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Introduction

Parameter estimation in systems biology is usually part

of an iterative process to develop data-driven models

for biological systems that should have predictive

value. In this minireview, we discuss how to obtain

parameters for mathematical models by data fitting.

We restrict ourselves to the case where a deterministic

model in the form of a mathematical function-based

model is available, such as a system of differential and

algebraic equations. For example, in the case of a bio-

chemical process, hypotheses based on the knowledge

of the underlying network structure of a pathway are

translated into a system of kinetic equations, para-

meters are obtained from literature or estimated from a

data fit, and, with the resulting model, predictions are

made that can be tested with further experiments. To

compare model results with the experimental data, one

first has to simulate the mathematical model to produce

these results, the forward problem. The inverse problem

is the problem at hand: the estimation of parameters in

a mathematical model from measured observations.

There are a number of difficulties involved [6]. The

forward problem requires a fast and robust time inte-

grator. Fast, because the model will be evaluated many

times. Robust, because the whole parameter and state

space will be visited, which most likely will result in a

different character of the mathematical model (i.e.

number and range of time scales involved). The inverse

problem has even more pitfalls. The first question is

whether the parameters for the mathematical model

can be determined assuming that for all observables

continuous and error-free data are available. This is the

subject of a priori identifiability or structural identifi-

ability analysis of the mathematical model. The actual

parameter estimation or data fitting typically starts

with a guess about parameter values and then changes

those values to minimize the discrepancy between
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Mathematical models of biological processes have various applications: to

assist in understanding the functioning of a system, to simulate experiments

before actually performing them, to study situations that cannot be dealt

with experimentally, etc. Some parameters in the model can be directly

obtained from experiments or from the literature. Others have to be

inferred by comparing model results to experiments. In this minireview, we

discuss the identifiability of models, both intrinsic to the model and taking

into account the available data. Furthermore, we give an overview of the

most frequently used approaches to search the parameter space.
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model and data using a particular metric. Kinetic

models with nonlinear rate equations have in general

multiple sets of parameters that lead to such minimiza-

tions, some of those minima may only be local. The

value of parameters and model variables may range

over many orders of magnitude, one can get stuck in a

local minimum or one can wander around in a very flat

part of the solution space. Given a particular set of

experimental data, and one particular acceptable model

parameterization obtained by a parameter estimation

procedure, does not mean that all obtained parameters

can be trusted. After the minimum has been found, an

a posteriori or practical identifiability study can show

how well the parameter vector has been determined

given a data set that is possibly sparse and noisy. That

this part of model fitting should not be underestimated

is shown by Gutenkunst et al. [7]. For all 17 systems

biology models that they considered, the obtained

parameters are ‘sloppy’, meaning not well-defined. On

the other hand, one could argue that often the precise

value of a parameter is not required to draw biological

conclusions [8].

In this minireview, we first discuss the identifiability

of the model, both a priori and a posteriori, the latter by

a small example. Next, we give a brief survey of the cur-

rent methods used in parameter estimation with a focus

on those that are implemented in toolboxes for systems

biology. In the Discussion, we give some guidelines on

the application of these methods in practice. Finally, in

the supporting information (Doc. S1), an overview is

given of the contents of some well-known toolboxes.

For further reading on identifiability, we refer to the

classical textbook of Ljung [9] and the recent review

paper on regression by Jaqaman and Danuser [4]. An

overview on local and global parameter estimation

methods applied to a systems biology benchmark set is

given elsewhere [10,11]. We also recommend the easily

readable books on this subject by Schittkowski [6] and

by Aster et al. [12], which touch many of the subjects

discussed in this minireview, with the exception of

global search methods.

Problem definition

Deterministic models arising from kinetic equations

are typically given by a system of differential algebraic

equations (DAEs)1 (i.e. ordinary differential equations

coupled to algebraic equations) of the form:

A
dxðt; pÞ

dt
¼ fðt; xðt; pÞ; p; uðtÞÞ; t0 < t � te

xðt0; pÞ ¼ x0ðpÞ

(
ð1Þ

where t denotes time, the m-dimensional vector p

contains all unknown parameters, x is an n-dimensional

vector with the state variables (e.g. concentration val-

ues), u are the externally input signals, and f is a given

vector function. When components of the initial state

vector x0 are not known, they are considered as

unknown parameters, so x0 may depend on p. In most

cases, A is a constant diagonal n · n matrix with 1 or 0

on the diagonal; 1 for an ODE and 0 for an algebraic

equation.

In addition, a vector of observables is given:

gðt; xðt; pÞ; p; uðtÞÞ ð2Þ

which are quantities in the model [in general (a combi-

nation of) state variables] that can be experimentally

measured, and possibly a vector of (non)linear con-

straints:

cðt; xðt; pÞ; p; uðtÞÞ � 0 ð3Þ

Let us assume that N measurements are available to

find parameters of Eqns (1–3). Each measurement,

which we denote by yi, is specified by the time ti when

the ith component of the observable vector g is mea-

sured. The corresponding model value for a specific

parameter vector p̂,which can be obtained sufficiently

accurate by numerical integration of Eqn (1) and com-

puting the observable function of Eqn (2), is denoted

by ĝi ¼ giðti; x; p̂; uÞ. The vector of discrepancies

between the model values and the experimental values

is then given by eðp̂Þ ¼ jgðt; xðt; p̂Þ; p̂; uðtÞÞ � yj. We

assume that Eqn (1) is a sufficiently accurate mathe-

matical description approximating reality. This means

that all relevant knowledge about the biological pro-

cesses is incorporated correctly in the vector function

f. Thus, the only uncertainty in Eqn (1) is the vector

of unknown parameters p. In this case, the difference

ei(p
�) ¼ |gi(ti,x,p

�,u))yi| is solely due to experimental

errors, where p� is the true solution.

The m-dimensional optimization problem is given by

the task to minimize some measure, V(p), for the dis-

crepancy e(p). By far the most used measure for the

discrepancy is the Euclidean norm or the sum of the

squares weighted with the error in the measurement:

VMLEðpÞ ¼
XN

i¼1

ðgiðti; x; p; uÞ � yiÞ2

r2
i

¼ eTðpÞWeðpÞ ð4Þ

see [13,14]. This measure results from the maximum

likelihood estimator (MLE) theory. Under the assump-

1 The content of this paper is also applicable to (discretized) systems

of partial differential equations and delay differential equations.

Fitting parameters of stochastic models requires a different approach

[1–3].
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tion that the experimental errors are independent and

normally distributed with standard deviation ri, the

least squares estimate p̂of the parameters is the value

of p that minimizes the sum of squares:

p̂ ¼ argmin
p

VMLEðpÞ ð5Þ

When these assumptions do not hold, other mea-

sures than VMLE(p) might be used like the sum of the

absolute values. The MLE theory then does not apply

so p̂ is not the least squares estimate and the statistical

analysis in the section ‘A Posteriori identifiability’ does

not hold. Dependent on the optimization method or

the mathematical discipline the function V(p) is called

objective function, cost function, goal function, energy

function or fitness function.

Identifiability

Whether the inverse problem is solvable is dependent

on (a) the mathematical model; (b) the significance of

the data; and (c) the experimental errors. In the fol-

lowing, we assume that the model is properly scaled

such that both the parameter values and the state vari-

ables are of the same order of magnitude. Otherwise, a

proper scaling should be applied to the model.

Definitions

The sensitivity matrix J of the model is given by the

sensitivity coefficients of the observables with respect

to the parameters:

J ¼ @giðpÞ
@pj

� �
ð6Þ

A parameter is globally identifiable if it can be

uniquely determined given the input profile u(t) and

assuming continuous and error-free data for the observ-

ables of the model. If there is a countable number of

solutions the parameter is locally identifiable; it is

unidentifiable if there exist uncountable many solutions.

A model is structurally globally/locally identifiable if all

its parameters are globally/locally identifiable2.

Practical or a posteriori identifiability analysis stud-

ies whether the parameters can be globally or locally

determined with the available, noisy, experimental

data. In this case, locally means in the neighborhood

of the obtained parameter.

A priori identifiability

There are several techniques to determine a priori

global identifiability of the model, but for realistic sit-

uations (i.e. nonlinear models of a certain size), it is

very difficult to obtain any results. Still, it is advisable

to always perform an a priori analysis because parame-

ter estimation methods can have problems with locally

identifiable or unidentifiable systems. Symbolic algebra

packages like maple [15] and mathematica [16] can

be of great help.

For linear models, the Laplace transform or transfer

function approach can be applied. For nonlinear mod-

els, the oldest method and most simple to understand

is the Taylor or power series expansion [17]. The

observable function is expanded in a Taylor series at a

particular time point. The time derivatives are evalu-

ated in terms of the parameters, resulting in a system

of nonlinear equations for the parameters. If this sys-

tem has a unique solution, the model is structurally

identifiable. For simple examples using the Laplace

transform (linear model) and Taylor series (Michaelis–

Menten kinetics), we refer to Godfrey and Fitch [18].

Another classic method is the similarity transformation

approach [19–21]. These two methods have been com-

pared without a decisive preference [22]. Recently,

methods were developed that use differential algebra

techniques [23]. Also, a publicly available software

tool, daisy [24], is available that can check the identifi-

ability of a nonlinear system. daisy is implemented in

the symbolic language reduce [25].

A posteriori identifiability

The difficulty in estimating the parameters in a quanti-

tative mathematical model is not so much how to com-

pute them, but more how to assess the quality of the

obtained parameters because this not only depends on

how well the model describes the phenomenon studied

and on the existence of a unique set of parameters, but

also on whether the experimental data are sufficient in

number, sufficiently significant and sufficiently accu-

rate. With respect to the first two requirements, a suffi-

cient and significant amount of data, it is clear that,

whatever method one uses to fit a model with experi-

mental data: to estimate m unknown parameters, one

needs at least m experimental values. On the other

hand, it is not necessary to have experimental data for

all state variables involved in the model at all possible

2 Note that these definitions are not always the same. Other defini-

tions are: A model is structurally identifiable if its sensitivity matrix

satisfies two conditions: each column has at least one large entry and

the matrix has full rank [4]. A model is locally identifiable if it is

globally identifiable in a neigborhood of the parameter [5].
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time points, often only a few measurements for the

right observable at significant times are needed. The

last question, sufficiently accurate data, is related to

the fact that measurement errors imply that we do not

have precise data points to fit our model with, but that

each point represents a whole cloud of possible data

values, implying also that the inferred parameters are

not point-values but are contained in a cloud. Depend-

ing on the model, the cloud of possible parameter

values varies in size and shape and can be much larger

than the original uncertainty in the data.

The most applied method [12,26] to study this uncer-

tainty in the parameters is to compute the sensitivity

matrix J of Eqn (6) evaluated for the given data points

and the parameter vector p̂ obtained by the data fit.

This can be done either by finite differencing or by

solving the variational equations3. Note that this is a

linear analysis, and local both with respect to p̂ and to

the given data points.

In the following, we assume that the measurement

errors are independent of each other and normally dis-

tributed with the same standard deviation r4. Then

p̂� p� approximately has an m-dimensional multivari-

ate normal distribution with mean zero and variance

r2ðJTðp̂ÞJðp̂ÞÞ�1. How ‘close’ the estimate p̂ is to the

true parameter vector p� is expressed by the (1)a)-con-
fidence region for p�, given by:

ðp� � p̂ÞT JTðp̂ÞJðp̂Þ
� �

ðp� � p̂Þ � CðaÞ ð7Þ

with:

CðaÞ ¼ m

N �m
VMLEðp̂ÞFaðm;N �mÞ ð8Þ

where Fa(m,N)m) is the upper a part of Fisher’s distri-

bution with m and N ) m degrees of freedom. Note

that VMLEðp̂Þ=ðN �mÞ is an unbiased estimator of the

measurement variance r2. The (1)a)-confidence region

implies that there is a probability of 1)a that the true

parameter vector p� lies in this ellipsoid that is

centered at p̂ and has its principal axes directed along

the eigenvectors of JTðp̂ÞJðp̂Þ. Using the singular

value decomposition for Jðp̂Þ ¼ URVT, we get

JTðp̂ÞJðp̂Þ ¼ Vðp̂ÞR2ðp̂ÞVTðp̂Þ, where the eigenvectors of

JTðp̂ÞJðp̂Þ are the columns of the matrix Vðp̂Þ. So, the
principal axes of the ellipsoidal confidence region are

given by the singular vectors, the column vectors of

the matrix Vðp̂Þ, and the length of the principal axes is

proportional to the reciprocal of the corresponding

singular values, the diagonal elements of Rðp̂Þ. Using

the transformation (rotation):

z ¼ VTðp̂Þðp� � p̂Þ ð9Þ

the equation for the ellipsoid (7) can be rewritten as:

Xm

i¼1

r2
i z2

i ¼ CðaÞ ð10Þ

Note that C(a) is approximately proportional to the

variance in the measurement errors. The precise defini-

tion of ‘practical identifiable’ depends on the level of

accuracy, re, one requires for the parameter estimates.

This defines the sphere:

Xm

i¼1

z2
i ¼ r2

� ð11Þ

To be able to determine zi accurately enough, the

radius along the ellipsoid’s ith principal axis should

not exceed the radius of the sphere, which leads to the

following inequality:

ri �
ffiffiffiffiffiffiffiffiffiffi
CðaÞ

p
r�

ð12Þ

A graphical representation of the ellipsoid and the

sphere is given in Fig. 1 for the 2D case. Suppose that

only the first k largest singular values satisfy (12), then

only the first k entries of z are estimated with the

required accuracy. If a principal axis of the ellipsoid

makes a significant angle with the axis in parameter

space (i.e. there exists more than one significant entry

in the eigenvector), this corresponds to the presence of
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Fig. 1. Example of an ellipsoidal confidence region and an accuracy

sphere in the 2D case; parameters p1 and p2 are correlated, the lin-

ear combination z1 is well-determined, whereas z2 is not. The

dependent confidence interval, DDpi, for a parameter is given by

the intersection of the ellipsoid with the parameter axis; the inde-

pendent confidence interval, DIpi, by the projection onto the axis.

3 Variational equations are obtained by taking the derivative of the

DAE system (1) with respect to the parameters. This results in m

DAE systems in the variables ¶x(t,p)/¶pi, i ¼ 1,. . .,m.
4 The assumption that all measurements have the same variance is

not required but it makes the formulation easier.
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correlation among parameters in p̂. In this case, only a

combination of parameters can be determined.

To summarize, the level of noise in the data, in com-

bination with the accuracy requirement for the param-

eter estimates, defines the threshold for significant

singular values in the matrix R. The number of singu-

lar values exceeding this threshold determines the num-

ber of parameter relations that can be derived from

the experiment. How these relations relate to the indi-

vidual parameters is described by the corresponding

columns in the matrix V.

It is obvious that inspecting the ellipsoidal region is

not possible for high-dimensional problems. But based

on the sensitivity matrix J or rather on the Fisher

information matrix JTJ, there are a number of easy-

to-compute indicators. Assuming that all other para-

meters are exact, a confidence interval for a specific

parameter is the intersection of the ellipsoidal region

with the parameter axis. This is the dependent confi-

dence interval:

DDpi ¼ CðaÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JTðp̂ÞJðp̂Þð Þii

q
ð13Þ

The independent confidence interval is given by the

projection of the ellipsoidal region onto the parameter

axis:

DIpi ¼ CðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJTðp̂ÞJðp̂ÞÞ�1� �

ii

q
ð14Þ

If dependent and independent confidence intervals are

similar and small, p̂i is well-determined. In case of a

strong correlation between parameters, the dependent

confidence intervals underestimate the confidence

region, whereas the independent confidence intervals

overestimate it. Another way to obtain information

about the correlations between parameters is to look at

the covariance matrix cov ¼ (JTJ))1. The correlation

coefficient of the ith and jth parameter is given by:

corij ¼
covijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coviicovjj
p ð15Þ

Finally, Eqn (10) indicates that having, for example,

two times more accurate data so that the standard

deviation r is halved will decrease the radii along the

ellipsoid’s principal axes by a factor of 2. Therefore, in

case of very small singular values ri (i.e. strongly elon-

gated ellipsoids), more accurate data obtained by the

experimentalist will not improve much the quality of

the corresponding parameter estimates. In such a case,

one certainly needs additional measurements of a

different type (e.g. different components, different time

points, or in the case of partial differential equations,

different spatial points).

Other approaches

Hengl et al. [27] propose a nonlinear analysis: repeated

fitting for different initial guesses of the parameter vec-

tor. The resulting parameter vector matrix is analyzed

with Alternating Conditional Expectation [28], result-

ing in optimal transformations for the parameters to

come to an identifiable model. This approach is imple-

mented in matlab [29]/PottersWheel [30].

Finally, we want to mention an interesting idea

described [31,32] regarding the cluster-based parameter

estimation. This approach uses the sensitivity matrix to

define subsets of state variables that depend on a subset

of the parameters. The parameters are then split into

two classes: global if state variables from more than

one cluster depend on it and local otherwise. A hier-

archical parameter estimation is performed reducing

the dimensionality. On the high level, the global para-

meters are fitted by optimization of the clusters and,

recursively, parameters in each cluster are estimated.

Example insignificant data

On the basis of a very simple artificial example [33,34],

we show the influence of the experimental data on the

parameter determinability.

Consider the simple enzymatic reaction:

Eþ S Ð
k1

k2

C

C !k3
Eþ P

ð16Þ

with as state variables the concentrations of the

substrate [S], the enzyme [E], and complex [C]. The

product P is not part of the model but could easily

be added. The mathematical model, a DAE-system, is

then given by:

d½S�
dt
¼ �k1½E�½S� þ k2½C�

d½C�
dt
¼ k1½E�½S� � k2½C� � k3½C�

½E� þ ½C� ¼ ½E0� þ ½C0� ð17Þ

Suppose the initial concentration of the state variables,

[S0], [E0] and [C0] is known, and the concentration of

[C] is measured rather precisely at regular time points

t ¼ 1,. . .,20. For this example, the ‘measurements’ are

generated artificially by adding an independent,
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normally distributed perturbance with zero expectation

and a fixed variance to the model results (red +-marks

in Fig. 2). The initial parameter values are p0 ¼
(6,0.8,1.2). With these parameter values, the

model results are given by the solid lines in the left

plot in Fig. 2. Fitting the model to these

measurements with the Levenberg–Marquardt method

(see below) results in the parameter vector

p̂ ¼ ðk1; k2; k3Þ ¼ ð0:683; 0:312; 0:212Þ (for the model

results, see Fig. 2, right).

We define the discrepancy of the model with respect

to the data:

eðpÞ ¼ ðciðti; pÞ � ~ciÞi¼1;...;N ð18Þ

the vector of the differences between the ith data

value, ~ci, which is the measured concentration of [C] at

time ti, and the corresponding value from the model, ci.

In the present example, the sensitivity matrix J is an

N · 3 matrix, with N ¼ 20. For this simple three-

parameter problem, one can easily visualize the confi-

dence region (Eqn 7) and we can see from the left plot

in Fig. 3 that the true parameter vector lies in a small

disc around p̂, implying that we can estimate all three

parameters with a reasonable accuracy by measuring

only the complex (or any of the two other concentra-

tions in this case). With 95% confidence, all para-

meters can be estimated with one digit accuracy and k3
even with two digits. Using only three well-chosen

time-points for measuring (t ¼ 1,2,20), the axes-length

of the ellipsoid increases with a factor of about 4, but

still all parameters can be determined reasonably well.

Suppose now that it is not possible to measure

before time t ¼ 6 but that we take 20 samples of the
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Fig. 2. Model results for initial (left) and final (right) parameter vector, black: [S], red: [C], green: [E]; and measurements of [C]: red +.
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complex at regular times from t ¼ 6,. . .,20. Suppose

also that the same parameter vector p̂ results from

minimizing the least squares error eTe. In this case, the

confidence region gives much more reason for distrust-

ing the result. As can be seen in Fig. 3 (right), the true

parameter vector now lies in a long elongated ‘cigar’

and especially for k1 and k2 we can not even trust the

order of magnitude.

Looking at the eigensystem, we see that, for the left

ellipsoid in Fig. 3, the matrices V6 and R are given by:

V ¼
�0:01 0:66 �0:75
0:05 �0:75 �0:66
0:99 0:04 0:02

0
@

1
A R¼

3:5 0 0
0 0:75 0
0 0 0:17

0
@

1
A
ð19Þ

where rows one to three correspond to k1, k2 and k3,

respectively. From R, we can learn that the principal

axis corresponding to the first column of V is the

shortest and because this column is almost the unit

vector for k3, the shortest principal axis almost coin-

cides with the k3-axis. The second principal axis is

approximately five times longer; moreover, the second

column of V shows that this axis corresponds to a

combination of k1 and k2, so we can determine the

combination of k1 and k2 approximately five times

worse than k3. Individually, k1 and k2 lie inside an

ellips for which the other axis is approximately 20

times longer than the k3-axis. An upperbound for the

error in k1 and k2 is then given by the projection of

this ellips on the corresponding axis. (In general, one

has to project the ellipsoid.)

The matrices V and R corresponding to the right-

hand plot in Fig. 3 are given by:

V6¼
�0:03 0:49 0:87
�0:001 �0:87 0:49
�0:99 �0:01 �0:02

0
@

1
A R6¼

3:89 0 0
0 0:41 0
0 0 0:006

0
@

1
A
ð20Þ

Comparing these matrices, corresponding to 20 mea-

surements uniformly distributed in the time interval

[6,20], with the matrices in Eqn (19), which correspond

to 20 measurements at t ¼ 1,2,. . .,20, it is clear that k3
still can be determined with good accuracy, and even

the combination of k1 and k2 can be determined rea-

sonably well, but the third principal axis of the ellip-

soidal confidence region has increased almost by a

factor of 30! This implies that it is no longer possible

to determine k1 and k2 individually.

From the discussion above, it is clear that it is not

easy to a priori give an indication whether experi-

mental data are sufficient in number and sufficiently

significant. With three ‘lucky’ data points, one can esti-

mate three parameters, but 20 data points in a region

where ‘nothing happens’ are not sufficient.

Next, we examine the influence of experimental

noise, (i.e. whether the experimental data are suffi-

ciently accurate). Because C(a) is proportional to the

variance of the measurement error distribution, the

principal axes of the ellipsoidal confidence region are

proportional to the standard deviation. Roughly speak-

ing: reducing the (standard deviation of the) error by a

factor of two, implies that a parameter, or combination

of parameters, can be determined more accurately by a

factor of two. This means that to shrink the ellipsoidal

confidence region for the t > 6 experiment (Fig. 3,

right) such that it fits into an ‘accuracy’-sphere that is

equal to the experiment with measurements between 1

and 20, one has to reduce the variance of the experi-

mental error beyond reasonable experimental accuracy.

Finally, if we just look at the computable informa-

tion from the Fisher matrix we get for the confidence

intervals:

Exp. DD(k1) DD(k2) DD(k3) DI(k1) DI(k2) DI(k3)

[1,20] 0.033 0.028 0.005 0.076 0.067 0.005

[6,20] 0.074 0.047 0.004 2.217 1.267 0.060

The correlation matrices for the two cases are:

R20 ¼
1 0:9 �0:37

�0:9 1 �0:45

�0:37 �0:45 1

0
B@

1
CA

R6 ¼
1 0:999 �0:997

0:999 1 �0:996

�0:997 �0:996 1

0
B@

1
CA ð21Þ

Also, this simple to compute information shows that,

for the second case, the parameters are strongly corre-

lated and the model is not identifiable.

Parameter estimation methods

To find the minimum of the objective function optimi-

zation methods are used. We describe here two classes:

local and global. Local search methods typically

converge fast to a minimum, but, as the name sug-

gests, this might be a local minimum and the method

has no possibility to escape from this minimum to find

the true or global minimum. For local search methods,

there is in general a theoretical proof of convergence

(and of convergence speed) to the minimum if the

initial guess is sufficiently close to that minimum.
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Global optimization searches all over the parameter

space to find smaller and smaller values for the objec-

tive function, but in general there is no proof for

convergence to the minimum (with exception of the

simulated annealing algorithm).

Various numerical algorithms exist for global and

local optimization. A number of global and local

methods have been applied to a benchmark of bio-

chemical pathway [10,11]. Below, we describe briefly

the methods that are frequently used when estimating

model parameters of biological problems and the

methods that are available in general toolboxes used in

systems biology.

Some definitions and theorems

p̂ is a global minimizer of the objective function V if it

gives the lowest obtainable objective function value

from an arbitrary starting point:

p̂global ¼ argmin
p

VðpÞ 8p in the parameter space ð22Þ

p̂ is a local minimizer of the objective function V if it

gives the lowest obtainable objective function value in

the neighborhood of the starting point:

p̂local ¼ argmin
p

VðpÞ 8jjp� p̂startjj < d; d > 0

ð23Þ

A stationary point x* of a function f is a point for

which the gradient is zero:

rf ðx�Þ ¼ 0 ð24Þ

The following theorems hold for unconstrained optimi-

zation and a sufficiently differentiable objective func-

tion V. In this case, V can be extended into a Taylor

series around p̂:

Vðp̂þ dpÞ ¼ Vðp̂Þ þ dpTrVðp̂Þ þ 1
2dp

Tr2Vðp̂Þdpþ � � �
ð25Þ

with the gradient:

rVðp̂Þ ¼ @V

@p
ðp̂Þ

� �
ð26Þ

and the Hessian or second derivative:

r2Vðp̂Þ ¼ @V

@pi @pj

ðp̂Þ
" #

ð27Þ

A necessary condition for a parameter vector p̂ to

be a local minimizer of V is that p̂ is a stationary point

of V:

rVðp̂Þ ¼ 0

A sufficient condition for a local minimizer is that

p̂ is a stationary point of V and the Hessian of V is

positive definite:

rVðp̂Þ ¼ 0; pTr2Vðp̂Þp > 0 8p 6¼ 0

Global optimization

Most global optimization methods are stochastic of

nature to prevent the search process being trapped in a

local minimum. Moles et al. [11] have performed a

comparison of a number of global optimization meth-

ods on parameter estimation problems for biochemical

pathways.

Simulated annealing

Simulated Annealing (SA) is a stochastic optimization

algorithm proposed by Kirkpatrick et al. [37] in 1983.

The term annealing comes from physics. It is the pro-

cess of heating up a solid until it melts, followed by a

slow cooling down until the molecules are aligned in a

crystalline structure corresponding to the minimum

energy state. The cooling must occur at a sufficiently

slow rate, otherwise the system will end up in an amor-

phous or polycrystalline state and thus the system will

not be at its minimum energy state. In optimization,

the SA algorithm attempts to mathematically capture

the process of controlled cooling associated with physi-

cal processes; the analogy to the minimum energy state

is the minimum value for the objective function.

SA is based on the Metropolis algorithm [38] which

is a Monte Carlo method to sample a thermodynamic

system. Rephrased for the parameter estimation prob-

lem, it samples for a fixed ‘temperature’ the parameter

space according to the Boltzmann–Gibbs probability

distribution:

PðpÞ ¼ C exp �VðpÞ
kBT

� �
ð28Þ

where C is a normalization constant, kB the Boltz-

mann constant, and T the temperature. Starting from

an initial (random) parameter vector, in each step, a

random new state (parameter vector) is generated

based on the previous one. This new state is
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accepted with a certain probability (see below under

Transition probability). If it is rejected, a new state

is generated based on the same parameter vector as

before. In this way, a Markov chain is obtained

which, if it is sufficiently long, describes the required

probability distribution. The macroscopic observable,

the minimizing parameter vector, is the average over

all states in the Markov chain. In SA, the Metropo-

lis algorithm is applied with a slowly decreasing T.

SA starts with a high ‘temperature’ implying that all

states, or parameter vectors, are equally probable.

The original algorithm (i.e. the homogeneous Mar-

kov chain method) computes for a constant tempera-

ture a complete Markov chain (i.e. the required

probability distribution is obtained). Then the tem-

perature is slowly decreased and the next distribution

is sampled. By contrast, the inhomogeneous Markov

chain method decreases the temperature every time a

new state has been found. Devising the cooling sche-

dule (i.e. initial temperature, method of lowering the

temperature, and the stop criterion) is the art of

simulated annealing. Under certain conditions (ergo-

dicity, cooling schedule), it has been proven that SA

converges to the global minimum [39].

Cooling schedules

Many have attempted to derive theoretical or experi-

mental proofs of an efficient cooling schedule scheme

[40]. Among the most popular ones, three different

theoretical concepts are used.

Logarithmic: Introduced by Geman and Geman [41],

this has special theoretical importance. The tempera-

ture is decreased according to: ti ¼ c/log(i + d) with

i being the iteration count and d is usually set to

one. Although it has been proven that for c ‡ Emax,

the true global minima can be found (in the limit of

infinite time), with Emax being the maximum

energy barrier (problem dependent and a priori

unknown), this method is very slow and impractical

because of its asymptotically slow temperature

decrease [42].

Geometric: The original cooling schedule proposed by

Kirkpatrick et al. [37] and still widely used with major

or minor variants. The temperature is updated by:

ti ¼ ati)1. The cooling factor a is assumed to be a con-

stant smaller than one. Examples of usage and a good

explanation of the underlying mechanisms are given by

Johnson et al. [43].

Adaptive: The previous cooling schedules always apply

the same cooling factor irrespective the state of the

system. It is known that, at high temperature, almost

all new parameter vectors are accepted, although

some of them are bad solutions. It is obvious that

using an appropriate cooling schedule depending on

the state of the system can lead to large improve-

ments. A variety of adaptive temperature annealing

strategies have been proposed. The main techniques

are presented by Boese [40]. The most important ones

are: (a) Lam [44,45]: the temperature is updated

aiming to maintain the system in thermodynamical

equilibrium; and (b) Ingber [46,47]: a very popular

cooling schedule. The strength of this algorithm is

that it takes into account the sensitivity of the cost

function for each parameter. The goal is to extend the

insensitive parameter’s search range relative to the

range over the more sensitive parameters. Each

parameter has its own temperature, equally initialized

at the beginning. After every Nacc accepted steps, the

sensitivity for the best solution parameters is

computed and, after every Ngen generation steps, the

temperatures are re-annealed scaled by the sensitivi-

ties. A very limited number of method parameters has

to be assigned by the user: the rate control parameter

C, Nacc, and Ngen. The other method parameters are

automatically set and updated by the algorithm. The

optimal values of the three parameters are problem

dependent [48], but the performance of the algorithm

is not critically influenced for choices of C in the

range 1–10, NaccO(10–100) and NgenO(200–1000).

Transition probability

If the objective function of the new parameter vector

p¢ is smaller than the previous one then the new

parameter vector is accepted. However, to prevent

getting stuck in a local minimum, the new parameter

vector is also accepted with a probability according to

the sampled distribution:

PðDV ;TÞ ¼ exp � DV

kBT

� �
with DV ¼ Vðp0Þ � VðpÞ

ð29Þ
Equation (29) is known as the Metropolis Crite-

rion. For T fi 0 and dV > 0, the probability

P(dV,T) fi 0. Therefore, for sufficiently small values

of T, the process will more and more go ‘downhill’:

new accepted parameter vectors tend to have lower

objective function values.

Evolutionary algorithms

Evolutionary algorithms (EA) are inspired by biologi-

cal evolution. Potential solutions (parameter vectors)

are the individuals of a population. To get new solu-

tions (a next generation) the individuals in the popula-

tion are replaced using mechanisms as reproduction,
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natural selection, mutation, recombination, and

survival of the fittest.

Initially, a population of random individuals (possi-

ble parameter vectors) is created. Next, the correspond-

ing objective functions are computed that define the

fitness of an individual (the higher the fitness, the bet-

ter the solution). The selection process is mimicked by

assigning probabilities to individuals related to their fit-

ness to indicate the chance of being selected for the

next generation. Individuals with a high fitness are

assigned high probabilities. New individuals are created

by two operators: recombination (or cross-over) and

mutation. Recombination consists of selecting some

parents (at least two) and results in one or more chil-

dren (new candidates). Mutation acts on one candidate

and results in a new candidate. These operators create

the offspring (a set of new candidates). These new

candidates compete with old candidates for their place

in the next generation (survival of the fittest). This pro-

cess can be repeated until a candidate with sufficient

quality (a solution) is found or a predefined computa-

tional limit is reached. There are many different ways

of writing these operators and one can find exhaustive

literature focussing on this aspect of EAs [49].

EA operators

The selection operator is responsible for convergence

to the minimum, the recombination operator for

exploring the parameter space and the mutation opera-

tor gives nearby solutions a chance to survive.

Fitness

A commonly used objective-to-fitness transformation

results in a fitness value of max(0,Cmax)V(p)) with

Cmax either being a user-defined constant or the maxi-

mum V-value thus far. To prevent almost equal selec-

tion probabilities in later stages of the algorithm, the

fitness values should be scaled accordingly [49].

Another transformation is simply rank-based, where

the population is sorted according to their objective

values and fitness assignment depends only on the

position [50,51].

Selection

This determines which individuals are chosen for

mating (recombination) and how many offspring each

selected individual produces. The first step is fitness

assignment. Next, the actual selection is performed.

Parents are selected according to their fitness by

means of one of the following algorithms [49]:

Truncation: the only deterministic selection: select the

m best individuals and reproduce them until the pool

is filled;

Roulette-wheel: selection with size of wheel part pro-

portional to fitness [52];

Stochastic remainder: sampling. First entier ðfi=�f Þ5
times individual i are selected with fi the individual

and �f the average fitness. Next, the pool is filled

using a weighted toss [52];

Tournament: N ‘tournaments’ will be held with K

randomly picked individuals as competitors for a

place in the pool. Winner is the one with highest fit-

ness [53].

The selection process is an extremely important part

of the convergence of the algorithm: if the selection

pressure is high (as with roulette-wheel) then the con-

vergence time is fast, but the solution can be a local

one. If the selection pressure is low (as with tourna-

ment with small K) it is the other way around.

Recombination or cross-over

This produces new individuals by combining the infor-

mation contained in the parents (parents: mating

population). In the case of real-valued variables, the

algorithms all choose a point on the line connecting

the two parents, either deterministically [line recombi-

nation (interpolation with a fixed constant)] or

stochastically. In the latter case, one distinguishes

intermediate recombination in which a point is chosen

in an interval slightly larger than the connecting line

segment and extended line recombination where the

complete line is used but the probability decreases with

the distance from a parent.

Mutation

This consists of randomly altering an individual. The

mutation step (usually very small) is the probability of

mutating a variable, and the mutation rate is the effec-

tive mutation applied to that variable. Although, in

general, the mutation step is inversely proportional to

the dimension of the problem, the mutation rate does

not depend on the problem.

Reinsertion (survival of the fittest)

After producing offspring, they must be inserted into

the population. This is especially important if the num-

ber of offspring does not equal the size of the original

population. To guarantee that the best individual(s)

survive, the elitist strategy [49] can be used.

Note that evolutionary algorithms lack a proper the-

ory. Choosing the right (combination of) operators

and devising a good stop criterion is the art of imple-

menting and using evolutionary algorithms.

5
entier(x) is the largest integer value not exceeding x.
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Covering methods

Covering methods are deterministic global optimiza-

tion algorithms that guarantee that a solution with a

given accuracy is obtained. The price paid for this

guarantee, however, is that some a priori information

of the function must be available.

Branch and bound

This requires that the search space is finite (parameters

are constrained) and can be divided to create smaller

subspaces [54,55]. To apply branch and bound, one

must have a means of computing upper and lower

estimated bounds of the objective function to be

minimized.

The method starts by considering the original prob-

lem with the complete search space (i.e. the root

problem). The lower-bounding and upper-bounding

procedures are applied to the root problem. If the

bounds match, then an optimal solution has been

found and the procedure terminates. Otherwise, the

search space is partitioned into two or more regions.

These subproblems become children of the root search

node. The algorithm is applied recursively to the sub-

problems, generating a tree of subproblems. If an opti-

mal solution is found to a subproblem, it is a feasible

solution to the full problem, but not necessarily glob-

ally optimal. Because it is feasible, it can be used to

prune the rest of the tree: if the lower bound for a

node exceeds the best known feasible solution, no

globally optimal solution can exist in the subspace of

the feasible region represented by the node. Therefore,

the node can be removed from consideration. The

search proceeds until all nodes have been solved or

pruned, or until some specified threshold is met

between the best solution found and the lower bounds

on all unsolved subproblems.

Although this method is widely used in engineering,

the technique is not that popular among the biologists

and computational biology community.

Overview

Simulated annealing and branch and bound have a

proper convergence theory. The disadvantage of

branch and bound is that it can only be applied if it

is possible to compute lower and upper bounds for

the objective function. SA is generally applicable, but

the theoretical convergence is in practice not much

worth because it is critically dependent on the cool-

ing-down schedule. At each temperature the inner-

loop (Metropolis) needs to be iterated long enough

to explore the regions of search space. However, the

balance between the maximum step size and the

number of Monte Carlo steps is often difficult to

achieve, and depends very much on the characteris-

tics of the search space or energy landscape. SA is

computationally very expensive and is not easily

paralellizable.

EAs consistently perform well for all types of prob-

lems and are well-suited to solve problems with a truly

large search space. The critical factor to escape local

minima is the cross-over operator that allows each

individual to explore other possibilities by means of

information transfer [56]. The critical factor for fast

convergence is the selection operator. Premature con-

vergence occurs if an individual that is more fit than

most of its competitors emerges too early, it may

reproduce so abundantly that it drives down the popu-

lation’s diversity too soon. This will lead the algorithm

to converge to the local optimum of that specific

individual rather than searching the fitness landscape

thoroughly enough to find the global optimum [57].

For a proper behavior, the population size should be

sufficiently large, which means that the method is

expensive if the computation of the objective function

is not extremely cheap. Fortunately, EA is intrinsically

parallel. Multiple individuals can explore the search

space in different directions. By contrast to SA, EA

can be implemented as a self-tuning method, the most

successful example is the stochastic ranking evolution-

ary strategy (SRES) [58,59].

Local optimization

If the gradient of the objective function can be com-

puted one can solve the minimization problem by find-

ing the point where the gradient vanishes using

gradient-based methods. Direct-search methods try to

find the minimizing point of the objective function with-

out explicitly using derivatives. As for the global search

methods, these methods only require an order relation

(V(p1) < V(p2)) for all points in parameter space.

Direct-search methods

The term direct-search method has first been used in

1961 in the classical paper of Hooke and Jeeves [60]

that describes their pattern search method, but it is

more generally used for all methods that find a local

minimum without the use of a derivative. Direct-search

methods select a finite (i.e. generally not large) number

of possibilities each step and check whether one of

these is better than the current one. Reviews on direct-

search or derivative-free methods are available else-

where [61–63]. Here, we discuss the two most used
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methods: the classical Hooke–Jeeves method [60] and

the Nelder–Mead or Downhill Simplex method [64].

Hooke–Jeeves method

The pattern search method of Hooke and Jeeves [60]

consists of two steps. In the first, a series of exploratory

changes of the current parameter vector are made,

typically a positive and negative perturbation of one

parameter at a time. The exploratory step then has

formed a basis for the parameter space with information

in which directions the objective function decreases. In

the next step, the pattern move, the information

obtained is used to find the best direction for the mini-

mization process. The original method is a special case

of generalized pattern search methods for which it is

shown that the search directions span the parameter

space [65]. For a good discussion on this type of direct-

search methods, the broad class of generating set search

methods, including convergence results, some history

and references to other ideas, we refer to the extensive

review paper of Kolda et al. [63]. They show, amongst

other things, that these methods have the same type of

convergence guarantee as gradient-based methods.

Nelder–Mead simplex algorithm

The Nelder–Mead method [64,66] is based on the idea

of an adaptive simplex: the simplest polytope of

m + 1 vertices in m dimensions (2D, triangle; 3D, tet-

rahedron). The objective function is evaluated in all

vertices (p’s) and the vertices are ordered according to

the value. The next step tries to replace the ‘worst’

vertex by a better one. A line search is performed

along the line through this vertex and the centroid of

the remaining vertices: pnew ¼ �p þ apworst. For

a ¼ 1; 2; 1
2 ;� 1

2, it is tested whether the new objective

value is better than the old one. If this is the case, the

simplex is adapted by replacing the old vertex by

the new one. If not, a shrink procedure is performed:

the ‘best’ vertex stays in the simplex, all other ones are

replaced by a vertex half-way along the line from the

best vertex. If the line search is successful, the method

uses just 1–4 function evaluations per step and the aim

is that the simplex adapts itself to the minimizing func-

tion. But, in contrast to the Hooke–Jeeves method, it

improves the objective function value along the

sequence of worst vertices.

Gradient-based methods

By constrast to all other methods this class of methods

described above, not only requires the value of the

objective function, but also of its first derivative with

respect to the parameters. These type of methods are

not so straightforward to implement as the direct-

search methods, but, if it is possible to use them, it is

in general preferrable to do so. Often in implementa-

tions, approximations of the gradient and/or the

Hessian (second derivative) are used (e.g. by finite dif-

ferences). However, with the current automatic differ-

entation tools such as adifor [67], symbolic algebra

packages such as maple [15] and mathematica [16],

and modeling languages with automatic computation

of derivatives such as ampl [68] and gams [69], it is

doable and preferrable to use the exact derivative.

Because these methods are more mathematical

based, we discuss them more rigorously. For a general

treatment of this subject, we refer to Nocedal and

Wright [70].

Remember that a requirement for a local minimizer

p� is that the gradient �V(p�) ¼ 0 (stationary point).

A sufficient condition requires that the Hessian is posi-

tive definite. Note that none of the methods below

guarantees the latter requirement!

Gradient-based methods are all descent methods.

These methods first find a descent direction dp and

then take a step adp in that direction, with a such that

it results in a ‘good’ decrease of the objective function:

pnew ¼ pþ adp; VðpnewÞ < VðpÞ ð30Þ

The largest gain is obviously obtained when a is deter-

mined by a line-search, (i.e. by finding the minimum

value of V(p + adp) for all a > 0).

Note that a simple decrease in the objective function

(f(xk+1) < f(xk)) is not sufficient to converge to a

stationary point of f. (Counterexample: V(x) ¼ x2 and

xi ¼ 1 + 2)i; [71])

Steepest descent or gradient method

In this method, the search direction is defined by the

gradient:

dp ¼ �rVðpÞ ð31Þ

In the final stage, however, this method has a slow

convergence. In fact, if combined with exact line

search, it can even fail.

Newton’s method

Newton’s method iteratively solves the equation for a

stationary point �V(p�) ¼ 0 by linearization. The search

direction for the line-search method is in this case:

dp ¼ �r�2VðpÞrVðpÞ ð32Þ

In quasi-Newton methods, the Hessian is approxi-

mated. If the starting point is sufficiently close to the

M. Ashyraliyev et al. Parameter estimation in systems biology

FEBS Journal 276 (2009) 886–902 ª 2009 The Authors Journal compilation ª 2009 FEBS 897



solution, Newton’s method has a quadratic order of

convergence.

Trust region method [72]

The objective function V(p) is approximated by a

simpler function, which mimicks the behaviour of V

in a neighbourhood of p. This function is then mini-

mized over this neighbourhood, the trust region, and

if the objective function decreases the new value is

accepted. Otherwise, the trust region is decreased.

Originally, the approximation consisted of the first

two terms of the Taylor expansion of V at p but,

for high-dimensional problems, this is still too expen-

sive. In this case, the trust region is restricted to two

dimensions [35]. This subspace is spanned by the

gradient vector �V (Eqn. 31) and a direction of

negative curvature given by dpT�2V(p)dp < 0 or the

Newton direction (Eqn. 32). The aim of the first

combination is global convergence and of the second

fast local convergence.

Gradient-based methods for least-squares

Gauss–Newton

If the function to be minimized is a sum of squares (as

is the case when solving a least-squares problem),

Newton’s method is often replaced by a modification:

the Gauss–Newton algorithm, in which the Hessian is

not used. The gradient of VMLE(p) ¼ eTe is given by

�VMLE ¼ JTe, where the Jacobian JðpÞ ¼ @e
@p ðpÞ is the

so-called ‘sensitivity’ matrix of size N · m (cf. Eqn 6).

To solve for the stationary point, again linearization

is used which results in the task to solve the normal

equations:

JTðpÞJðpÞdp ¼ �JTðpÞeðpÞ ð33Þ

Note that dp is a descent direction because

dpT�VMLE ¼ dpTJTe ¼ )dpTJTJdp < 0. As in Newton,

this is an iterative process.

Levenberg–Marquardt method

This can be seen as Gauss–Newton with damping or

as a combination of Gauss–Newton with steepest des-

cent [73]. The search direction is defined by:

JTðpÞJðpÞ þ kIm

� �
dp ¼ �JTðpÞeðpÞ ð34Þ

where k ‡ 0 is some constant and Im the identity

matrix of size m. dp is a descent direction for all

k > 0; for k large Eqn (34) results in the steepest des-

cent method and for k small in the Gauss–Newton

process. The first is a good strategy in the initial stage

of the process, the latter in the final stages. The art of

the Levenberg–Marquardt method is the design of the

damping factor k [74,75].

Overview

Direct-search methods are generally applicable, but

they are less efficient especially for high-dimensional

problems. If possible (i.e. if the problem is smooth),

we recommend to use Newton or trusted region and,

for a least-squares fit, Levenberg-Marquardt. In non-

smooth problems, the objective function is discontin-

uous or has a discontinuous derivative (e.g. because

the mathematical model contains step-functions,

absolute values, if-then-else constructions, etc.). In

this case, gradient-based methods can not be applied.

The Hooke–Jeeves method or, more generally, the

generating set search methods are reliable but slow.

The Nelder–Mead simplex method is in most cases

efficient, but it can fail unpredictably [76].

Normally, the methods described here are used as

single shooting methods, meaning that the integration

path leading to the observable function value in the

objective function is determined by the initial condi-

tions for the state variables. Especially, if these initial

conditions depend on parameters, this can lead to the

wrong minimum. To avoid this, one can use the

multiple shooting approach [77] where the time inter-

val is partitioned and new initial conditions are used at

the start of each part of the interval. To connect the

integration paths smoothly, an augmented system has

to be solved.

Constraints

For all optimization methods described above, it

holds that it is the implementation that counts,

where one version of an optimization method with

different method parameters and strategy can result

in a much better and faster convergence behaviour

(for some problems) than the next. This holds even

more for the implementation of constraints. Contra-

ints can be implemented as penalties added to the

objective function. This is often done in global and

in direct–search methods. It implies that the con-

straints are not strictly obeyed, at least during the

search. In direct–search methods, linear constraints

restrict the search directions (i.e. the parameter space

becomes a cone) and thus the chance of failure

increases (the search directions no longer span the

search space). For nonlinear constraints, a number

of approaches exists; for an overview of methods

used in generalized set search methods, see Kolda
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et al. [63]. If the constraints are differentiable, this

direction can be used when computing the new

search direction. For generalized set search and gra-

dient-based methods, one can also solve an aug-

mented nonlinear system where a Lagrange multiplier

with the constraint is added and possibly other

penalty terms [33,63].

Hybrid methods

Global methods in generally work well to explore the

parameter space but are slow in finding the minimum

of the objective function precisely [36]. By contrast,

local methods are much faster in finding a minimum

once in the neighborhood. Sequential application of

both approaches combines the best of the two. Such

hybrid methods use a global search method to identify

promising regions of the search space that are further

explored by a local optimizer.

Katare et al. [78,79] employ a particle swarm optimi-

zation [80,81] combined with Levenberg–Marquardt.

However, their method appears to be sensitive to the

‘swarm topology’ that defines the information transfer

between the parameter vectors. Combinations of

local search with the SRES [58] seem to be more

promising. Rodriguez-Fernandez et al. [5] apply, with

good results, SRES + DN2GB (Gauss–Newton

+ trust region for stabilization) on the three-step

pathway benchmark problem [11]. A challenging reac-

tion-diffusion system has also been considered describ-

ing the early Drosophila development [8,36]. This

results in a model with 348 state variables and a

66-dimensional optimization problem with (non)linear

constraints. Jaeger et al. [82] obtained previously the

parameters for that model with parallel simulated

annealing. Fomekong-Nanfack et al. [36] show that

the hybrid method SRES + Nelder-Mead is approxi-

mately 50 times as fast. The same problem was solved

with SRES + Levenberg–Marquardt [8] with a com-

parable speed up, but a better approximation of the

local minima.

Another interesting approach is an intrinsic global-

local method such as the scatter-search method [83,84],

an evolutionary algorithm with a local search method

after (each) recombination step. Because this method is

expensive for costly objective funtion evaluations

SSKm (Scatter-search-Kriging) has been developed

[85]. Here, the number of ‘local-search’ points is

reduced by predicting the possibility that a new para-

meter vector will result in a lower minimum without

evaluation of the objective function, based on

the assumption that V has a Gaussian distribution

(Kriging).

Discussion

The aim of this minireview was to give a comprehen-

sive survey of parameter estimation (i.e. to discuss

both the methods to fit the parameters of a mathemati-

cal model to experimental data and to analyze the

results). A recent review paper of van Riel [86]

discusses these subjects more from the perspective of

systems biology but less extensively.

Unfortunately, we cannot recommend one or the

other algorithm as the definitive method to search for

parameters. An optimal use of the methods, especially

of the global ones, is problem-dependent and, in prac-

tice, convergence to the minimum is not guaranteed.

Global methods are often used with a computational

time limit to prevent an endless search and local meth-

ods can get stuck in a local minimum. In general, a

good initial guess (e.g. from experiments) will not be

available for all parameters, ruling out the option of

using only local search methods. A good strategy is

often to use global search methods to find various

‘promising’ areas in the parameter space. Once in these

areas, local search methods converge much faster to

the minimum [5,8,36]). Because global methods explore

the complete ‘fitness landscape’, it is also possible to

find multiple parameter vectors that satisfy the experi-

mental data.

In the overview, we compared the algorithms for

global search. For most problems, an evolutionary

algorithm, such as the SRES, is robust and easy to

use. The local search methods were also evaluated.

Here, the optimal method choice is dependent on the

objective funtion and on the DAE system. For a least-

squares fit and smooth problems, we recommend

Levenberg–Marquardt. If the (derivative of) the objec-

tive funtion is discontinuous, a direct method such as

Nelder–Mead should be used. If the initial conditions

of the DAEs depend also on the parameters and the

solution of the DAE system depends strongly on the

initial conditions, the multiple shooting strategy could

be advantageous. A promising, but not yet fully tested

strategy is the intrinsic global-local approach imple-

mented in SSKm. Most importantly, for all optimiza-

tion algorithms, it is the implementation that counts,

especially if the parameter space is restricted by

constraints.

Finally, finding a parameter vector is only half the

job. It is important to study how robust against per-

turbations the parameters are. If the objective function

is the MLE (Eqn 4), the analysis method described in

the section ‘A posteriori identifiability’ can be applied.

Otherwise, one can use a repeated fitting strategy [27]

to study the fitness landscape.
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