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1 The COBRA toolbox

1.1 Principle

Over the past few decades, large amounts of data at the genome-scale level have accumu-
lated, allowing the increasingly precise reconstruction of metabolic pathways. At this level
of detail, it is almost impossible to obtain an intuitive understanding of how the entire sys-
tem works without mathematical and computational analysis. This has also motivated the
approach considered in these practical exercises, Flux Balance Analysis (FBA). FBA focuses
on physicochemical constraints, based on current knowledge, to define the set of feasible flux
distributions for a biological network in a given condition. These constraints include com-
partmentalization, mass conservation, molecular crowding, and thermodynamic directionality.
FBA selects the flux distribution(s) from the set of feasible flux distributions that optimize(s)
a particular objective function.

Flux Balance Analysis can be performed by the COnstraints Based Reconstruction and
Analysis (COBRA) toolbox (from the openCOBRA project, see http://opencobra.sourceforge.
net/\linebreakopenCOBRA/). Its installation is organised around three main components:

• a library to read models in a standardised format;

• a solver to optimise fluxes;
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• a toolbox with pre-defined FBA functions.

1.2 COBRA Components

1.2.1 SBML: exchange models in systems biology

Standardisation is often a big problem in the computional sciences . In systems biology, one
needs to be able to construct, analyse and exchange models in the same way as one needs to
construct, analyse and exchange sequence data in genomics. The systems biology community
has developed the Systems Biology Markup Language (SBML) as a standard for publishing
models. It is a computer-readable format that has been widely adopted.

The Systems Biology Markup Language (SBML) is an XML-based language that is free,
open and benefits from widespread software support and a community of users and develop-
ers (http://sbml.org). It can represent many different classes of biological phenomena, in-
cluding metabolic networks, cell signaling pathways, regulatory networks, infectious diseases,
... Software support is usually based on the SMBL library (http://sbml.org/Software/
libSBML), which we will transparently use during the exercises.

1.2.2 The LP solver

From a mathematical point of view, the resolution of the optimisation problems in FBA
involves linear programming (LP). There exist many LP solvers, three of which can be used
by the openCOBRA toolbox. For these practical exercices, we will use the LP solver in the
open-source GNU Linear Programming Kit (GLPK). GLPK is a software package intended
for solving large-scale linear programming (LP), mixed integer programming (MIP), and other
related problems. It is a set of routines written in ANSI C and organized in the form of a
library with functions that can be called from within other programs. Another option is to
use Gurobi, which is freely available for academic use (you just need to activate the licence
from an academic domain the first time).

1.2.3 The COBRA Toolbox

This is a free Matlab package containing predefined functions for performing FBA and related
functionalities on a constraint-based model. A Python module is also available with a quite
similar syntax. The basic Matlab COBRA functions are listed below.

addReaction() % add a new reaction to a model
changeObjective() % change the objective function reaction(s)
changeRxnBounds() % change the upper or lower bounds on reactions
deleteModelGenes() % constrain reactions associated with deleted genes to 0
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5 drawFlux() % print a flux distribution on a map
findRxnIDs() % get index of a reaction
optimizeCbModel() % perform FBA on a model
printFluxVector() % print the results of an FBA calculation
printRxnFormula() % print the formula of a reaction

10 readCbModel() % (requires SBML Toolbox) load a model in SBML format
writeCbModel() % (requires SBML Toolbox) write a model in SBML format

Exercise 1: Simulation of aerobic and anaerobic growth rates

This section will demonstrate how to perform basic FBA calculations. We will simulate the
growth of E. coli on glucose under aerobic (high O2) and anaerobic (low O2) conditions.

Setting up the model

First, you need to initialize and load the E. coli core model:

initCobraToolbox
load Ecoli_core_model.mat; % or readCbModel('path/to/model.xml') if

% libSMBL is installed

Next, to ensure that the biomass reaction is set as the objective function, enter:

model = changeObjective(model,'Biomass_Ecoli_core_w_GAM');

To inspect the biomass composition in the E. coli core model, enter:

printRxnFormula(model,'Biomass_Ecoli_core_w_GAM');

Question
Comment on the composition of the objective function: which metabolites are involved?
Where does the stoichiometry come from?

Solution:

The metabolites involved are precursors for the synthesis of lipids, amino acids and
nucleic acids. The stoichiometry generally comes from measurements of the cell compo-
sition in a given environment.

Next we will set the maximum glucose uptake rate to 18.5 mmol gDW−1 hr−1 (millimoles
per gram dry cell weight per hour, the default flux units used in the COBRA Toolbox). Note
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Figure 1: Map of the E. coli core metabolic network. Orange circles represent cytosolic
metabolites, yellow circles represent extracellular metabolites, and the blue arrows represent
reactions. Reaction name abbreviations are uppercase and metabolite name abbreviations
are lowercase. Page 4



that by convention, uptake reactions have a negative flux because they are written as export
reactions (e.g., glc_D[e] <==>).

model = changeRxnBounds(model,'EX_glc(e)',-18.5,'l');

This changes the lower bound (’l’ for ’lower’) of the glucose exchange reaction to -18.5, a
biologically realistic uptake rate.

Growth simulation in different oxygen conditions

We will first allow unlimited oxygen availability by changing the boundaries of the oxygen
uptake reaction. To do that, we set the lower bound of the oxygen uptake reaction to a large
number (so that it is practically unbounded).

model = changeRxnBounds(model,'EX_o2(e)',-1000,'l');

We will now perform FBA. Note that we want to maximize the objective function.

FBAsolution = optimizeCbModel(model,'max');

You can draw the solution on the E. coli core map using the following command.

map = readCbMap('path/to/the/map.txt'); % location of the map
% in the matlab toolbox directory

options.zeroFluxWidth = 1; % reduce size of 0-flux arrows
options.fileName = 'target.svg'; % choose a file name

5 drawFlux(map, model, FBAsolution.x, options)
% You can open target.svg with firefox or inkscape

Question
What is the growth rate predicted by FBA (FBAsolution.f) in aerobic conditions?
Which pathways carry significant flux under these conditions? Check the flux vector
FBAsolution.x and draw the fluxes on the map with drawFlux().

Solution:

The growth rate is 1.6531 h−1. The pathways carrying significant fluxes are the electron
transport chain, glycolysis, Krebs cycle and the excretion of CO2 and O2.
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Next, the same simulation is performed under anaerobic conditions. Keep the same model
and disable oxygen uptake.

model = changeRxnBounds(model,'EX_o2(e)',0,'l');

Question
What is the growth rate predicted under anaerobic conditions? Which pathways carry
significant flux under these conditions? Based on what you know of central carbon
metabolism, comment on the discrepancies between the solutions in aerobic and anaerobic
conditions (difference in growth rate and fluxes).

Solution:

The growth rate is 0.4706 h−1. The pathways carrying significant fluxes are glycolysis,
fermentation (EX_for(e)) and the lower part of the Krebs cycle. The electron transport
chain is not active anymore. These results are coherent with what is known on E. coli
growth on glucose: growth is faster with O2, and the bacteria ferment in anaerobic
conditions.
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Exercise 2: Growth on alternate substrates

Just as FBA was used to calculate growth rates of E. coli on glucose in the previous exercise,
it can also be used to simulate growth on other substrates. The core E. coli model contains
exchange reactions for 13 different organic compounds, each of which can be used as the sole
carbon source under aerobic conditions. For example, to simulate growth on succinate instead
of glucose, first use the changeRxnBounds() function to set the lower bound of the glucose
exchange reaction EX_glc(e) to 0.

model = changeRxnBounds(model,'EX_glc(e)',0,'l');

Then use changeRxnBounds to set the lower bound of the succinate exchange reaction EX_succ(e)
to -20 mmol gDW−1 hr−1 (an arbitrary uptake rate).

model = changeRxnBounds(model,'EX_succ(e)',-20,'l');

As in the glucose examples, make sure that Biomass_Ecoli_core_N(w/GAM)-Nmet2 is set as
the objective function, and use optimizeCbModel() to perform FBA.

FBAsolution = optimizeCbModel(model,'max');

Question

Page 7



What is the growth rate of E. coli on succinate both in aerobic an anaerobic conditions?

Solution:

The growth rate of E. coli on succinate is 0.8401 h−1 in aerobic conditions, and 0 h−1

in anaerobic conditions (no growth).

Based on what you learned during the previous exercise, predict the growth rates of E. coli
on all 13 organic substrates under both aerobic and anaerobic conditions. For each, use
a substrate uptake rate of 20 mmol gDW−1 hr−1.

Question
Fill the following table.

Growth rate (h−1)
Substrate Aerobic Anaerobic
ac
acald
akg
etoh
fru
fum
glc-D
gln-L
glu-L
lac-D
mal-L
pyr
succ

Solution:
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Growth rate (h−1)
Substrate Aerobic Anaerobic
ac 0.3893 0
acald 0.6073 0
akg 1.0982 0
etoh 0.6996 0
fru 1.7906 0.5163
fum 0.7865 0
glc-D 1.7906 0.5163
gln-L 1.1636 0
glu-L 1.2425 0
lac-D 0.7403 0
mal-L 0.7865 0
pyr 0.6221 0.0655
succ 0.8401 0

Question
What is the highest growth rate? Is it in accordance with what you know about bacterial
growth?

Solution:

The highest growth rate is on D-glucose or fructose, which is well known.

Exercise 3: Production of co-factors and biomass precursors

FBA can also be used to determine the maximum yields of important cofactors and biosyn-
thetic precursors from glucose and other substrates. This can be done by changing the
objective function(s). In this example, we will calculate the maximum yields of the cofactors
ATP, NADH, and NADPH from glucose under aerobic conditions. Start by constraining the
glucose exchange reaction EX_glc(e) to exactly -1 mmol gDW−1 hr−1.

model = changeRxnBounds(model,'EX_glc(e)',-1,'b'); % 'b' = 'both' boundaries

To simulate optimal ATP production, set the ATP maintenance reaction (ATPM) as the
objective to be maximized using changeObjective().

model = changeObjective(model,'ATPM');
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ATPM is a stoichiometrically balanced reaction that hydrolyses ATP (atp[c]) and produces
ADP (adp[c]) + inorganic phosphate (pi[c]) + a proton (h[c]). It works as an objective
for maximizing ATP production because in order to consume the maximum amount of ATP,
the network must first produce ATP by the most efficient pathways available. In order to
maximise it, the constraint on this reaction should be removed by using changeRxnBounds()
to set the lower bounds to 0. By default, this reaction has a lower bound of 8.39 mmol gDW−1

hr−1 to simulate non-growth associated maintenance costs.

model = changeRxnBounds(model,'ATPM',0,'l');

You are now ready to perform the optimisation.

FBAsolution = optimizeCbModel(model,'max');

Calculation of the yields of NADH and NADPH one at a time can be performed in a similar
manner. First, constrain ATPM to 0 mmol gDW−1 hr−1 flux (’b’), so that the cell is not
required to produce ATP and also cannot consume any ATP using this reaction.

model = changeRxnBounds(model,'ATPM',0,'l');

You will have to add yourself stoichiometrically balanced NADH and NADPH consuming reac-
tions using the function addReaction(), and set these as the objectives using changeObjective().

model = addReaction(model,'NADH_drain','nadh[c] -> nad[c] + h[c]');
model = changeObjective(model,'NADH_drain');

Finally, optimise the model and display the solution.

FBAsolution = optimizeCbModel(model,'max');
disp(FBAsolution.f)

The same principle can be applied with NADPH.

Question
Fill in the following table with the yields of the three cofactors from glucose under both
aerobic and anaerobic conditions.
Co-factor Aerobic yield (mol mol glc−1) Anaerobic yield (mol mol glc−1)
ATP
NADH
NADPH
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Solution:
Co-factor Aerobic yield Anaerobic yield

(mol.mol glc−1) (mol.mol glc−1)
ATP 17.5 2.75
NADH 10 6
NADPH 8.778 4

The core E. coli model contains 12 basic biosynthetic precursor compounds that are used
to build macromolecules such as nucleic acids and proteins. The maximum yield of each of
these precursor metabolites from glucose can be calculated by adding a demand reaction for
each one (a reaction that consumes the compound without producing anything) and setting
these as the objectives for FBA. Note that the drain reactions for acetyl-CoA (accoa[c]) and
succinyl-CoA (succoa[c]) must produce coenzyme-A (coa[c]), since this carrier molecule is
not produced from glucose in the core model.

Question
Fill in the following table with the maximum yields of each of the 12 precursors from
glucose under aerobic conditions, including the percentage of C molecules from glucose
present in the final output (the formula for each metabolite can be found in model.metFormulas).
For example, a yield of 2 moles of a 3C compound from 1 mole of 6C glucose is 100%
carbon conversion.

Precursor Yield (mol mol glc−1) Carbon conversion
3pg
pep
pyr
oaa
g6p
f6p
r5p
e4p
g3p
accoa
akg
succoa
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Solution:
Precursor Yield (mol mol glc−1) Carbon conversion
3pg 2 100%
pep 2 100%
pyr 2 100%
oaa 2 133.33%
g6p 0.8916 89.16%
f6p 0.8916 89.16%
r5p 1.0571 88.10%
e4p 1.2982 86.55%
g3p 1.6818 84.09%
accoa 2 66.67%
akg 1 83.33%
succoa 1.64 109.33%

Exercise 4: Simulation of the maximum growth rate following genetic per-
turbations

Using the function deleteModelGenes() you can perform an in silico knock-out in a genome-
scale model. This function constrains reaction associated with the gene to 0.

Question
Determine the flux through the biomass objective function using FBA and the E. coli
core metabolic network with the given loss of function mutation of the gene(s) and main
carbon substrates (table below).
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Main carbon Substrate uptake rate Aerobic Loss of function Flux through
substrate (mmol gDW−1 hr−1) growth (mutation) (hr−1)
D-glucose 10 Yes ackA (b2296)
D-lactate 20 Yes ackA (b2296)
D-oxoglutarate 13 Yes ackA (b2296)
D-glucose 10 Yes pck (b2403)
D-oxoglutarate 13 Yes pck (b2403)
D-glucose 10 Yes tpi (b3919)
D-lactate 20 Yes tpi (b3919)
D-glucose 10 Yes atpABCDEFGHI

(b3731-b3738)
D-lactate 20 Yes atpABCDEFGHI

(b3731-b3738)

Solution:
Main carbon Substrate Aerobic Loss of Flux
substrate uptake rate growth function through

(mmol gDW−1 hr−1) (mutation) (hr−1)
D-glucose 10 Yes ackA (b2296) 0.87
D-lactate 20 Yes ackA (b2296) 0.74
D-oxoglutarate 13 Yes ackA (b2296) 0.70
D-glucose 10 Yes pck (b2403) 0.87
D-oxoglutarate 13 Yes pck (b2403) 0.69
D-glucose 10 Yes tpi (b3919) 0.70
D-lactate 20 Yes tpi (b3919) 0
D-glucose 10 Yes atpABCDEFGHI

(b3731-b3738) 0.37
D-lactate 20 Yes atpABCDEFGHI

(b3731-b3738) 0.13

Exercise 5: Alternate optimal solutions: flux variability analysis

The flux distribution calculated by FBA is often not unique. In many cases, it is possible
for a biological system to achieve the same objective value by using alternate pathways, so
phenotypically different alternate optimal solutions are possible. A method that uses FBA
to identify alternate optimal solutions is Flux Variability Analysis (FVA). This is a method
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that identifies the maximum and minimum possible fluxes through a particular reaction with
the objective value constrained to be close to or equal to its optimal value. Performing FVA
on a single reaction using the basic COBRA Toolbox functions is simple. First, use functions
changeRxnBounds, changeObjective, and optimizeCbModel to perform FBA as described
in the previous examples. Get the optimal objective value Z (FBAsolution.f), and then
set both the lower and upper bounds of the objective reaction to exactly this value. Next,
set the reaction of interest as the objective, and use FBA to minimize and maximize this
new objective in two separate steps. This will give the minimum and maximum possible
fluxes through this reaction while contributing to the optimal objective value. For example,
consider the variability of the malic enzyme reaction (ME1) in E. coli growing on succinate.
The minimum possible flux through this reaction is 0 mmol gDW−1 hr−1 and the maximum
is 6.49 mmol gDW−1 hr−1. In one alternate optimal solution, the ME1 reaction is used, but in
another, it is not used at all. The full code to set the model to these conditions and perform
FVA on this reaction is given below.

model = changeRxnBounds(model,'EX_glc(e)',0,'l');
model = changeRxnBounds(model,'EX_succ(e)',-20,'l');
FBAsolution = optimizeCbModel(model,'max');
model = changeRxnBounds(model,'Biomass_Ecoli_core_N(w/GAM)-Nmet2',FBAsolution.f,'b');

5 model = changeObjective(model,'ME1');
FBAsolutionMin = optimizeCbModel(model,'min');
FBAsolutionMax = optimizeCbModel(model,'max');
optmin.fileName = 'min.svg'
optmax.fileName = 'max.svg'

10 drawFlux(map,model,FBAsolutionMin, optmin);
drawFlux(map,model,FBAsolutionMax, optmax);

Question
Draw the two alternative flux distributions on the map of the E. coli network when
the ME1 reaction is set to either its minimum or maximum possible flux. Comment on
differences between the two fluxes distribution.

Solution:

Flux maps for two alternate solutions for maximum aerobic growth on succinate are
given below. In (a), the reaction ME1 is used to convert L-malate to pyruvate, but in
(b), this reaction is not used at all, and the reaction PYK is used. The two alternative
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reactions are highlighted in red.

The COBRA Toolbox includes a built-in function for performing global FVA called
fluxVariability(). This function is useful because it performs FVA on every reaction
in a model. When FVA is performed on every reaction in the E. coli core model for growth
on succinate, eight reactions are found to be significantly variable.

Question
Fill in the table below with the minimal and maximal flux values for these 8 reactions.

Reaction Minimum flux Maximum flux
(mmol gDW−1 hr−1) (mmol gDW−1 hr−1)

FRD7
MDH
ME1
ME2
NADTRHD
PPCK
PYK
SUCDi

Solution:
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Reaction Minimum flux Maximum flux
(mmol gDW−1 hr−1) (mmol gDW−1 hr−1)

FRD7 0 972.77
MDH 13.56 20.06
ME1 0 6.49
ME2 7.17 13.67
NADTRHD 0 6.49
PPCK 3.93 10.42
PYK 0 6.49
SUCDi 27.23 1000

2 Growth rate contest

The exercises in the previous section have introduced (some of) the functionalities of the
COBRA toolbox by means of a core model of E. coli metabolism. In this section, we will use
a genome-scale model of the same system, called Ec_iAF1260_flux2. Notice that it is a huge
model with thousands of reactions, which means that contrary to the core model, it becomes
difficult to visualize the flux distributions returned by the LP solver (in fact, no map of this
model is currently available).

We will use this genome-scale model to investigate a fundamental question: what is the max-
imum growth rate that E. coli can attain when growing on the carbon sources of Exercise 2?
We do not limit the oxygen uptake rate EX_o2(e), but set the maximum substrate uptake
rate to 20 mmol gDW−1 hr−1. Moreover, we fix the objective function Ec_biomass_iAF1260
_core_59p81M and the lower bound of the maintenance flux (ATPM, 8.39 mmol gDW−1 hr−1).
You are free to enrich the growth medium with other compounds the cell is able to take up
(at a maximum rate of 20 mmol gDW−1 hr−1) and to change the genetic background of the
cell.
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