by RNAP (MRNA)
— Translation by ribosomes (proteins)
— Degradation of mRNA and protein
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Modeling of gene regulatory networks

 ODE model of gene expression, distinguishing transcription

and translation . -
transcription m(t) translation
) ——— T, — I
M=K =Gt o wa "
p — Kp m — (7p+l~J-) p promoter gene protein
degradation degradation
Ym + 1 Tp T 1 l

m(t) > 0, concentration mRNA

p(t) > 0, concentration protein

Km» K, > 0, synthesis rate constants

Vs Yo > 0, degradation rate constants

>0, growth rate




Stochasticity In gene expression

 ODE models make abstraction of underlying biochemical

reaction processes involved in gene expression that may not
be warranted Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464

« (Gene expression is stochastic instead of deterministic
process

— Underlying biochemical reactions are stochastic processes

— Probability of reaction to occur depends on random encounters of
molecules in cell

Goodsell (2010), The Machinery
of Life, Springer, 2nd ed.




Stochasticity In gene expression

 ODE models make abstraction of underlying biochemical
reaction processes involved in gene expression that may not

be warranted Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464
« (Gene expression is stochastic instead of deterministic
process

— Underlying biochemical reactions are stochastic processes

— Probability of reaction to occur depends on random encounters of
molecules in cell

* Discrete number of molecules of reaction species, instead
of continuous concentrations

Some reactions species involved in gene expression have very low
copy numbers (1-10)
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Stochasticity In gene expression

« Stochasticity in gene expression leads to noise
Fluctuations in mMRNA and protein concentrations
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Stochasticity In gene expression

« Stochasticity in gene expression leads to noise
Fluctuations in mMRNA and protein concentrations

* Noise amplified by small number of molecules
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Stochasticity In gene expression

« Stochasticity in gene expression leads to noise
Fluctuations in mMRNA and protein concentrations

* Noise amplified by small number of molecules

transcription translation
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 Different types of noise:

— Intrinsic noise: fluctutations due to stochasticity of processes
involved in gene expression (transcription, translation, ...)




Stochasticity In gene expression

« Stochasticity in gene expression leads to noise
Fluctuations in mMRNA and protein concentrations

* Noise amplified by small number of molecules

\ transcription translation % /
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promoter gene protein
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 Different types of noise:

— Intrinsic noise: fluctutations due to stochasticity of processes
involved in gene expression (transcription, translation, ...)

— Extrinsic noise: fluctuations due to variability in external factors
(temperature, ribosome availability, ...). Impact on rate constants




Stochasticity In gene expression

* Experimental discrimination between intrinsic and extrinsic
noise

Expression in a single cell with two different reporter genes (gfp and
cfp) controlled by same promoter
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Intrinsic noise, so relative amount of both proteins varies
over time and across individual cells in population

Elowitz et al. (2002), Science, 297(5584):1183-6
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Stochasticity In gene expression

* Experimental discrimination between intrinsic and extrinsic
noise

Expression in a single cell with two different reporter genes (gfp and
cfp) controlled by same promoter

Fluorescence

Fluorescence




Stochasticity In gene expression

* Experimental discrimination between intrinsic and extrinsic
noise

Expression in a single cell with two different reporter genes (gfp and
cfp) controlled by same promoter
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Stochasticity In gene expression

e Major question is how cells both tolerate and exploit noise.

Rao et al. (2002), Nature, 420(6912):231-237
Raj and van Oudenaarden (2008), Cell, 135(2):216-26

* Most cellular processes are robust to noise, despite
stochasticity of underlying system of biochemical reactions

@ o0
o . . . ? . I BACTERIOPHAGE LAMBDA
S(_)metlmes, mt_racellular noise DL
drives population heterogeneity o
that may be beneficial for a species @ w1

After infection, only fraction of cells lyse
CIRCULIZATION OF DNA,
L‘I'TC CYCLE
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« ODE models are not suitable for  wsoscona: /
studying origin and effects of noise (7




Stochastic models

e Stochastic models of gene regulation are more appropriate

« Number of molecules of each species I at time-point t
represented by discrete variable Xi(t) € N
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Stochastic models

e Stochastic models of gene regulation are more appropriate

« Number of molecules of each species I at time-point t
represented by discrete variable Xi(t) € N

* Reactions between molecular species lead to change in state of
system from X (t) to X (t+At) over time-interval At, where
X=[X,...,X]

Change of state by reaction k described by vector v

R
Reaction 1: vy=[-1-110] [ — - — g

Pa RNAP RNAP-P,

Reaction 2: w=[11 -1 1] -k, @& = ,

RNAP-P, RNAP Pa

RBS,




Stochastic models

e Stochastic models of gene regulation are more appropriate
« Number of molecules of each species I at time-point t
represented by discrete variable Xi(t) € N

* Reactions between molecular species lead to change in state of
system from X (t) to X (t+At) over time-interval At, where

X = [Xla n]
_:—_’ D - P
RNAP RNAP-P, RBSa
X, =1 X,=7 X,=0 X, = 10

Reaction 1: vy =[-1-1 1 (] l




Stochastic models

e Stochastic models of gene regulation are more appropriate
« Number of molecules of each species I at time-point t
represented by discrete variable Xi(t) € N

* Reactions between molecular species lead to change in state of
system from X (t) to X (t+At) over time-interval At, where

X = [Xla n]
_:—_’ D - P
RNAP RNAP-P, RBSa
X, =0 X, =6 X, =1 X, = 10

Reaction 2: v, =[11 -1 1] l




Stochastic models

* Possible states are given by possible value combinations for
variables: X =V, with V =[V,,..., V]

 Transitions between states are given by possible reactions k
[1,7,0,10]

O O ® o o o
[0,6,1,101/+V1
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@ O

+v,

o 66— o o o
[1,7,0,11]

@ O

- UNIVERSITE ol ‘
. 5 - | JOSEPH FOURIER
W "SCENCES TECHNOLOGE MEDECINE



Stochastic models

« Probability distribution p[X(t)=V] describes probability that at
time-point t there are V = [Vy,..., V,]* molecules

o @ 6 o o
® 0‘0 o O
Time t,
® & o o o o
® & o o6 o o

- UNIVERSITE i ‘
Ildam& |&mﬁ%



Stochastic models

« Probability distribution p[X(t)=V] describes probability that at
time-point t there are V = [Vy,..., V,]* molecules

Time t;
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Stochastic models

« Probability distribution p[X(t)=V] describes probability that at
time-point t there are V = [Vy,..., V,]* molecules
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Stochastic master equation
« Evolution of probability distribution p[X(t)=V] given by
pIX (t+At) =V] = p[X () =V](1- 2 o5 At) +

kz o[X (1) = V—u] A At

— M s the number of reactions that can occur in the system

— @ Atis the probability that reaction J will occur in [t, t +At] given that
X(t)=V

— J Alis the probability that reaction K will bring the system from
X(t)= V—v, to X(t +A)=V in [t, t +Af]

Van Kampen (1997), Stochastic Processes in
Physics and Chemistry, Elsevier
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Stochastic master equation

* For At —» 0 we obtain stochastic master equation
dp[X(1)=V]/ dt = 2. p[X(1)=V-v] £ - p[X()=V] ¢
j=1

* Probabilities Q, ,Bj are defined in terms of kinetic constants of
reactions and number of reactant molecules

* Unimolecular reaction j: S; — product(s)

o = ki X,

* Bimolecular reaction j: S; + S, — product(s), 2S; — product(s)

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55 ‘




Stochastic master equation

* For At —» 0 we obtain stochastic master equation

dpIX()=V] / dt = 3. pX(W=V-¥] 4 - PIXV=V] «

j=1
* Probabilities Q, ,Bj are defined in terms of kinetic constants of
reactions and number of reactant molecules

« Analytical solution of master equation is not possible in most
situations of practical interest

Van Kampen (1997), Stochastic Processes in Physics and Chemistry, Elsevier




Stochastic simulation

« Analytical solution of master equations is not possible in most
situations of practical interest

e Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,

— Stochastic simulation samples joint probability density function
plz JIX(t) = V]
T — time until occurrence of next reaction

] = index of next reaction

— Interpretation: p[z, j|X(t) = V]dz is probability, given X(t) =V, that next
reaction will occur in [t+7,t +7+d7] and is reaction |

Gillespie (2002), J. Phys. Chem., 81(25): 2340-61

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55 ‘




Stochastic simulation

« Analytical solution of master equations is not possible in most
situations of practical interest

e Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,

— Stochastic simulation samples joint probability density function
plz JIX(t) = V]
T — time until occurrence of next reaction

] = index of next reaction

— Probability density function defined in terms of a, B (reaction
constants)

Gillespie (2002), J. Phys. Chem., 81(25): 2340-61

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55 ‘




Stochastic simulation

« Analytical solution of master equations is not possible in most
situations of practical interest

e Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,

« Sampling of p[z, J|X(t) = V] yvields sequences in exact
accordance with stochastic master equations:

* Repeating stochastic simulation many times (Monte-Carlo
procedure) yields approximation of probability distribution

p(X (t)=V)

Gillespie (2002), J. Phys. Chem., 81(25): 2340-61
Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55




Stochastic simulation

« Analytical solution of master equations is not possible in most
situations of practical interest

e Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,

« Various approximations of basic stochastic simulation
algorithm, trading exactness for simulation speed:
— Tau-leaping approaches: choose z such that ¢;, 4 remain approximately
constant over time interval (encapsulate several reactions in one step)

— Quasi-steady-state approximations (distinguish between slow and fast
reactions)

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55




Stochastic simulation

* Relation of stochastic simulation models with other modeling
approaches

a;dt = probability that R;will fire in next df

a; = constant during t, Vj

CME SSA I Tau-leaping | | Discrete and stochastic
| 1
at » 1,Vj}
| I 1 | I |
| CFPE ! i} CLE | Continuous and stochastic
1 L__

/Y_i" — DO,Q — oo
Xj/(2 = const;, Vi

R
I RRE : | Continuous and deterministic |
1

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55




Stochastic simulation

« Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,

e __0—0
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« Stochastic simulation may lead to different dynamical behaviors
starting from identical initial conditions: heterogeneity



Auto-inhibition network

e Auto-inhibition network consists of a single gene, coding for
transcription regulator inhibiting expression of its own gene

| J‘ > Pmltein A

gene a

« Auto-inhibition is example of negative feedback, and
frequently occurs in bacterial regulatory networks

Thieffry et al. (1998), BioEssays, 20(5):433-440

« Development of stochastic model requires list of species,
reactions, and kinetic constants




Reactions and species

Pa RNAP RNAP-P,
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Stochastic simulation of auto-inhibition

* Occurrence of fluctuations and bursts in gene expression

80

70F

60 |

Mumber of molecules
w = (5]
o o o
T T

)
o
T

10F
mRNA &
Pa
| 1 1

[

1]
0 200 400 600 800 1000 1200 1400
Time (s)




Auto-inhibition and noise reduction

« Auto-inhibition reduces fluctuations in gene expression level
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Becskei and Serrano (2000), Nature, 405(6785):590-591




Bacteriophage A infection of E. coli

 Response of E. coli to phage A

Infection involves decision
between alternative

developmental pathways:
lytic cycle and lysogeny

Ptashne (1997), A Genetic Switch: Phage A
and Higher Organisms, Cell Press
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Stochastic analysis of phage A infection

F

* Stochastic model of A ’ a2

lysis-lysogeny (= [ l: S
decision network T fof oy e

b ucleotides from the cohesive end site (cos)

35000 40,000
| I [ I
s ~ﬁ~ ‘? st
cm ci O
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Arkin et al. (1998), Genetics, 149(4): 1633-1648 T2 TLT



Stochastic analysis of phage A infection

* Time evolution of Cro and CI
dimer concentrations

* Due to stochastic fluctuations,
under identical conditions cells
follow one or other pathway (with
some probabillity)

o v_I*T"TII"IYII’ll‘1]IITI|llvl"lll'_v—'

0 5 10 15 20 25 30 35
Time (minutes)

Arkin et al. (1998), Genetics, 149(4): 1633-1648
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Comparison with deterministic approach

100
90 (a) all cells

 Deterministic models can be seen — o G0

70
60
50
40

as predicting average behavior of

cell population
Gillespie. (2000), J. Chem. Phys., 113(1): 297-306

* Analysis of average behavior may
obscure that one part of population
chooses one pathway rather than

another
90 (c) lysogenic subpopulation

Arkin et al. (1998), Genetics, 149(4): 1633-1648 oo
70 —
60_
50

« However, under some conditions 0-
deterministic models yield good 09
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Measurements of phage A infection

 New measurement techniques allow real-time and in-vivo

monitoring of the execution of lytic and lysogenic pathways
In individual cells

Use of reporter genes in combination with fluorescence microscopy
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Fluorescence (au)

Amir et al. (2007), Mol. Syst. Biol., 3:71 0 i e MR 8 W By MW
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Stochasticity and hidden variables

* |Is observed population heterogeneity entirely due to
stochastic dynamics of biochemical reactions?

 Hidden variables that
deterministically set outcome of
what seems noisy decision process

oclsjgn maklng at the
sub -cellu

k I ( lndiv
LY ” (( m”bjs\

l l Voting

Deterministic voting of stochastic \
decision in single phages

100; Single phage

Pogulation

Vieal concentration T o Normaiized MOl Zeng et al. (2010), Cell, 141(4):682-91




Discussion

« Stochastic models provide more realistic picture of gene
expression

 Difficulty of stochastic models is that required information on
regulatory mechanisms on molecular level usually not
available

Reaction schemes and kinetic constants are not or incompletely
known

« Another difficulty is that stochastic simulation is
computationally expensive

Large networks cannot currently be handled, but a host of extensions
and approximations have been developed
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ldentification of stochastic models

* Rate constants of a given reaction network are often
unknown, and must be inferred from data

« Data for stochastic model identification need to provide
Information about variability

« Statistics predicted by the model need to be matched to the
data to get parameters that explain observations

— Requires trying many hypothetical parameter values

— Need fast solution of the CME for a given parameter hypothesis

* Models should also be validated, to make sure that they are
capable of good predictions in new conditions




Single-cell data:
Flow-cytometry

SSC

\

mirror
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FL-3

Cell
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Flow sheath ——————— Obscuration bar

\ Analysis workstation
—_— —_
High temperature PNA probe binds
and formamide preferentiallyto
denatures DNA target sequence Washing removes
unbound probe.

Population of cells appears as a peak on flow
cytometricanalysis, yielding median intensity
of probe staining for population.
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Event counts

(Wikipedia)
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Single-cell data: Microfluidics
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Fig. 1. Quantitative imaging of a
YFP-fusion library. (A} Each library
strain has a YFP translationally fused
to the C terminus of a protein in its
native chromasomal position. (B} A
polyldimethylsiloxane) (PDMS) micro-
fluidic chip is used for imaging 96
library strains. £ coli cells of each
strain are injected into separate lanes
and immobilized on a polylysine-
coated coverslip for autornated fluo-
rescence imaging with single-moleculs
sensitivity. (C to E) Representative
fluorescence images overlaid on
phase-contrast images of three library
strains, with respective single-cell—
protein level histograms that are fit
to gamma distributions with parame-
ters @ and b. Protein levels are
determined by deconvolution (18).
The protein copy number per average
cell volume, or the concentration, was
determined as described in the main
text and the SOM (18). (C) The cyto-
plasmic protein Adk uniformly distrib-
uted intracellularly. (D} The membrane
protein AtpD distributed on the cell
periphery. (E} The predicted DNA-
binding protein YjiE with clear inter-
cellular localization. Single YjiE-YFPs
can be visualized because they are
localized. Note that, unlike (C) and

(D), the gamma distribution asymmetrically peaks near zero if @ is close to or less than unity.
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Single-cell trajectories: Microfluidics cont’d

« Example: Osmotic shock response in yeast

0
0 1000 2000 300(
Fluorescence

(Uhlendorf et al., PNAS 2012)




Approximate solution of the CME:
The Finite State Projection method

[ The material on Finite State Projection in these slides is borrowed from

M.Khammash,“The Chemical Master Equation in Gene Networks: Complexity and Approaches”
available at:

http: /fwww.cds.caltech. edu/~murray/wiki/images/d/d9/Khammash_master-15aug06.pdf ]

» The state of the system evolves on a lattice

« Each state value has a probability that
evolves over time

« Some state values are traversed with larger
probability than others

population of S»

* Figure shows a simulated example for a
system with two species

population of Sy




 How about restricting attention to the most probable states ?

* A finite subset is appropriately
chosen

* The remaining (infinite) states are
projected onto a single state (red)

* Only transitions into removed
states are retained



« Start from the (infinite) matrix representation of the CME

The states of the chemical system can be enumera&gd:
X:=[x1 X2 X3 ]

The probability density state vector P (X, ) : R — {qdefined by:

P(X;t) := [p(x1;t) p(xo;t) p(xzit) ... 1T

The evolution of the probability density state vector is governed by

P(X;t) =A -P(X:t)

e




* One has the following result

Let J =[mq...my] be an indexing vector. We define A
to be the principle submatrix of A defined by .J.

Theorem [Projection Error Bound]: Consider any Markov
process in which the probability distribution evolves according to
the ODE:

P(X;t) = A -P(X;1).
If for an indexing vector .J: 1TEXD(AJt) P(X;;0)>1—¢, then

<€
1

P(Xjt) exp(A t) P(X;;0)

Munsky B. and Khammash M., Journal of Chemical Physics, 2006




The FSP algorithm

e Step 0. Define the propensity functions and stoichiometry for all reactions.
— Choose the initial probability density function P(X,0).
— Choose the final time of interest, t.
— Choose the total amount of acceptable error e.
— Choose an initial finite set of states: X j,.

— Set i = 0.
e Step 1. Form A ;. Compute I';, = 1T exp(A;t) P(X,;0).

e Step 2. If I, > 1 —e: stop.

exp(A t) P(X,;0) approximates P(X;t) to within e,

e Step 3. Add more states to get X; .. Increment i. Go to step 1.




Example: Identification of E.coli Lac operon

0
A (Munsky et al., Mol Syst Biol, 2009)
PTG = IPTG,
Lacl
I lac! promoter -L |
——— e,
lacl lacl lac GFP

e Stochastic model:
[IPTG in=I[IPTGl oyt - (1—exp(—r11)),

] ] — ~ [}} 1

Ry : ¢ Lacl, R,:lacl2¢, W=k wy=y - [Lacl], 8u=8" + ;" [IPTGlyy.
Wy Yy

Ry:¢ = GFP, Ry:GFP =& ) (rae)=— K6 =3 - [GFP

« Parameter identification by matching histograms with FSP

A" = argminﬁ{z di -

|f{z‘] )
Meas Tot

)




* Fitting :

B Oh 3h 4 h 5h
102 104 102 10* 102 104 102 10%
q=0 q=1 q=2 q=5
0.1 {5 uM
IPTG
0
P
2
@ q=0 q=2 q=2 q=4
E; 0.1 110 uM
= {! IPTG
<
0 0
e
o
q=0 q=2 q=2 q=3
0.1 20 uM
{! IPTG
0
1072 104 102 104 102 10* 102 10*

Total florescence: GFP + background (arbitrary units)




 Validation :

C Oh 3h 4 h 5h
0.1 40 uM
> 005 IPTG
24 ~
5 0
© 102 104 102 10% 102 10 102 10*
=
4 '
g 01 T ! 1100 uM
& 0.05 "‘ 1 IPTG

0
102 104 102 104 102 104 102 104

Total florescence: GFP + background (arbitrary units)




Discussion

Other approaches exist / are being developed
— The method of moment equations (e.g. Zechner et al., PNAS 2012)

— Approximation of stationary distribution (steady-state data) (e.g.
Taniguchi et al., Science 2010)

Stochastic model inference more instructive than ODE
— Allows one to capture (variability and) bimodality

— Allows for estimation of otherwise undistinguishable rate parameters

Yet, stochastic model identification is computationally heavy
and still requires specific solutions for specific problems

And extrinsic noise ? Yet another chapter (hot topic)
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... Thanks!
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