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REVIEW

Classic and contemporary approaches
to modeling biochemical reactions

William W. Chen,1 Mario Niepel,1 and Peter K. Sorger2

Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA

Recent interest in modeling biochemical networks raises
questions about the relationship between often complex
mathematical models and familiar arithmetic concepts
from classical enzymology, and also about connections
between modeling and experimental data. This review
addresses both topics by familiarizing readers with key
concepts (and terminology) in the construction, validation,
and application of deterministic biochemical models, with
particular emphasis on a simple enzyme-catalyzed reac-
tion. Networks of coupled ordinary differential equations
(ODEs) are the natural language for describing enzyme
kinetics in a mass action approximation. We illustrate this
point by showing how the familiar Briggs-Haldane formu-
lation of Michaelis-Menten kinetics derives from the outer
(or quasi-steady-state) solution of a dynamical system of
ODEs describing a simple reaction under special condi-
tions. We discuss how parameters in the Michaelis-Menten
approximation and in the underlying ODE network can be
estimated from experimental data, with a special emphasis
on the origins of uncertainty. Finally, we extrapolate from
a simple reaction to complex models of multiprotein bio-
chemical networks. The concepts described in this review,
hitherto of interest primarily to practitioners, are likely to
become important for a much broader community of
cellular and molecular biologists attempting to understand
the promise and challenges of ‘‘systems biology’’ as applied
to biochemical mechanisms.

Supplemental material is available at http://www.genesdev.
org.

Many of us understand enzyme kinetics from the per-
spective of models developed nearly a century ago by
Michaelis and Menten (1913), (who were themsleves
building on earlier insights by Henri [1902] ), clarified by
Briggs and Haldane (1925) a decade later, and then
extended in subsequent decades by many others (Monod
et al. 1965; Koshland et al. 1966; Goldbeter and Koshland
1981). These models focus on enzymatic reactions stud-

ied in vitro under controlled, well-mixed conditions.
More recently, ‘‘systems biologists’’ have revisited math-
ematical modeling of biochemistry, but with a focus on
networks of proteins and reactions occurring in vivo.
Many biologsts are unclear as to the relationship between
contemporary modeling efforts and the widely under-
stood equations of Michaelis-Menten kinetics. Remark-
ably, many ascribe greater rigor to the Michaelis-Menten
approximation than to more fundamental networks of or-
dinary differential equations (ODEs) from which the ap-
proximation is derived. In this review, we explore the
connections between ODE-based models and classical
‘‘arithmetic’’ descriptions of enzymology, as presented in
texbooks such as Lehninger (Nelson and Cox 2004) and
Stryer (Berg et al. 2006). Specifically, we ask the following
questions: (1) How is a simple ‘‘canonical’’ enzymatic
process represented as a dynamical system using coupled
ODEs? (2) How are familiar quantities such as the
Michaelis constant (KM) and the maximal enzyme veloc-
ity (Vmax) derived from this dynamical system? (3) How
can unknown values (primarily rate constants) required
for modeling biochemical process be estimated from
data? (4) Can valid conclusions be drawn from models if
parameters remain unknown? (5) How appropriate is
classical enzymology as a framework for analyzing re-
actions in living cells? (6) How can models involving
complex sets of equations be made intelligible to experts
and nonexperts alike?

In presenting these topics, we face the challenge that
dynamical systems analysis is largely unfamiliar to ex-
perimental biologists, even though it is a well-developed
disipline in applied mathematics that ecompasses multi-
ple subfields with differing vocabularies. As applied to
biochemical systems, key ideas are not inherently diffi-
cult to grasp, and can be approached without detailed
prior knowledge of mathematical methods. In the text of
this review, we rely on analogies, simple equations, and
concrete examples, at the risk of some loss of generality
and rigor. We provide more throrough mathematical
analysis in the Supplemental Material, along with Mat-
Lab files useful for self-study and teaching. Specialized
vocabulary is defined in Table 1.

Our discussion of enzyme kinetics is restricted to a
mass action approximation. This simply states that the
rate of a reaction is equal to a constant multiplied by the
product of the concentration of the reactants. The very
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Table 1. Glossarya

Analytical solution Expressible in terms of elementary mathematical functions; c.f. ‘‘numerical solution.’’
Chemical master equation

(CME)
Describes the evolution of chemical reactions as a stochastic process.

x2 function The square of the deviation between a measurement and a simulation, divided by the
error variance of the measurement. Deviations are often assumed to be normally
distributed, and a x2 function is then a log likelihood function.

Compartmental ODE
model

An ODE model in which the transport of species from one compartment into another is
represented as a unimolecular reversible chemical reaction.

Conservation conditions The sum of certain interconverting reactants and products must be conserved, as neither can be
created nor destroyed through reactions; related to ‘‘number conservation’’ and ‘‘mass balance.’’

Dynamic variables Variables that change their values over time. In biochemical models, they are typically the
concentrations of protein species.

Dynamical system A mathematical description, such as a set of coupled differential equations, describing the
concentrations, states, or location of a species over time.

Elementary reaction A simple biochemical reaction involving a single transition between reactants and products.
Experimental observables Model variables that can be measured experimentally, usually corresponding to individual

species or combinations of species.
Free parameters A constant in a model that has no a priori value and must be estimated. In the case of

biochemical models, free parameters include forward, reverse, and catalytic rate constants
for each reaction and initial concentrations of each species.

Identifiable A parameter is identifiable if its value can be determined by estimation (using an objective function).
Initial conditions Concentrations of model species at the start of the reaction.
Inner solution In singular perturbation analysis, the equations describing early processes that operate on

short time scales; in classical enzymology, this corresponds to the transient burst phase.
Least-squares difference

function
Another name for a x2 function.

Likelihood distribution The probability that a set of parameters corresponds to the ‘‘true’’ value.
Mass balance conditions See ‘‘conservation conditions.’’
Model calibration See ‘‘parameter estimation.’’
Model training See ‘‘parameter estimation.’’
Nondimensionalization A procedure to express equations in a manner that eliminates units by applying a series of

appropriate scaling factors.
Numerical solution The solution to a collection of ODEs obtained via integration in a computer; c.f. ‘‘analytical solution.’’
Objective function An expression quantifying the deviation between a simulation and experimental data for

a given set of parameter values; used for ‘‘parameter estimation.’’
ODE An equation expressing the rate of change of a variable with respect to one other variable, usually time.
Optimal experimental

design
An approach to designing a minimal number of experiments in order to optimize a specific

feature of a model (e.g., identifiability).
Outer solution In singular perturbation analysis, the equations describing late processes that operate on

a long time scale; in classical enzymology, this corresponds to the dynamics described
by Michaelis-Menten equations.

Parameter estimation A procedure to estimate the values of ‘‘free parameters’’ by comparing models output to
data using an ‘‘objective function.’’

PDE An equation expressing the rate of change of a variable with respect to two or more other
variables, usually time and space.

Quasiequilibrated See ‘‘quasi-steady state.’’
Quasi-steady state A condition in which a product or reactant is nearly constant in concentration over

a limited time scale.
Root mean square

deviation
A measure of the difference between modeled values and experimental data using

a formula similar to standard deviation.
Singularly perturbed

system
A dynamical system that has been separated into subsolutions, each operating at

a different time scale.
Structural

nonidentifiability
A phenomenon wherein parameter estimation returns a wide range of parameter values,

even with ideal data; arises in biochemical models because changes of one parameter
can be compensated by changes in others.

Synthetic data Data generated from a model using a particular set of parameter values; often includes estimated error.
Taylor expansion The series expansion (a sum of polynominals) of a differentiable function, each term being

made up of successively higher-order derivatives at the given point, each having a
diminishing weight.

Trajectories The values of a dynamical variable over time. Analogous to a change in position of an
object over time in classical mechanics.

aThese informal definitions pertain to usage in this review; more complete definitions can be found at Mathworld (http://
mathworld.wolfram.com).
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concept of ‘‘concentration’’ assumes that the distributions
of reactants can reasonably be assumed to be continuous
(as opposed to discrete), and that reaction dynamics are
deterministic. This holds for a well-mixed reaction com-
partment when the number of molecules is great enough
that the properties of single reactants cannot be resolved
from the ensemble behavior (to some degree of precision).
Mass action kinetics are an approximation to a more
fundamental, discrete, and stochastic description based
on the chemical master equation (CME). Single-molecule
enzymology (Ishijima et al. 1991; Finer et al. 1994; Cai
et al. 2006; Kim et al. 2007) and live-cell analysis of
stochastic processes in living cells, such as gene transcrip-
tion (Golding and Cox 2004; Elf et al. 2007; Zenklusen
et al. 2008) and protein translation (Munro et al. 2007;
Agirrezabala et al. 2008; Choi et al. 2008; Julian et al.
2008), have brought stochastic modeling to the attention
of molecular biologists, but it is nonetheless true that
many physiological processes can be described quite well
using deterministic, continuum models (Grima and Schnell
2006). The magnitude of stochastic fluctuations for a
single reaction scales with1=

ffiffiffiffiffi
N
p

, where N is the number of
molecules in the compartment. Thus, deterministic models
are a good description of reactions having >102–103 mole-
cules per reactant (although, to be more precise, it is not the
total number of molecules that is relevant, but rather the
minimum number in one or more reaction compart-
ments). In eukaryotic metabolism and signal transduction,
these numbers justify the use of deterministic kinetic
models. Such models can also be analyzed using efficient
numerical methods, whereas analysis of complex stochas-
tic models remains a relatively challenging problem in ap-
plied mathematics (Gillespie 2007). Deterministic models
are also easier to analyze for relationships among rate
constants or initial protein concentrations and product
dynamics (e.g., sensitivity analysis). We refer readers in-
terested in stochastic models to an elegant experimental
demonstration of the link between stochastic and deter-
ministic kinetics (English et al. 2006), and to several ex-
cellent reviews on stochastic simulation (Sun et al. 2008;
Wilkinson 2009). We also note that our discussion of dy-
namical systems and of connections between models and
expeirments is as relevant to stochastic as to deterministic
models, but with added complexity in the former case.

We omitted from this review a specific discussion of
spatial gradients. Protein localization is, of course, a crit-
ical determinant of biological activity. Transport and
diffusion are modeled (in a continuum framework) using
partial differential equations (PDEs). Concepts that are
discussed in this review with respect to temporal variables
such as nondimensionalization and scaling also apply to
spatial dimensions. Thus, our discussion of ODE models
is relevant to PDE models, but PDE models are more
complex. Changes in protein localization are usually rep-
resented in ODE models by postulating a reversible re-
action corresponding to movement of a species from one
well-mixed compartment to another (such models are
frequently referred to as compartmental ODE models).

We do not mean to imply that stochastic methods and
PDEs are not important in representing actual biochem-

istry in cells, but instead that fundamental concepts
in modeling cellular biochemistry can be explored more
simply by considering deterministic models that rely on
a simplified representation of space. Such ODE models
are, in many cases, entirely adequate as a modeling for-
malism, and their relative simplicity facilitates detailed
model analysis, representation of elaborate mechanisms
and multiprotein networks, and rigorous comparison of
model-based prediction of experimental data. The latter
issue is particularly challenging, and arises with all mod-
eling methods.

The models of Michaelis-Menten and Briggs-Haldane

Even complex biochemical processes are usually de-
scribed as a succession of simple and reversible binding
steps and largely irreveriblse catalytic steps, each of
which constitutes an elementary reaction (as mentioned
above, protein relocalization in a compartmental ODE
model is represented as a reversible first-order reaction).
By combining binding and catalysis, we arrive at the
classical treatment of a simple enzyme-mediated bio-
chemical transformation (Fig. 1, Eq. 1). The majority of
this review involves this fundamental reaction. Enzymes
and substrates first bind to each other to form a complex
(E + S 4 ES, where ES is henceforth called C to simplify
formulae). The enzyme faciliates passage over an activa-
tion barrier, thereby accelerating chemical transforma-
tion of the substrate into product. Enzymes and products
then dissociate to form E and P. Formation of C is
characterized by a forward rate constant (kf) that is second
order in our example (in units of M�1sec�1), a first-order
reverse rate constant (kr; in sec�1), and a first-order cata-
lytic rate constant (kcat; in sec�1). The reverse catalytic rate
constant is set to 0, representing a situation in which the
catalytic step is effectively irrversible because DG ! 0.

In their 1913 paper on invertase, Michaelis and Menten
(1913) first applied to biochemical reactions in solution the
concept of mass action kinetics developed for gas-phase
reactions. Michaelis and Menten (1913) also recognized
the value of distinguishing between rapid steps, leading
to formation of C, and subsequent slower catalytic steps,
leading to product formation. By assuming C to be in
equilibrium with E and S, Michaelis and Menten (1913)
derived an analytic approximation for the dynamics of the
slower phase in which a direct link could be made between
experimental data and reaction rate constants (as outlined
below). The related treatment of Van Slyke and Cullen
(1914) a year later assumed E and S to bind irreversibly to
each other, but Briggs and Haldane (1925) realized that
a more general formulation could be achieved by assuming
that C rapidly achieves a steady state that need not
represent a true equilibrium. The nomenclature of the
Briggs-Haldane treatment is easily understood today, and
leads directly to the contemporary form of the Michaelis
constant (KM) and to equations for reaction velocity
(Fig. 1, Eqs. 2,3). The steady-state approximation of Briggs-
Haldane plays a central role in many subsequent treat-
ments of coupled multienzyme systems (Goldbeter and
Koshland 1981), allosteric regulation in the concerted
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MWC (Monod, Wyman, and Changeux) (Monod et al.
1965), or induced-fit KNF models (Koshland, Nemethy,
and Filmer) (Koshland et al. 1966). The work of Michaelis
and Menten (1913) has been extended to describe enzymes
having more than one substrate, ultimately giving rise to
a rich ecology of models with names such as bi-bi, random,
and sequential (Segel 1975; Rudolph 1979). What we have
to say about the Michaelis-Menten model applies to these
models as well.

Representing a canonical enzymatic reaction
as a dynamical system

Michaelis-Menten and Briggs-Haldane models are an ap-
proximation, under a very specific set of conditions, to
a more fundamental description of an elementary en-
zymatic reaction as a dynamical system involving ODEs.
Mass action kinetics finds a precise mathematical de-
scription in differential equations, but the frequent use of
reaction velocity (V) in introductory textbooks obscures
the simple fact that V [ dS/dt. For our two-step model of
an enzymatic reaction, the dynamical system consists of
four coupled ODEs in which C, E, S, and P are dynamic
variables, Eo and So are enzyme and substrate concentra-
tions at the start of the reaction (the initial conditions),
and kf, kr, and kcat are free parameters (rate constants)
(Fig. 1, Eqs. 4–7). Two additional pieces of information are
available for the system in the form of conservation or

mass balance conditions: (1) The total concentration of
free enzyme and complex equals the initial enzyme con-
centration (E + C = E0), and (2) the total concentration of
free substrate, complex, and product equals the initial
concentration of substrate (S + C + P = S0) (Fig. 1, Eqs. 8,9).
It follows that P = S0 � C � S and E = Eo � C, making it
possible to reduce our original system of four differential
equations to two (Fig. 1, Eqs. 10,11). Solving this dynam-
ical system yields the concentration of S and C with
respect to time [S(t) and C(t)], but no known method
provides an analytical solution to the system (i.e., a set of
equations true for all parameter values). We can, however,
calculate numerical solutions for any specific values of
the initial conditions and kinetic parameters by evaluat-
ing the equations in a computer (using an ODE solver that
steps through the equations in a succession of small time
steps).

Even in the absence of specific experimental data, it is
possible to study our dynamical system by choosing
reasonable parameter values. A robust theory exists to
calculate diffusion-limited rate constants for small mol-
ecules from first principles (kf ; 108–109 M�1 sec�1), but
in the case of enzymes and their substrates, the active site
can be accessed only over a limited range of collision
geometries, which effectively restricts diffusion-limited
reaction rates for binding of small substrates to enzymes
to kf ; 105–106 M�1 sec�1(Northrup and Erickson 1992).
On-rates can be much lower if conformational changes in

Figure 1. The canonical enzymatic reac-
tion (Eq. 1) analyzed by Michaelis-Menten,
and the resulting equations defining KM

(Michaelis constant) and V(t) (velocity) (Eqs.
2,3). (Eqs. 4–7) The same enzymatic reaction
described using a coupled set of four ODEs,
defining changes in the concentration of
enzyme, substrate, complex, and product over
time. Using conservation conditions (Eqs.
8,9), the set of four ODEs can be reduced to
two equations, describing the change over
time of complex and substrate (Eqs. 10,11).
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the enzyme are involved; for example, during binding of
imatinib (Gleevec) to the active site of the oncogenic Bcr-
ABL kinase (Schindler et al. 2000). Reverse rate constants
are determined by dissociation enthalpies and entropies:
for Kd ; 1 mM and diffusion limited binding, kr is ;10�1

sec�1. We will assume a catalytic rate constant of 10�2

sec�1, a value that is atypically slow for many metabolic
enzymes, but reasonable for phosphorylation of peptide
substrates by receptor kinases (Li et al. 2003; Yun et al.
2007, 2008). Because we can choose the amount of sub-
strate and enzyme in an in vitro reaction, we set the
initial values at convenient values: S0 = 1 mM and E0 = 10
nM (1 mg/mL for a 100-kDa enzyme). Examining trajec-
tories from a numerical solution to the dynamical sys-
tem, we see that S(t) falls steadily from its initial value,
but the abundance of C(t) is so low we need to rescale the
axes to discern any detail. In a numerical simulation, this
can be accomplished simply by finding the high and low
values in the trajectory, but we can also use the analytical
approach known as nondimensionalization to place all
variables on a unitless scale of 0–1. We will accomplish
this in two steps: by nondimensionalizing first for con-
centration, and then for time (nondimensional variables
have no units, and can therefore be compared directly). In
so doing, we will uncover the connection between our
dynamical system and the Michaelis-Menten equations.

Nondimensionalization and separation of time scales

To eliminate concentration units from our dynamical
system, we replace the original variables with rescaled
values: ~xðtÞ = xðtÞ=xscale, where x(t) is the original vari-
able, and xscale is the rescaling constant. ~xðtÞ is then a
nondimensional variable lying between 0 and 1. In the
case of S(t), an obvious rescaling constant is the initial
substrate concentration, Sscale = S0, and the nondimen-
sional dynamical variable ~s = S=S0 now starts at 1 and
falls to 0 as t / N. Rescaling C(t) is more subtle: At the
beginning and end of the reaction, it has a value of C(t) =
0, and the trajectory must therefore have a maximum
somewhere in between; this is the Cscale value we seek.
The maximum naturally occurs when the slope is 0 (dC/
dt = 0), which we show in the Supplemental Material
(Supplemental Eqs. 3–6) to be Cscale » E0S0/(S0 + B), where
B is a composite of several elementary rate constants. As
we will see, the composite parameter B is identical to KM,
but we temporarily ignore this fact to make clear that,
from the perspective of nondimensionalization, B simply
arises as a scaling constant. Knowing Cscale, we make
the simple substitution ~cðtÞ = CðtÞ � ðS0+BÞ=E0S0, and, by
plugging in actual values for the parameters, we can plot
S(t) and C(t) [or any derived value, such as P(t)] on an axis
of 0–1 (Fig. 2A–B, Eqs. 1, 2). Nondimensionalization with
respect to concentration also recasts rate constants in
a rather helpful way: We see that ~cðtÞis determined by rate
constants on the order of ;0.1 sec�1 but ~sðtÞ is deter-
mined by rate constants ;0.001 sec�1 (Fig. 2C, Eqs. 3, 4).
Thus, the dynamics of ~cðtÞ are 100-fold faster than those
of ~sðtÞ. Such a comparison is simply not possible in the
original dimensional equations, because forward rate

constants have different units than the reverse and
catalytic rate constants (M�1 sec�1 for kf, and sec�1 for
kcat and kr).

Because ~cðtÞ and ~sðtÞ are controlled on different time
scales (typically differences of 100-fold imply fundamen-
tally different dynamics), it is possible to separate fast and
slow processes in such a way that the fast events are
stretched out relative to slower events. A dynamical sys-
tem that operates on two or more time scales can be de-
composed using singular perturbation analysis. The basic
idea is that fast processes evolve on time scales over
which slow processes can be assumed to be constant (that
is, to be at quasistatic state; QSSA). Conversely, when
slower processes dominate, the fast processes are assumed
to be continuously in quasiequilibrium. Singular pertur-
bation analysis can be accomplished from several points
of view, and we refer readers to a wonderfully clear and
thorough discussion of this topic by Segel and Slemrod
(1989). As a starting point for our relatively simple
treatment, notice that, by choosing a rescaling constant
of tscale = 1/kfS0 and a scaled dimensionless time of t =
t/tscale, the rate constants for ~cðtÞ are now ;1, and those
for ~sðtÞ are ;10�2. Thus, during the interval, ~cðtÞ is
changing rapidly, ~sðtÞ is essentially stationary, and we
can effectively ignore its dynamics. We therefore approx-
imate the dynamical system in the early phase by a single
ODE for ~cðtÞ and a constant value for ~sðtÞ = 1 (Fig. 2D,
Eqs. 5,6). This is known as the inner solution, and has a
particularly simple and satisfying shape, with ~cðtÞ as-
ymptotically approaching 1. The dynamics of a ~cinnerðtÞ
do not change much after t ; 3, which defines the limit of
utility of the inner solution (the unit of tscale is kf S0

�1

;10 sec), so the inner solution holds for ;30 sec.
Turning to the slow phase, we rescale time yet again,

but now we want rate constants for ~sðtÞto be on the
order of 1. Again, several rescaling possibilities exist, but
we chose the dimensionless coefficient ~t = t=tscaleand
tscale = E0/(S0 + B). Now, the nondimensional rates for
~sð~tÞ are on the order of 1, and those for ~cð~tÞ are 100, so we
can assume that ~cð~tÞ is always quasiequilibrated with
~sð~tÞ. This assumption yields the dynamics at late times,
known as the outer solution (Fig. 2E, Eqs. 7,8). Recall
from the inner solution that ~s(t) = 1, and the complex ends
up at its steady-state value ;1 (nondimensionalized
units). The dynamics of the outer solution involve a fall
from these initial values, at first linearly and then
logarithmically as the reaction proceeds [we arrive at
dimensionless time in the outer solution by successively

scaling time by two constants, so that ~t = t
kf S0

E0

B + S0

� ��1
or

2100 sec]. If we join the inner and outer solutions
together, we arrive at a complete description of our
dynamical system (Fig. 3A, Eqs. 1–5). These dynamics
can be expressed in either nondimensional or dimension-
alized units. Moreover, we remind ourselves that the
compound rate constant B has a value of B = kr + kcat

kf
[ KM,

the Michaelis constant. Inspection of the dimensional-
ized outer solution for substrate Souter(t) (Fig. 3A, Eq. 4)
reveals that it is identical to the analytical solution of
the enzyme velocity equation derived by Michaelis and
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Menten (1913), a point that becomes more obvious if we
take the derivative dS(t)/dt (Fig. 3A, Eq. 5). Note that we
did not force KM onto the outer solution; it arose naturally
from a consideration of the dynamics of substrate at later
times.

We now arrive at a key insight: The Michaelis-Menten
equation is the outer solution to the complete dynamical
system, and is valid over precisely the range of parameter
values for which a separation into fast and slow dynamics
is valid. This statement is identical to saying it is the
quasistatic state approximation for later times. Con-
versely, the inner solution is the enzyme velocity equa-
tion for the initial ‘‘burst phase’’ of the reaction. It is by no
means necessary that our dynamical system be separable
into fast and slow processes: This is true only over a
relatively narrow range of parameter values. Moreover,
not all systems that can be separated into multiple time
scales by singular perturbation analysis obey Michaelis-
Menten kinetics (Borghans et al. 1996; Tzafriri and
Edelman 2004; Ciliberto et al. 2007). For example, con-
sider a reaction in which C forms rapidly relative to P, but
E is not in excess of S (Fig. 3C). Parameters for this solu-
tion derive from published models of receptor-mediated
phosphorylation of the Shc adaptor protein by epidermal
growth factor receptor (Birtwistle et al. 2007; Chen et al.

2009). In this case, separable early/fast and late/slow
phase solutions can be defined (Supplemental Eqs. 63–
66), but KM does not appear in the singularly perturbed
solution, and no correspondence between the Michaelis-
Menten model and actual enzyme dynamics can be
discerned. Thus, we see that the Michaelis-Menten
approximation is a very special case of a more general
representation of a simple enzymatic reaction as a net-
work of ODEs, and that the conditions under which the
approximation holds are a small subset of the conditions
under which enzymes function in real biological systems.

The Michaelis-Menten equations are generally held to
be valid when either S0 @ E0 or kr @ kcat, but a more
general and powerful description of these limits is as
follows: The Michaelis-Menten model (the outer solu-
tion) is acceptable when the QSSA dynamics exhibit an
acceptable deviation from the full dynamical description.
This condition can be formulated as DS

S0
» 1

S0

dS
dt

�� ��
max
�t

C
<< 1

(Segel and Slemrod 1989), where DS is the change in sub-
strate from its initial concentration and tC is the time it
takes for the complex to reach its steady-state value. The
physical interpretation of the condition is that the relative
change in substrate must be small (much less than 1) in the
early phase of the reaction (t < tC), during which the complex
accumulates,. Under the conditions shown in Figure 3C, the

Figure 2. Nondimensionalization and sin-
gular perturbation analysis of a simple en-
zymatic reaction, fulfilling the Michaelis-
Menten conditions. (A, left) The trajectories
for concentrations of substrate (black) and
complex (red) over time. (Right) The re-
scaled graph using nondimensionalized pa-
rameters illustrates the behavior of both
species on a common axis, and suggests
the existence of two separable time scales.
(B) The dynamic ODEs after rescaling for
concentration. (C) The same equations as in
B, with a specific set of parameters drawn
from A. The difference of approximately
two orders of magnitude in the nondimen-
sionalized reaction rate constants indicates
two distinct and therefore separable time
scales. (D) The inner solution of the non-
dimensionalized dynamical system show-
ing the early, fast phase, during which
complex formation rises exponentially (red),
while the substrate concentration remains
constant (black). (E) The outer solution of
the nondimensionalized dynamical system
showing the coupled decay of complex (red)
and substrate (black), with complex in rapid
pseudoequilibration with falling substrate.
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change in concentration of substrate over time (black) has
a value of DS

S0
» 0:5, and therefore exhibits substantial de-

viation from the dynamics given by the Michaelis-Menten
approximation (green).

With these considerations in mind, we might ask what
subset of elementary biochemical reactions in cells are
reasonably approximated by Michaelis-Menten kinetics.
In the case of the signal transduction networks currently
being studied using kinetic modeling, the conclusion
appears to be that few if any reactions can be so approx-
imated, even though many can be described quite well by

a mass action dynamical system (Chen et al. 2000, 2009;
Birtwistle et al. 2007; Albeck et al. 2008). The observed
mismatch does not involve an absence of well-mixed
compartments or the stochastic nature of cellular bio-
chemistry (although both are true), but the very limited
range of parameter values over which the Michaelis-
Menten approximation holds. In the case of metabolic
reactions, however, it appears that Michaelis-Menten
kinetics do have wider applicability (Costa et al. 2010).
In many cases, in vitro biochemical analysis of cell sig-
naling proteins is performed under conditions that yield
valid Michaelis-Menten kinetics, but that cannot be ex-
trapolated to conditions in vivo in which substrate and
product concentrations are radically different. In construct-
ing models of complex cellular biochemistry, we often find
ourselves struggling to use KM measurements when esti-
mates of elementary rate constants would be much more
useful.

Determining parameter values from experimental data

Thus far, we have assumed that values for free parameters
(rate constants) are known, but this is not usually true.
Instead, we must infer these values from experimental
data. The procedure involved is variously known as pa-
rameter estimation, model calibration, or model training
(we will use the first term). As we will see, the truly
elegant feature of Michaelis-Menten kinetics is a close
connection between model parameters and features of
the system that can be measured empirically (experi-
mental observables). With a simple enzymatic reaction
in vitro, observables such as the rate of formation of
product over time might correspond directly to a dynam-
ical variable, but, in more complex models, the connec-
tion between data and dynamical variables is more subtle.
In cells, most observables are composites of multiple
dynamic variables, or they derive from some biosensor
whose own biochemistry must be considered (this is anal-
ogous to the use of coupled enzymatic reactions as a means
to monitor product formation in classical enzymology)
(Hansen and Schreyer 1981; Bartelt and Kattermann
1985).

To calibrate a model, data are collected for a set of
observables, and the data are then compared with model-
based predictions using an objective function:

objðparametersÞ = ðmodel � dataÞ2; ð1Þ

where obj(parameters) refers to the value of the objective
function for a particular set of parameters, and the
squared term prevents positive and negative deviations
from canceling trivially. If we evaluate this at one point
for the dynamic variable S(t), we obtain

objðkf ;kr;kcatÞ [
1

2s2
S t; fkf ;kr;kcatg
� �

� Sexp tð Þ
� 	2

; ð2Þ

where s2 is the variance in the data. Equation 2 is also
known as a least-squares difference function or the x2

Figure 3. Singular perturbation analysis of the classical en-
zyme reaction. (A) The equation set describing the dynamics of
the early (fast; pink) and late (slow; blue) phase of the reaction.
The time scale of each of the phases is indicated. (B) Non-
dimensionalized changes in complex (red) and substrate (black)
smoothly joined following singular perturbation analysis for the
early (pink) and late (blue) phase of the reaction. (C) Example of
a reaction system that can be analyzed by singular perturbation
methods but that does not fulfill requirements of the classical
Michaelis-Menten approximation. Complex (red) and substrate
(black) exhibit a fast and slow phase. The Michaelis-Menten
approximation of substrate (green) shows substantial deviation
from the true dynamics.

Revisiting Michaelis-Menten models

GENES & DEVELOPMENT 1867

 Cold Spring Harbor Laboratory Press on November 23, 2010 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


function. Usually, we evaluate the objective function at
multiple time points such that

objðkf ;kr;kcatÞ [ +
N

i = 1

1

2s2
S ti; fkf ;kr;kcatg
� �

� Sexp tið Þ
� 	2

:

ð3Þ
Estimation is performed by systematically varying pa-
rameters over a biophysically plausible range (e.g., within
the range of diffusion limited rates), and then computing
the value of the objective function [obj({k1. . .kNp}), where
Np is the number of parameters] for the data. This gen-
erates a ‘‘landscape’’ of the objective function, with as
many dimensions as parameters being estimated, and
with a value encoded in the ‘‘altitude.’’ A landscape of
the objective function is directly analogous to an energy
landscape, and the aim of parameter estimation is to find
the global minimum in the landscape: With a x2 objective
function, the global minimum corresponds to the most
probable value of the parameters. Figure 4A shows an
example of such a landscape, in which the axes are scaled
with respect to decadal ‘‘fold changes’’ over nominal
values for two parameters (ka

0 and kb
0). These ‘‘nominal

values’’ typically define a point in parameter space at
which the objective function has a reasonable value, or
a position from which further exploration is undertaken.
Much as fold change is a useful way to think about data, it
is a natural way to think of moves in parameter space.

We cannot distinguish values of obj({k1. . .kNp}) that
differ by less than experimental error. This places an
absolute limit on the identifiability of model parameters;
that is, on the precision with which parameters can be
estimated from data. As we will see, identifiability is
also limited by the mathematical relationship of model
parameters to dynamic variables, a subset of which
correspond to experimental observables. Oddly, model
calibration—or, more commonly, ‘‘model fitting’’—is of-
ten presented in a pejorative light. The reasoning ap-
pears to be that if a model matches data without any
fitting, then it is somehow more valid. This is simply
nonsense: All plausible models of biochemical processes
have free parameters that must be estimated in some way.
Moreover, a model with constant topology can exhibit
radically different input–output behavior, as parameters
vary across a biophysically plausible range. It is true that
a reasonable match to data can be achieved using param-
eters that are estimated from first principles, in which case
calibration is ‘‘inductive’’ rather than formal. However,
formal calibration is always the more rigorous approach.

Consider an attempt to estimate parameter values for
our simple enzymatic reaction, again assuming the rate
constants (kf = 105 M�1 sec�1, kr = 10�1 sec�1, and kcat =
10�2 sec�1) that yielded a valid Michaelis-Menten ap-
proximation. Since we are performing analysis in silico,
we use synthetic data obtained from simulation of the
model (Fig. 2B, Eqs. 1,2). The concept of synthetic data is
initially rather odd, since it would seem to assume
precisely what we want to test, but this is not, in fact,
the case. Synthetic data play an important role in de-
veloping and validating most numerical algorithms, and
reveal the fact that information is lost when we move

from parameter values to simulated synthetic data, and
then back to parameters via estimation (naturally, we
keep the parameters used to create synthetic data ‘‘se-
cret’’). Synthetic data are computed by running model
simulations with particular parameter sets, and then
adding an appropriate level of experimental noise (based
on an error model, which often but not necessarily
realistically assumes noise to be normally distributed).

For our simple reaction, we attempt to estimate pa-
rameters from synthetic data corresponding to measures
of S at 12 points in time. We assume an error model with
a root mean square (RMS) deviation of 10% at each data
point. This provides real numbers for the variance term in
Equations 2 and 3, and gives meaning to the x2 interpre-
tation of the objective function. We assume that the
equations in our model are the same as those used to
create the synthetic data. The efficacy of model calibra-
tion can then be judged by seeing how close estimated
parameters are to the ‘‘true’’ parameters used to create the
synthetic data (Fig. 4B). Of course, the question also arises
as to how we can model biochemical processes for which
we do not known a priori the nature of order of the
reactions.. This is a distinct and interesting problem
known as network inference or network reverse engi-
neering (Werhli et al. 2006; Marbach et al. 2010).

The landscape of obj({k1. . .kNp}) can be determined
using numerical methods for any set of synthetic data,
but we can gain a good intuitive understanding of its key
features using analytical approximations. At any point
near a local or global minimum, the landscape resembles
an ellipsoidal valley (a paraboloid) whose curvature differs
in various dimensions (Fig. 4C shows a parabolic approx-
imation for a two-parameter landscape). The curvature of
this parabola is simply the second term in a Taylor
expansion @2obj

@ka@kb

� �
of the objective function (recall that

many functions can be approximated as a Taylor series,
a power series in which the coefficients of each term are
simply the derivatives of the function). The first two
coefficients are the slope and the curvature of the
objective function, and it makes sense that we would
use these first in attempting to approximate a landscape
with an arbitrary shape. For functions with two or more
dimensions, we require curvatures in multiple dimen-
sions, and the second term in the Taylor expansion
corresponds to a matrix known as the Hessian (Fig. 4D).
The useful feature of this analytical approximation is
that axes of our parabolic valley in the landscape of the
objective function have directions given by the eigenvec-
tors of the Hessian and lengths given by the eigenvalues
(Fig. 4D, red and blue arrows). Engineers will also recog-
nize this to be nearly identical to the Fisher Information
Matrix (Kremling and Saez-Rodriguez 2007). With respect
to the current discussion, the important thing is that we
transformed a poorly defined analysis of an arbitrary and
unknown landscape into an intuitively simpler analysis
of parabolic valleys whose shapes are described by eigen-
vectors and eigenvalues.

With biochemical models, we usually observe that, at
any point in parameter space, eigenvalues differ dramat-
ically, meaning that valleys are long and shallow in some
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directions, and narrow and steep in others (Fig. 4E). To
find a minimum in the landscape, we need to move
through these valleys to a low point using as a guide only
‘‘altitude’’ (that is, of obj({k1. . .kNp}), whose measurement
is degraded by experimental error. It is apparent we can
reasonably evaluate the consequences of moving up steep
walls of the parabola, which correspond to short eigen-
values (these are bad moves), or down steep walls (these
are good moves) (Fig. 4F), but it is much harder to de-
termine in which direction we should move along the
shallow valley floor. The inability of the objective func-
tion to pinpoint the low point of flat valleys is often
referred to as structural nonidentifiability, and arises,
as the name implies, directly from the structure of the
equations in the dynamical system. Structural noniden-

tifiability imposes a severe limit on parameter estima-
tion. Moreover, because long eigenvectors usually point
at an angle to the axes (Fig. 4D), nonidentifiability often
involves combinations of parameters (Gutenkunst et al.
2007). In our model, nonidentifiability arises because C(t)
is controlled by a ratio of elementary rate constants, and
this also explains why the long axis of the valley in
the landscape of the objective function lies at an angle
relative to the kcat and kf axes.

What is the relationship between estimation using the
landscape of the objective function and the classical
approach to determining parameter values in Michaelis-
Menten kinetics? To explore this, we use a full dynamical
system describing the enzymatic reaction (Fig. 1, Eqs.
9,10) to create synthetic data for S(t) at each of three

Figure 4. Parameter values for dynamical systems described by ODEs can be estimated from data using an objective function. (A) In
the objective function, each unknown parameter of the ODE system corresponds to a dimension. The surface of the objective function
resembles an energy landscape, with the altitude at each point denoting the goodness of fit of a specific set of parameters to data. Here,
a three-dimensional slice through a complex objective function (corresponding to two parameters) shows numerous steep inclines/
declines, local maxima/minima, and large areas where the objective function is independent of the two parameters displayed. (B) The
deviation between points of synthetic data and model trajectories can be measured and used to evaluate the parameters. The effect of
assuming perfect data means that there is a well-defined minimum that is the ‘‘true’’ parameter set, while the assumption of a variance
means that the x2 landscape has realistic values for its peaks and valleys. (C) The approximated surface of a particular valley in the
complex landscape is shown in blue. (D) The curvature of the approximated surface area can be calculated as the second term of
the Taylor expansion of the objective function, the Hessian. The eigenvectors of the Hessian represent the short and long axes of the
paraboloid, and generally do not point in the direction of any single parameter. (E) Short eigenvectors indicate the direction of a steep
parabola (large eigenvalue; red), and long eigenvectors indicate the direction of a shallow parabola (small eigenvalue; blue). (F) Moving in
the direction of either eigenvector in parameter space has different consequences for model trajectories. Moving along a steep
eigenvector of a Hessian leads to significant changes in the trajectory (red), while moving along the shallow eigenvector leads to only
minor changes (blue), corresponding respectively to large and small changes in the values of the objective function.
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values of S0. In classical enzymology, parameter values
are determined by measuring the rate of product forma-
tion for each value of S0 after the burst phase, but early
enough that product formation is still linear in time (Fig.
5A). This generates a curve of enzyme velocity as a func-
tion of initial substrate concentration (Fig. 5A, inset) that
can be transformed into a Lineweaver-Burke plot to
extract the constants KM and kcat (Fig. 5B). This works
(Fig. 5A, green dot) because, at saturating levels of sub-
strate, Vmax is given by kcatE0, allowing kcat to be
estimated, but when S0 is smaller, enzyme velocity (V) is
a function of both kcat and KM, allowing KM to be de-
termined (in modern practice, numerical estimation pro-
cedures are used in place of actual Lineweaver-Burke plots)
(Atkins and Nimmo 1975; Woosley and Muldoon 1976).

A satisfying correspondence exists between approaches
to rate constants in classical enzymology and parameter
estimation based on an objective function. To illustrate
this, we analyze the landscape of obj(kf,kr,kcat) directly
using our knowledge of the analytical solution to Souter(t)
(i.e., using the QSSA approximation) (Fig. 3, Eq. 4). The
landscape of obj(kf,kr,kcat) has three parameter dimen-
sions and a single parabolic minimum. While it is difficult
to plot such a four-dimensional object, the eigenvectors of
the Hessian approximation lie in a three-dimensional
space that can easily be visualized. The shorter and more
identifiable eigenvector projects onto all three parameter
axes (Fig. 5C). As S0 increases (to 10 3 10�6 M in Fig. 5D),
the eigenvector swings upward, decreasing the projection
along the kf and kr so that it becomes nearly parallel to

the kcat axis. Estimation under these conditions is akin to
obtaining kcat from measuring Vmax at saturating con-
centrations of substrate. At lower concentrations of sub-
strate, the identifiable eigenvector points at an angle to kf

and kr, meaning that we can estimate a ratio for these
parameters. Importantly, when, we vary S0 in this lower
range, the projection of the eigenvectors onto the kf and kr

axes does not change (something that is readily apparent
when viewed top down) (Fig. 5D), and we do not gain ad-
ditional information on the individual parameter values.
This corresponds in classical enzymology to measuring
enzyme velocity at subsaturating substrate concentra-
tions when KM » kr

kf
. Overall, then, the full dynamical

system for the canonical enzymatic reaction is structur-
ally nonidentifiable, given data on S(t), but the outer
solution is most identifiable with respect to the param-
eters kcat and KM. Thus, the truly elegant aspect of the
Michaelis-Menten equation is that it transforms a non-
identifiable system into an approximation that is highly
identifiable.

Thus far, we implied that some parameters are identifi-
able, and some are not (given the data), but this binary
classification is too restrictive. In reality, our ability to
estimate even the most identifiable parameters is limited
by error in the data, and it is therefore more accurate to
think of parameters as spanning a range of identifiability.
The exponent of obj(kf,kr,kcat) is a x2 error function that
returns maximum likelihood estimates, and thus param-
eter estimation will return likelihood distributions for
the rate constants. The concept of ‘‘degree of identifiability’’

Figure 5. The Michaelis-Menten approximation of
a classical enzymatic reaction and the connection to
parameter identifiability. (A) In typical experiments,
Vmax (enzyme velocity) can be determined for various
concentrations of substrate. (B) The reciprocal plots of
the measured values can be plotted to determine the
Michaelis constant (KM) and the catalytic constant
(kcat). (C) Measuring enzyme velocity for three sub-
strate concentrations projects individual vectors in
the three-dimensional parameter space. (D) While
altering the substrate concentration allows for the
determination of kcat, the ratio of the reverse rate con-
stant to the forward rate constant (kr/kf) remains
unchanged. Thus, only KM can be determined, leaving
the kf and kr reaction rate constants undetermined.
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is expressed by the width of this distribution. A likeli-
hood function computed for obj(kf,kr,kcat) for the com-
plete dynamical system describing our canonical enzyme
substrate system is shown by the isosurface plot in Figure
6A (in this plot, each color maps out a surface of constant
probability). The most likely parameter values are white
(Fig. 6A), and the least likely are black (Fig. 6A), with a red
surface showing the cutoff P = 0.01 (Fig. 6A). For simplic-
ity, consider a two-dimensional slice of this plot (Fig. 6B)
corresponding to kf versus kcat, with kr = k0

r (10�1 sec�1).
As before, we immediately observe different degrees of
parameter identifiability: Decreasing kf and increasing
kcat (Fig. 6B, blue arrow) has little effect on obj(kf,kr,kcat),

whereas increasing kf and kcat in the perpendicular di-
rection has a significant effect (Fig. 6B, red arrow). These
directions correspond precisely to the long and short
eigenvectors in the Hessian for the appropriate slice of
the objective function.

In summary, parameter estimation returns an infinite
family of possible parameter values, the probability of
which is given by the exponential of the objective func-
tion. In this scheme, the contributions of experimental
error and structural nonidentifiability are both accounted
for, and all parameters become distributions of varying
width (and greater or lesser correlation). We can use these
distributions and their correlations to generate predic-
tions that are also distributions, reflecting parametric
uncertainty. For example, when we compute the values of
P(t = 20 sec) and C(t = 20 sec), we return likelihood
distributions with different mean values and width: The
estimate for P spans a fivefold range, but C is better
determined, and its estimate spans a twofold range (Fig.
6C). Note that uncertainty in these predictions is signif-
icantly larger than the 10% RMS error we assumed in the
synthetic data. This arises because we used data collected
at later times to make predictions about the values of
dynamical variables at earlier times. In making such
model-based predictions, both identifiability and experi-
mental error are important .

We learned several things from this exercise. First,
parameter estimation for our simple enzymatic systems
using observations traditionally available in classical
enzymology returns an infinite number of parameter
values having different probabilities. Nonetheless, it is
possible to make useful model-based predictions about
the levels of species of interest (product and complex in
our case). Second, the likelihood plot for parameter values
has a remarkably complex shape, implying varying de-
grees of model identifiability across multiple independent
parameters, and illustrating the fact that it is difficult
to intuit precisely how data and model parameters are
linked. This is a sobering thought, given the prevalence of
informal thinking in molecular biology and the common
assumption that moving from data to an understanding of
the underlying biochemistry is straightforward. Third,
under special circumstances in which the QSSA is valid,
control parameters for the Michaelis-Menten model are
maximally identifiable, and uncertainty in parameter
values arises only from experimental error. In the case
of complex models of cellular biochemistry, all of these
considerations hold, but the landscape of the objective
function is much more rugged, and we typically observe
multiple maxima and minima (Fig. 4A; Chen et al. 2009).
Finding the minimum in such a landscape is not trivial,
and multiple points may have values of obj({k1. . .kNp}),
close to that of the global minimum.

Discussion

In this review, we compared classical Michaelis-Menten
approaches to analyzing a simple biochemical reaction
with a modeling approach based on systems of ODEs.
ODEs are the natural language for representing mass

Figure 6. The likelihood function ascribes the likelihood of
correctness to parameter sets based on how well they explain the
observed data. (A) The surface plot of the x2 error function of the
classical enzyme reaction in parameter space. The likelihood of
a given parameter set is given by the brightness (white being most
likely), while red denotes a cutoff boundary. (B) A two-dimen-
sional slice through the x2 function shows that the likelihood of
one parameter (e.g., kf) is dependent on another parameter (e.g.,
kcat). The region of high likelihood (white) corresponds directly to
the shallow direction of a Hessian (i.e., all yielding similarly low
values of the objective function). (C) Sampling of parameter sets
using the likelihood function can be used to make probabilistic
predictions of product (blue) and complex (red) formation at 20
sec after the start of the reaction. While individual parameters of
the reaction rate constants remain nonidentifiable, specific and
unique predictions can be made.
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action kinetics in a deterministic, continuum framework.
By comparing the classical and ODE-based approaches, we
arrive at four important conclusions, all of which have
been known for many years, but generally not by experi-
mental molecular biologists.

Conclusion 1: Michaelis-Menten kinetics represent
a singularly perturbed form of a complete model
based on a network of ODEs

The Michaelis-Menten equations (in the Briggs-Haldane
formulation) can be derived from a dynamical system of
ODEs over the limited range of parameter values in
which the system exhibits quasi-steady-state behavior.
When this holds, singular perturbation analysis returns
an outer solution that is identical to the Michaelis-
Menten model, and has familiar control parameters (KM

and kcat). The validity of the Michaelis-Menten approx-
imation for any set of parameters is captured by the
deviation between the outer solution and the full dynam-
ical system. The range of parameter values and initial
conditions over which the Michaelis-Menten approxima-
tion is valid is commonly encountered with enzymatic
reactions in vitro, but is probably rare in cells. For ex-
ample, signal transduction networks appear to exhibit
significant deviation between the Michaelis-Menten ap-
proximation and either the full dynamical system or
separation of time scale approximations arising from
singular perturbation analysis. Thus, it is entirely appro-
priate that deterministic models of intracellular bio-
chemistry are based on coupled ODEs in which KM rarely
appears. Moreover, even when single steps in an enzy-
matic cascade are well approximated by Michaelis-
Menten kinetics, the overall cascade cannot simply be
modeled as a succession of Michaelis-Menten reactions;
the coupling between successive reactions is too great.
Instead, the full dynamical system must be subjected to
singular perturbation analysis. An important corollary is
that many biochemical parameters measured by bio-
chemists in vitro—e.g., KM and Vmax—are less useful to
cell-based modeling than estimates of kf and kr (see also
Ciliberto et al. 2007 for further discussion of this point).

We discussed the value of nondimensionalizing con-
centration and time when analyzing systems of ODEs,
but this remains rare in modeling biochemical systems.
The use of raw parameter values is acceptable for simu-
lation models, but is a potential source of error with
methods such as stability analysis. The process of sepa-
rating dynamical systems into difference time scales by
singular perturbation analysis is also difficult, but we
note that ‘‘rough and ready’’ nondimensionalization can be
achieved more simply. In our enzymatic system, rescaling
concentrations with Cscale » E0 rather than Cscale » E0S0/(S0 +
B) is already highly informative, albeit without regenerating
the classical Michaelis-Menten model.

Conclusion 2: on the identifiability
of model parameters

The precision with which unknown parameters can be
identified in a model is determined by two factors: (1)

experimental error, and (2) the relationship between
experimental observables and model parameters (struc-
tural identifiability). Structural nonidentifiability arises
in large part because changes in kf can be balanced by
compensatory changes in kr and vice versa. In these cases,
estimation shows the rate parameters to be poorly iden-
tifiable, but kf and kr are strongly correlated, so that, even
in the face of uncertainty, we can make well-substanti-
ated predictions about the overall velocity of the reaction.
In the case of reactions obeying Michaelis-Menten kinet-
ics, this fact is elegantly encapsulated in the equation for
KM. Nonidentifiability arising from experimental errors
and model structures interact in real experiments to de-
termine the overall precision of estimation: The lower
the experimental error, the greater our ability to distin-
guish small differences in the value of the objective func-
tion (Bandara et al. 2009). Thus, an approach to parameter
estimation based on probability is more effective than
one that assumes some parameters to be identifiable and
others to be nonidentifiable. In such an approach, all
hypotheses are probabilistic, and their likelihood of be-
ing true is a function of model structure, data availability,
and experimental error (see Conclusion 4, below).

Conclusion 3: maximizing identifiability
through experimental design

An important point to which we alluded, but did not
specifically discuss, is that the precision with which
parameters can be estimated (and useful predictions
made) depends on experimental design. A relatively
robust theory of optimal experimental design exists to
specify how a fixed number of assays should be distrib-
uted over time and concentration in the experimental
domain (S0 or E0, for example) (Atkinson and Donev 1992;
Pukelsheim 1993). The theory is widely used in pharma-
cokinetics, but it is not well known to molecular biologists.
Rigorous analysis nonetheless supports the intuitive no-
tion that increasing the amount of data on a specific dy-
namic variable is subject to the law of diminishing returns.
In the case of complex biochemical models probed with
synthetic data, it has been demonstrated that even perfect
data encompassing all dynamic variables are insufficient to
constrain more than a subset of the underlying parameters
(in terms of a Hessian approximation to the objective func-
tion, this manifests itself as spectrum of eigenvalues that
vary over many orders of magnitude). Sethna and col-
leagues (Gutenkunst et al. 2007) describe such models as
‘‘sloppy,’’ insofar as most parameter values are very poorly
determined. The situation with real data is worse, of course,
because only a subset of the variables (protein phospho
states for example) can usually be measured. Thus, the
relative paucity of measurements contributes directly to
parametric uncertainty.

Although valuable, these insights into model identifi-
ability do not take into account the impact of fundamen-
tally new types of experiments that can reveal otherwise
poorly observable features of a dynamical system. In the
case of our canonical enzyme reaction, this is illustrated
by stopped-flow experiments that make the dynamics of

Chen et al.

1872 GENES & DEVELOPMENT

 Cold Spring Harbor Laboratory Press on November 23, 2010 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


the initial transient observable and allow estimation of kf

(Lobb and Auld 1979). In this case of cell-based studies,
a general theory to evaluate the impact of parameter
estimability has not yet been developed, but it seems
likely we need to combine perturbation (using RNAi
and small molecule drugs) with pulse-chase and dose–
response studies. As illustrated by stopped-flow enzymol-
ogy, when systems have large separations in time scales,
it is also important to assay processes operating at each
of the relevant time scales. The ready availability of
methods for perturbing biological systems (at least in cell
lines) stands in contrast to the primacy of observation in
models of climate, astrophysical events, and most other
natural phenomena. Formal analysis of cellular biochem-
istry should therefore yield interesting general advances
in the interplay between modeling and experiments.

Unfortunately, the current era of high-throughput sci-
ence de-emphasizes experimental design in favor of sys-
tematic gene-by-gene perturbation coupled with a few
simple, predetermined readouts. We are hopeful that
rigorous analysis of experimental design will change this
situation by demonstrating the central role that design and
hypothesis testing should play in all experiments (even
systematic ‘‘annotation’’ experiments), and by identifying
precisely which types of perturbations and measurements
are most valuable.

Conclusion 4: toward a probabilistic framework
for reasoning about biochemical networks

Both critics and proponents of biochemical modeling
continue to run into two misconceptions about parame-
terization. The first is an optimist’s view: It is both
feasible and desirable to pin down all rate constants with
experiments before a model becomes useful. The second
misconception is a pessimist’s view: Not only is it im-
possible to measure all parameters, but such models have
so many parameters that they can fit any sort of data, and
thus cannot give meaningful predictions. Neither is true.
High-confidence predictions can be made using noniden-
tifiable models, but it is also true that some predictions
have little experimental support. We therefore require a
probabilistic or Bayesian framework, in which both pa-
rameters and model-based predictions are assigned vary-
ing degrees of belief.

When parameter estimation is performed for a dynam-
ical model using real (and therefore noisy) experimental
data, we recover a range of values for each parameter. The
shapes of the distributions and the extents of their cor-
relation will depend on both the structure of the equa-
tions in the dynamical system and the type and accuracy
of the experimental data. In some cases, the estimated
distributions will be narrow, meaning that we can infer
quite a bit about specific rate constants, and in other
cases the parameter distribution will be nearly flat,
meaning that we have virtually no knowledge of actual
values. However, we are rarely interested in parameter
values per se: Instead, we want to predict some model
output or distinguish between different model topologies
(corresponding to different arrangements of the reac-

tions). Thus, consideration of model identifiability and
parametric uncertainty should occur in hypothesis space,
not in parameter space: We want to design experiments
and structure models to optimally distinguish between
specific hypotheses, not to hone parameter estimates.
Here we encounter an interesting paradox: Models with
realistically detailed depictions of biochemistry are sig-
nificantly less identifiable than simple models in which
biochemistry is represented in a less realistic manner. We
therefore require new analytic approaches for judiciously
weighing the merits of model detail and estimability.

When we discuss biochemical systems in terms of a
degree of belief in a prediction, given a specific set of ex-
perimental data and a particular model structure, we are
reasoning in a Bayesian framework. Bayesian parameter
estimation (which is distinct from constructing Bayesian
networks) is commonly used in the physical sciences and
engineering (Calvetti et al. 2006; Coleman and Block
2006; Eriksen et al. 2006), but the first applications
to biochemical networks have just started to appear
(Flaherty et al. 2008; Klinke 2009). One challenge to their
widespread use is developing algorithms able to sample
rugged objective functions. However, once in place,
Bayesian frameworks for analyzing cellular networks will
be very powerful. They will provide an effective means to
apply rate constants collected in vitro or in vivo to
networks in cells: The in vitro data will simply constitute
a prior (to which we assign a greater or lesser degree of
belief) for estimation of parameters from cell-based data.
Moreover, they will allow rigorous comparison of com-
peting proposals about biochemical mechanisms, pin-
point which data are required to resolve disagreements
at specific P-values, and allow us to re-evaluate historical
data with the aim of creating new hypotheses.

Modeling complex biological processes in cells

The concepts described here can be extended directly
to deterministic modeling of complex biochemical net-
works in cells (Kholodenko et al. 1999; Chen et al. 2000;
Albeck et al. 2008). Each step in the network is repre-
sented as an elementary reaction involving either re-
versible binding–unbinding, movement between reaction
compartments, or enzyme-mediated catalysis. The initial
concentrations of proteins are assessed using quantitative
Western blotting or mass spectrometry, dynamical tra-
jectories are measured experimentally, and rate parame-
ters are estimated using obj(k1..ki), with any available
knowledge on rate constants (obtained in vitro or from
previous modeling) included as priors in the estimation
scheme. The vast majority of these biochemical models
are likely to remain nonidentifiable, given available data,
but we learned that this does not preclude our making
high-likelihood predictions. Currently, it is common to
see simulation models published in which a single good
fit is discussed. Many models are also calibrated using
population average data, even though both deterministic
and stochastic models are actually single-cell representa-
tions. Neither of these should be regarded as lethal
weaknesses in today’s studies, but, over time, we are likely
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to demand more rigorous approaches. As we learned,
making rigorous probabilistic statements about cellular
biochemistry will involve (1) model calibration tools that
enable effective sampling of the objective functions to
obtain parameter distributions and parameter correlations,
and (2) experimental design tools that aid in selecting
experiments that have the greatest impact on the reliabil-
ity of model-based predictions.

Future perspectives

It is now time for molecular biologists to think about
biochemical processes in the language of dynamical
systems and move beyond largely inappropriate QSSA
(Michaelis-Menten) approximations. However, we must
acknowledge that, even to practitioners, detailed bio-
chemical models are difficult to understand. A major pro-
blem is that, when many proteins are involved, or when
combinatorial assembly must be modeled (for example,
when considering binding of multiple adaptor proteins to
multiple phosphotyrosine sites on receptor tails) (Blinov
et al. 2004; Faeder et al. 2009), equations become ex-
tremely complex and opaque. It is virtually impossible to
understand such equations, and many models contain
errors that are hard to identify. The fundamental problem
is excessive detail in the model description (although not
necessarily in the models themselves). In modeling bio-
chemical reactions, we require abstraction layers akin to
those distinguishing machine code from programming
languages or graphical user interfaces from command lines.
Fortunately, a new set of ‘‘rules-based’’ modeling tools have
been developed recently with precisely this goal in mind
(Blinov et al. 2004; Faeder et al. 2009; Feret et al. 2009;
Mallavarapu et al. 2009). As these tools become more
mature, they will make models much easier to understand.

While cellular biochemistry is likely to remain strongly
hypothesis-driven and mechanism-oriented, it needs to
become more integrative, probabilistic, and model-driven.
Powerful mass spectrometry, flow cytometry, and single-
cell measurement technologies are continuously being de-
veloped, thereby supplying the necessary experimental
methods. However, the computational tools required for
effectively modeling cellular biochemistry are still in
their infancy and are grievously underappreciated. It is
nonetheless our opinion that the development of appro-
priate conceptual frameworks for discussing biochemical
models, data, and hypotheses will revolutionize cellular
biochemistry in much the same way that machine
learning and new measurement methods revolutionized
genomics.
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