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Gene expression
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• Typically, and simplifying quite a bit, gene expression in 

bacteria involves:

– Transcription by RNAP (mRNA)

– Translation by ribosomes (proteins)

– Degradation of mRNA and protein
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• ODE model of gene expression, distinguishing transcription

and translation

Modeling of gene regulatory networks

m  m – (m+µ) m
.

p  p m – (p+µ) p
.

m(t) ≥ 0, concentration mRNA

p(t) ≥ 0, concentration protein

m, p > 0, synthesis rate constants 

m, p > 0, degradation rate constants 

µ ≥ 0, growth rate



Stochasticity in gene expression

• ODE models make abstraction of underlying biochemical 

reaction processes involved in gene expression that may not 

be warranted

• Gene expression is stochastic instead of deterministic

process

– Underlying biochemical reactions are stochastic processes

− Probability of reaction to occur depends on random encounters of 

molecules in cell
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Kaern et al. (2005), Nat. Rev. Genet.,  6(6):451-464

Goodsell (2010), The Machinery

of Life, Springer, 2nd ed.



Stochasticity in gene expression

• ODE models make abstraction of underlying biochemical 

reaction processes involved in gene expression that may not 

be warranted

• Gene expression is stochastic instead of deterministic

process

– Underlying biochemical reactions are stochastic processes

− Probability of reaction to occur depends on random encounters of 

molecules in cell

• Discrete number of molecules of reaction species, instead

of continuous concentrations

Some reactions species involved in gene expression have very low

copy numbers (1-10)
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Kaern et al. (2005), Nat. Rev. Genet.,  6(6):451-464



Stochasticity in gene expression

• Stochasticity in gene expression leads to noise

Fluctuations in mRNA and protein concentrations
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Kaern et al. (2005), Nat. Rev. Genet.,  6(6):451-464



Stochasticity in gene expression

• Stochasticity in gene expression leads to noise

Fluctuations in mRNA and protein concentrations

• Noise amplified by small number of molecules
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Decrease in number of mRNA

and protein molecules wrt a

Decrease in number of mRNA

molecules wrt a, for same

number of protein molecules

Kaern et al. (2005), Nat. Rev. Genet.,  6(6):451-464



Stochasticity in gene expression

• Stochasticity in gene expression leads to noise

Fluctuations in mRNA and protein concentrations

• Noise amplified by small number of molecules

• Different types of noise:

− Intrinsic noise: fluctutations due to stochasticity of processes

involved in gene expression (transcription, translation, …)

8



Stochasticity in gene expression

• Stochasticity in gene expression leads to noise

Fluctuations in mRNA and protein concentrations

• Noise amplified by small number of molecules

• Different types of noise:

− Intrinsic noise: fluctutations due to stochasticity of processes

involved in gene expression (transcription, translation, …)

− Extrinsic noise: fluctuations due to variability in external factors

(temperature, ribosome availability, …). Impact on rate constants.
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Stochasticity in gene expression

• Experimental discrimination between intrinsic and extrinsic

noise

Expression in a single cell with two different reporter genes (gfp and 

cfp) controlled by same promoter
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Elowitz et al. (2002), Science, 297(5584):1183-6

No intrinsic noise, so relative amount of both proteins is

constant over time and across individual cells in population

Intrinsic noise, so relative amount of both proteins varies 

over time and across individual cells in population



Stochasticity in gene expression

• Experimental discrimination between intrinsic and extrinsic

noise

Expression in a single cell with two different reporter genes (gfp and 

cfp) controlled by same promoter
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Stochasticity in gene expression

• Experimental discrimination between intrinsic and extrinsic

noise

Expression in a single cell with two different reporter genes (gfp and 

cfp) controlled by same promoter
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Elowitz et al. (2002), Science, 297(5584):1183-6



• Major question is how cells both tolerate and exploit noise.

• Most cellular processes are robust to noise, despite

stochasticity of underlying system of biochemical reactions

Stochasticity in gene expression
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• Sometimes, intracellular noise 

drives population heterogeneity 

that may be beneficial for a species

After infection, only fraction of cells lyse

• ODE models are not suitable for 

studying origin and effects of noise 

Rao et al. (2002), Nature,  420(6912):231-237

Raj and van Oudenaarden (2008), Cell, 135(2):216-26
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Stochastic models

• Stochastic models of gene regulation are more appropriate

• Number of molecules of each species i at time-point t

represented by discrete variable Xi(t)  N

Pa RNAP·PaRNAP RBSa

X1 X2 X3 X4
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Stochastic models

• Stochastic models of gene regulation are more appropriate

• Number of molecules of each species i at time-point t

represented by discrete variable Xi(t)  N

• Reactions between molecular species lead to change in state of 

system from X (t) to X (t+t ) over time-interval t, where

X  [X1,…, Xn]´
Change of state by reaction k described by vector k

Pa

+
RNAP·PaRNAP

RNAP·Pa

+
RNAP

RBSa

+
Pa

Reaction 1: 1  [-1 -1 1 0]

Reaction 2: 2  [1 1 -1 1]
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Stochastic models

• Stochastic models of gene regulation are more appropriate

• Number of molecules of each species i at time-point t

represented by discrete variable Xi(t)  N

• Reactions between molecular species lead to change in state of 

system from X (t) to X (t+t ) over time-interval t, where

X  [X1,…, Xn]´

Pa RNAP·PaRNAP RBSa

X1 = 1 X2 = 7 X3 = 0 X4 = 10

X1 = 0 X2 = 6 X3 = 1 X4 = 10

Reaction 1: 1 = [-1 -1 1 0]
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Stochastic models

RNAP·PaRNAP RBSa

X1 = 0 X2 = 6 X3 = 1 X4 = 10

X1 = 1 X2 = 7 X3 = 0 X4 = 11

Reaction 2: 2 = [1 1 -1 1]

• Stochastic models of gene regulation are more appropriate

• Number of molecules of each species i at time-point t

represented by discrete variable Xi(t)  N

• Reactions between molecular species lead to change in state of 

system from X (t) to X (t+t ) over time-interval t, where

X  [X1,…, Xn]´

Pa
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Stochastic models

• Possible states are given by possible value combinations for 

variables: X  V, with V  [V1,…, Vn]´

• Transitions between states are given by possible reactions k
[1,7,0,10]

 1[0,6,1,10]

[1,7,0,11]

 2
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Stochastic models

• Probability distribution p[X(t)=V] describes probability that at 

time-point t there are V  [V1,…, Vn]´ molecules

Time t0
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Stochastic models

Time t1

• Probability distribution p[X(t)=V] describes probability that at 

time-point t there are V  [V1,…, Vn]´ molecules
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Stochastic models

Time t2

• Probability distribution p[X(t)=V] describes probability that at 

time-point t there are V  [V1,…, Vn]´ molecules
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Stochastic master equation

• Evolution of probability distribution p[X(t)=V] given by

– m is the number of reactions that can occur in the system

– j t is the probability that reaction j will occur in [t, t +t] given that 

X(t)=V

– k t is the probability that reaction k will bring the system from       

X(t)= V k to X(t +t)=V in [t, t +t]

p[X (t +t) =V] =  p[X (t) = V ] (1 -  j t ) + 
j = 1

m

 p[X (t) = Vk] k t
k = 1

m

Van Kampen (1997), Stochastic Processes in 

Physics and Chemistry, Elsevier
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Stochastic master equation

• For t  0 we obtain stochastic master equation

• Probabilities j, j  are defined in terms of kinetic constants of 

reactions and number of reactant molecules

• Unimolecular reaction j :  S1 → product(s)

• Bimolecular reaction j : S1 + S2 → product(s), 2S1 → product(s) 

dp[X(t)=V] / dt =  p[X(t)=Vj] j  p[X(t)=V] j
j = 1

m

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55

j = kj X1

j = kj X1 X2/Ω ,   j = kj X1 (X1-1)/Ω Ω : cell volume
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Stochastic master equation

• For t  0 we obtain stochastic master equation

• Probabilities j, j  are defined in terms of kinetic constants of 

reactions and number of reactant molecules

• Analytical solution of master equation is not possible in most 

situations of practical interest

dp[X(t)=V] / dt =  p[X(t)=Vj] j  p[X(t)=V] j
j = 1

m

Van Kampen (1997), Stochastic Processes in Physics and Chemistry, Elsevier



Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55
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Stochastic simulation

• Analytical solution of master equations is not possible in most 

situations of practical interest

• Stochastic simulation generates sequences of reactions that 

change state of system, starting from initial state X(0) = V0

– Stochastic simulation samples joint probability density function 

p[, j|X(t) = V]

 = time until occurrence of next reaction

j = index of next reaction

– Interpretation: p[, j|X(t) = V]d is probability, given X(t) = V, that next 

reaction will occur in [t+, t + +d] and is reaction j

Gillespie (2002), J. Phys. Chem.,  81(25): 2340-61
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Stochastic simulation

• Analytical solution of master equations is not possible in most 

situations of practical interest

• Stochastic simulation generates sequences of reactions that 

change state of system, starting from initial state X(0) = V0

– Stochastic simulation samples joint probability density function 

p[, j|X(t) = V]

 = time until occurrence of next reaction

j = index of next reaction

– Probability density function defined in terms of j, k (reaction 

constants) 

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55

Gillespie (2002), J. Phys. Chem.,  81(25): 2340-61



Stochastic simulation

• Analytical solution of master equations is not possible in most 

situations of practical interest

• Stochastic simulation generates sequences of reactions that 

change state of system, starting from initial state X(0) = V0

• Sampling of p[, j|X(t) = V] yields sequences in exact 

accordance with stochastic master equations:

• Repeating stochastic simulation many times (Monte-Carlo 

procedure) yields approximation of probability distribution       

p(X (t )=V)
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Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55

Gillespie (2002), J. Phys. Chem.,  81(25): 2340-61



Stochastic simulation

• Analytical solution of master equations is not possible in most 

situations of practical interest

• Stochastic simulation generates sequences of reactions that 

change state of system, starting from initial state X(0) = V0

• Various approximations of basic stochastic simulation 

algorithm, trading exactness for simulation speed:

– Tau-leaping approaches: choose  such that j, j  remain approximately

constant over time interval (encapsulate several reactions in one step)

– Quasi-steady-state approximations (distinguish between slow and fast

reactions)

– …
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Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55



Stochastic simulation

• Relation of stochastic simulation models with other modeling

approaches
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Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55
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Stochastic simulation

• Stochastic simulation generates sequences of reactions that 

change state of system, starting from initial state X(0) = V0

• Stochastic simulation may lead to different dynamical behaviors

starting from identical initial conditions: heterogeneity

X(0) = V0

1

2

3

4

5

6

3’

1’ 2’ 4’

5’6’
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Auto-inhibition network

• Auto-inhibition network consists of a single gene, coding for 

transcription regulator inhibiting expression of its own gene

• Auto-inhibition is example of negative feedback, and 

frequently occurs in bacterial regulatory networks

• Development of stochastic model requires list of species, 

reactions, and kinetic constants

Thieffry et al. (1998), BioEssays,  20(5):433-440
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Reactions and species

Pa

+
RNAP·PaRNAP

RNAP·Pa

+
RNAP

RBSa

+
Pa

RBSa

+

Ribosome Ribosome·RBSa

Ribosome·RBSa

A

+
A A2

A2·PaA2

Pa

+

A
RBSa

Ribosome A

+
RBSa

+
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Stochastic simulation of auto-inhibition

• Occurrence of fluctuations and bursts in gene expression
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Auto-inhibition and noise reduction

• Auto-inhibition reduces fluctuations in gene expression level

Becskei and Serrano (2000), Nature,  405(6785):590-591
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Bacteriophage  infection of E. coli

• Response of E. coli to phage 

infection involves decision

between alternative 

developmental pathways:   

lytic cycle and lysogeny
Ptashne (1997), A Genetic Switch: Phage λ

and Higher Organisms, Cell Press
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Stochastic analysis of phage  infection

• Stochastic model of 

lysis-lysogeny

decision network

Arkin et al. (1998), Genetics, 149(4): 1633-1648
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Stochastic analysis of phage λ infection

• Time evolution of Cro and CI 

dimer concentrations

• Due to stochastic fluctuations, 

under identical conditions cells 

follow one or other pathway (with 

some probability)

Arkin et al. (1998), Genetics, 149(4): 1633-1648
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Comparison with deterministic approach

• Deterministic models can be seen 

as predicting average behavior of 

cell population

• Analysis of average behavior may 

obscure that one part of population 

chooses one pathway rather than 

another

• However, under some conditions 

deterministic models yield good 

approximation

Arkin et al. (1998), Genetics, 149(4): 1633-1648

Gillespie. (2000), J. Chem. Phys., 113(1): 297-306
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Measurements of phage  infection

• New measurement techniques allow real-time and in-vivo 

monitoring of the execution of lytic and lysogenic pathways 

in individual cells 

Use of reporter genes in combination with fluorescence microscopy

Amir et al. (2007), Mol. Syst. Biol., 3:71



Stochasticity and hidden variables

• Is observed population heterogeneity entirely due to 

stochastic dynamics of biochemical reactions?
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Zeng et al. (2010), Cell, 141(4):682-91

• Hidden variables that

deterministically set outcome of 

what seems noisy decision process

Deterministic voting of stochastic

decision in single phages
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Discussion

• Stochastic models provide more realistic picture of gene 

expression

• Difficulty of stochastic models is that required information on 

regulatory mechanisms on molecular level usually not 

available

Reaction schemes and kinetic constants are not or incompletely 

known

• Another difficulty is that stochastic simulation is 

computationally expensive

Large networks cannot currently be handled, but a host of extensions 

and approximations have been developed



Identification of stochastic models

• Rate constants of a given reaction network are often 

unknown, and must be inferred from data

• Data for stochastic model identification need to provide 

information about variability

• Statistics predicted by the model need to be matched to the 

data to get parameters that explain observations

– Requires trying many hypothetical parameter values 

– Need fast solution of the CME for a given parameter hypothesis

• Models should also be validated, to make sure that they are 

capable of good predictions in new conditions
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Single-cell data:

Flow-cytometry

(Wikipedia)
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Single-cell data: Microfluidics

(Taniguchi et al., Science 329, 533 , 2010)
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Single-cell trajectories: Microfluidics cont’d

• Example: Osmotic shock response in yeast

(Uhlendorf et al., PNAS 2012)
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Approximate solution of the CME: 

The Finite State Projection method

• The state of the system evolves on a lattice

• Each state value has a probability that 

evolves over time

• Some state values are traversed with larger 

probability than others

• Figure shows a simulated example for a 

system with two species
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• How about restricting attention to the most probable states ?
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• Start from the (infinite) matrix representation of the CME
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• One has the following result
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The FSP algorithm
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Example: Identification of E.coli Lac operon

• Stochastic model:

• Parameter identification by matching histograms with FSP

(Munsky et al., Mol Syst Biol, 2009)
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• Fitting :
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• Validation :
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Discussion

• Other approaches exist / are being developed

– The method of moment equations (e.g. Zechner et al., PNAS 2012)

– Approximation of stationary distribution (steady-state data)  (e.g. 

Taniguchi et al., Science 2010)

• Stochastic model inference more instructive than ODE

– Allows one to capture (variability and) bimodality 

– Allows for estimation of otherwise undistinguishable rate parameters 

• Yet, stochastic model identification is computationally heavy 

and still requires specific solutions for specific problems

• And extrinsic noise ? Yet another chapter (hot topic)
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… Thanks!

eugenio.cinquemani@inria.fr

team.inria.fr/ibis


