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Review
Carbon catabolite repression (CCR) controls the order
in which different carbon sources are metabolized.
Although this system is one of the paradigms of the
regulation of gene expression in bacteria, the underlying
mechanisms remain controversial. CCR involves the co-
ordination of different subsystems of the cell that are
responsible for the uptake of carbon sources, their break-
down for the production of energy and precursors, and
the conversion of the latter to biomass. The complexity
of this integrated system, with regulatory mechanisms
cutting across metabolism, gene expression, and signal-
ing, and that are subject to global physical and physio-
logical constraints, has motivated important modeling
efforts over the past four decades, especially in the
enterobacterium Escherichia coli. Different hypotheses
concerning the dynamic functioning of the system have
been explored by a variety of modeling approaches. We
review these studies and summarize their contributions
to the quantitative understanding of CCR, focusing on
diauxic growth in E. coli. Moreover, we propose a highly
simplified representation of diauxic growth that makes it
possible to bring out the salient features of the models
proposed in the literature and confront and compare the
explanations they provide.

CCR and mathematical modeling
All free-living bacteria have to adapt to a changing envi-
ronment. Specific regulatory systems respond to particular
stresses, but the most common decision bacteria have to
make is the choice between alternative carbon sources,
each sustaining a specific, maximal growth rate. Many
bacteria have evolved a strategy that consists in utilizing
carbon sources sequentially, in general favoring carbon
sources that sustain a higher growth rate. As long as a
preferred carbon source is present in sufficient amounts,
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the synthesis of enzymes necessary for the uptake and
metabolism of less favorable carbon sources is repressed.
This phenomenon is termed CCR and the most salient
manifestation of this regulatory choice is diauxic growth
(Figure 1) [1–6].

CCR, occupying such a central position in the regulation
of bacterial metabolism, has been intensely studied for
more than 50 years. The underlying regulatory system
involves a complex interplay between metabolism, signal-
ing by metabolites and proteins, and the regulation of gene
expression, all in the context of global constraints on cell
physiology. However, the precise role of the different mech-
anisms that have been identified remains controversial
[2]. In this review we expose the fundamental regulatory
logic of CCR and we summarize different mechanisms that
produce diauxic growth. Even though the regulatory logic
is common to all bacteria, we focus on Escherichia coli for
specific examples.

Owing to the complexity of the regulatory networks in
the cell, an intuitive understanding of CCR is virtually
impossible. To explain how the observed behavior of a
bacterial cell emerges from networks of biochemical reac-
tions and regulatory interactions, and predict the response
of this system to specific experimental perturbations,
mathematical models have been found useful [7,8].

A variety of models has been proposed for CCR, focusing
on different aspects of the phenomenon. Flux balance
models predict the distribution of metabolic fluxes that
maximize the growth rate in the presence of a mixture of
carbon sources [9,10]. An extension of the flux balance
models also takes into account constraints imposed by
the limited amount of resources available to the cell
(density of transporters in the cell membrane, translation-
al capacity, macromolecular crowding, etc.) [11–13]. The
resource allocation view is also present in models that
weigh the growth benefit of gene regulation against
the costs of producing the necessary regulatory proteins
[14–16]. Mechanistic models focus on enzyme induction, in
other words, the regulation of the expression of enzymes
needed to metabolize a particular carbon source. Moreover,
they include signaling events that inhibit the activity of
transporters of less-preferred sugars in the presence of the
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Figure 1. Carbon catabolite repression (CCR) and diauxic growth. When in the presence of two different growth substrates, the bacterium first metabolizes via enzyme E1

the substrate sustaining the highest growth rate (S1). After exhaustion of the preferred substrate, the enzyme E2 necessary for the utilization of the second substrate (S2) is

synthesized, leading to a temporary growth lag, after which slower growth resumes on S2. Both substrates are converted by catabolic reactions into common precursor

metabolites, M, via different intermediates, X1, and X2. These precursors are used in anabolic reactions for the generation of an internal biomass compartment, B0.

Experimental data for glucose (S1, blue circles), lactose (S2, blue squares), and biomass (B0, red circles) in the right panel are taken from [17]. CCR refers to the different

mechanisms that bring about the above-mentioned changes in enzyme and metabolite levels and metabolic fluxes. A variety of regulatory mechanisms completing the

simple reaction scheme are considered in this review.
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preferred carbon source, a mechanism termed inducer
exclusion (Figure 2). Integrated models attempt to combine
these mechanisms as well as other metabolic regulation
mechanisms into a large model, and are usually formulat-
ed as systems of ordinary differential equations (ODEs)
[17–19]

We review here these different modeling approaches
and assess their capacity to predict the hallmark feature of
CCR, diauxic growth. While CCR is ubiquitous in micro-
organisms [1,2], almost all modeling studies have focused
on Escherichia coli, the first organism for which molecular
mechanisms involved in CCR have been identified in great
detail. We propose a highly simplified representation of
diauxic growth (Figure 1) to explain and compare the
salient features of the models that have been proposed
in the literature. We show that the overall logic of diauxic
growth can be explained by all modeling approaches in
specific situations or for particular combinations of carbon
sources. We argue that the approaches are complementary
in the sense that CCR involves regulation at both the
metabolic and gene expression levels, and both specific
regulatory mechanisms and global physical and physiolog-
ical constraints. To answer some of the unresolved ques-
tions about CCR, we therefore need to combine elements
from several of the existing models.

Flux balance view
Bacteria are commonly assumed to have optimized the
functioning of their metabolism under selective pressure
from the environment. While the objective that may be
optimized is the subject of debate [12,20–22], it is usually
proposed that bacteria maximize their growth rate, some-
times at the expense of biomass yield or ATP. For example,
fast growth on glucose leads to acetate secretion, a phe-
nomenon known as overflow metabolism [23–25]. From
this perspective, the distribution of fluxes in the metabolic
network, and notably the rate of uptake of carbon sources
100
in a given environment, would be selected so as to favor
maximal growth. Can this optimality argument, which
abstracts from the actual molecular mechanisms regulat-
ing the fluxes, be exploited to explain the sequential uptake
of carbon sources by a bacterial cell?

The methodological framework in which this question
has been developed is flux balance analysis (FBA)
[9,10]. Based on a stoichiometry model of the metabolic
network and constraints on metabolic fluxes, FBA looks for
flux distributions in the network that optimize the growth
rate or another objective function. Box 1 summarizes the
mathematical and computational background of FBA,
which has been used in a wide range of applications in
microorganisms [26]. In particular, using genome-scale
reconstructions of metabolism, FBA has been shown capa-
ble of accounting for a range of growth-related phenomena
in Escherichia coli [27,28].

FBA provides a steady-state picture of metabolism.
However, the predicted optimal flux distributions can be
combined with a dynamic model of the concentrations of
external metabolites and biomass, describing how the
latter evolve due to the uptake rate of substrates,
the secretion rate of byproducts, and the growth rate of
the cells. This extension, known as dynamic flux balance
analysis, makes it possible to simulate processes such as
batch growth of a bacterial population in the presence of
multiple substrates [29,30].

Dynamic FBA can reproduce diauxic growth on glucose
and acetate in E. coli. Given a genome-scale stoichiometry
model and (measured) capacity constraints on the glucose
and oxygen uptake rates [31], cells are predicted to start
growing on glucose. Above a specific biomass density, when
the oxygen uptake rate no longer allows all glucose entering
the cell to be completely oxidized, acetate overflow occurs.
When all glucose has been consumed, acetate is taken up
and converted into biomass, at a lower rate (Figure S1 in the
supplementary material online). Notice that, in this case,
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Figure 2. Global physiological effects and regulatory mechanisms involved in carbon catabolite repression (CCR) in Escherichia coli. (Above) The cytoplasm of the cell

contains macromolecules at a high concentration, constraining the total intracellular volume available for metabolic enzymes. The membrane is occupied with transporters

and respiratory chain proteins. (Below) Zoom view of the cytoplasmic membrane and the cytoplasm. Glucose is transported and phosphorylated (P) by the

phosphotransferase system (PTS) composed of proteins EI, Hpr, EIIAGlc, and EIIBCGlc. The phosphate is donated by phosphhoenolpyruvate (PEP) while the latter is

converted into pyruvate. Dephosphorylation of EIIAGlc during glucose uptake leads to inducer exclusion, the inhibition of the uptake of non-PTS carbon sources such as

lactose. The phosphorylated EIIAGlc enzyme activates the adenylate cyclase (AC), which converts ATP into cAMP. This metabolite binds to the transcription factor Crp, a

regulator of more than 260 genes, among which are the genes included in the lacZYA and araBAD operons, the gene cya coding for the adenylate cyclase, the gene crp

encoding the cAMP receptor protein Crp, as well as the gene ptsG coding for the PTS subunit EIIBCGlc. The Crp�cAMP complex stimulates transcription by stabilizing the

binding of RNA polymerase to the promoter region. Transcription inhibition occurs by competition for promoter binding between Crp�cAMP and RNA polymerase. In the

absence of inducer (allolactose and arabinose), enzyme induction does not take place owing to repression of the lacZYA and araBAD operons by LacI and AraC, respectively.

The example illustrates growth of E. coli cells on glucose (upper left) and lactose (upper right). The growth rate is slower and the cell size smaller during growth on lactose

than on glucose (cells are not drawn to scale, see [91] for measured cell volumes). In addition, lactose permeases rather than PTS proteins EIIBCGlc are more prevalent in the

inner membrane when growing on lactose.
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diauxic growth does not require any regulatory constraints
(enzyme activity or enzyme expression).

Interestingly, the same model fails to predict glucose–
lactose diauxie (Supplementary Information I in the sup-
plementary material online). When growing on a mixture
of glucose and lactose, the cells are predicted to take up
these carbon sources simultaneously, contrary to what is
observed experimentally [3,4,17]. This suggests that,
whereas the glucose–acetate diauxie could be reproduced
from metabolic constraints alone, regulation is necessary
101



Box 1. Modeling CCR

Bacterial metabolism is conventionally viewed as a system of biochemical reactions that convert external substrates into biomass and

byproducts. This system can be modeled by coupled ordinary differential equations (ODEs) describing how the reactions, occurring at a specific

rate rj, change the metabolite concentrations ci over time. The stoichiometry matrix N couples the intracellular metabolites to the reactions, by

indicating which metabolites are produced and consumed in the reaction, and at which relative ratios. The models also include dilution by

growth, proportional to the growth rate m:

ċ ¼ Nr � mc: [I]

The simple metabolic network fueling growth from two different substrates, shown in Figure 1 in main text, can be written in the above form by

defining c = [X1, X2, M]0, r = [r1, r2, r3, r4, r5]0, and

N ¼
1 0 �1 0 0

0 1 0 �1 0

0 0 1 1 �1

2
4

3
5:

Notice that at this level of description the dependency of the reaction rates on metabolite and enzyme concentrations is not explicitly taken into

account. Enzymes E1 and E2 are assigned to reactions r1 and r2.

The model for internal cellular processes is coupled to differential equations describing substrate (Si) uptake and biomass (B) growth over time:

Ṡi ¼ �rsi B; Sið0Þ ¼ Si0; Ḃ ¼ m b; Bð0Þ ¼ B0 [II]

The steady state of the stoichiometry model or flux balance equation given by Equation I (while usually neglecting the growth dilution term) is

underdetermined because there are generally more reactions than metabolites. Additional constraints on the fluxes can be defined, based on

measurements of uptake or secretion fluxes, limits on enzyme capacity, or thermodynamic constraints.

Flux balance analysis (FBA) aims at selecting solution(s) of the steady-state equation that optimize a particular criterion such as biomass

production or ATP production. While classical FBA considers the network at one specific (quasi-)steady-state, dynamic FBA allows the (quasi-)

steady state to vary over time as a function of changing substrate concentrations and other growth conditions. At each time-point, the metabolic

fluxes are defined as the solution(s) of a flux balance optimization problem and the concentrations of external substrates, products, and biomass

evolve in accordance with the optimized exchange fluxes.

Taking into account kinetic expressions for reaction rates rj as a function of the intra- and extracellular concentrations leads to a fully dynamic

model. Usually, as in dynamic flux balance analysis, central metabolism is assumed to adapt quickly to changes in external substrate and enzyme

concentrations. As a consequence, intracellular metabolites Xi, M are at quasi-steady-state, which leads to a model in the form of a differential

algebraic (DA) system. Scaling of equations (lower-case characters for the state variables) is an appropriate method to reduce the number of

parameters and to bring the system onto a defined time-scale (here based on the maximal uptake rate of the first enzyme). Using Michaelis–

Menten and first-order kinetics, the scaled model for the simple example of Figure 1 in main text reads as follows:

ODE : ṡ1 ¼ � e1s1

1 þ s1

b; ṡ2 ¼ �ksK s

e2s2g2

1 þ s2

b; ḃ ¼ mb

ė1 ¼ ke1 f 1 � m þ kd1ð Þe1; ė2 ¼ ke2 f 2 � m þ kd2ð Þe2; ḃ
0 ¼ m � m þ kdið Þb0;

algebraic : x1 ¼
e1 s1

1 þ s1

; x2 ¼
e2 s2

1 þ s2

; m ¼ x1 þ kx2; m ¼ e1s1

1 þ s1

þksY s

e2 s2

1 þ s2

Terms f1, f2 and g2, which may be functions of other model variables, allow the regulatory properties of the network to be taken into account.
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in other cases. The FBA approach has been extended to
account for regulatory mechanisms, notably by integrat-
ing rules for determining the expression of enzymatic
genes. For example, in the presence of glucose in the
growth medium, the lacZYA operon is repressed, thus
constraining the flux through the reactions catalyzed by
the transporter and enzymes encoded by the operon. The
additional constraints change the geometry of the flux
cone and thus the predicted optimal solutions by FBA
[32]. This so-called regulatory FBA is capable of predicting
glucose–lactose diauxie and a large number of other
growth phenotypes of E. coli cells [32]. The principle of
regulatory FBA is illustrated with the example network in
Figure 3A.

The flux balance view can thus account for some
instances of diauxic growth, but its explanatory value
is limited because the switching between the use of alter-
native metabolic pathways crucially depends on measured
maximal fluxes and auxiliary capacity constraints
[33]. Where do these constraints come from and how do
they fit into the global picture of the supposed optimal
adaptation of microbial metabolism to its environment?
One way to answer this question is to consider the
optimization problem from the perspective of resource
allocation.
102
Resource allocation view
In which activities should a business company invest to
maximize its profits? Cells can be seen as facing similar
questions of resource allocation. They are self-reproducing
systems generating energy and precursors from nutrients
in their environment, to produce macromolecular struc-
tures including ribosomes and enzymes that are necessary
for the synthesis of daughter cells. The limited resources
extracted from the nutrients, as well as physical resources
such as cell volume and membrane space, need to be
distributed over a range of cellular processes. If the cell
is to optimize its growth rate it must make trade-offs
between conflicting demands for these resources. Can
the resource allocation perspective explain diauxic growth?

The flux balance view described in the previous section
has been extended to a (static or dynamic) optimization
problem with additional constraints on the available
resources. One obvious constraint is the existence of an
upper bound on the total enzyme concentration of the cell,
given by physical and physiological constraints on cell
volume, cell density, and the enzymatic fraction of cell
mass [34]. When combined with high-throughput proteo-
mics measurements [35] or prior information on enzyme
molecular weights and catalytic constants [11,36,37], this
yields an additional global constraint on fluxes through the
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Figure 3. Different explanations of diauxic growth: models and their time-course predictions, compared with experimental data [17]. Glucose, blue circles; lactose, blue

squares; biomass, red circles). (A) Regulatory flux balance analysis. The rule exemplifies the (in)activation of enzymes in response to environmental conditions. (B)

Resource allocation. The pie charts represent the proportion of resources (here membrane space) allocated to each reaction. (C) Cost–benefit trade-off. The bar graphs

represent costs (red) and benefits (green) for each reaction, that is, the energy required for the synthesis of the enzyme or transporter, and the energy generated by the flux

through the reaction, respectively. (D) Cybernetic approach. The cybernetic variables represent the fractional allocation of resources to the synthesis of the enzymes. (E)

Inducer exclusion. (F) Transcription activation. (G) Hypothetical inhibition of inducer synthesis by a central metabolite. (H) Enzyme induction, but with different levels for the

initial values. (I) Enzyme induction with different values for maximal rate of enzyme synthesis. S1, S2, substrates; X1, X2, M, metabolites; E1, E2, enzymes; B0, internal

biomass compartment; u1, u2, cybernetic control variables, rs1, rs2, fluxes through reactions consuming S1, S2, respectively.
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network. The use of this constraint leads to a variant of
FBA, termed FBA with molecular crowding (FBAwMC),
which has been used to predict the sequence and the mode
of substrate uptake in wild type and mutant E. coli cells. In
particular, the model was capable of reproducing the tem-
poral order of substrate utilization in a batch culture
containing five different carbon sources [11]. Another con-
straint can be formulated by taking into account the com-
petition for limited membrane space between nutrient
transporters and respiratory chain proteins, and this
was found to improve predictions on the relative utilization
of respiration and fermentation in growing E. coli cells [13].

Figure 3B illustrates how an additional constraint on
the total enzyme abundance in an optimization framework
can reproduce diauxic growth. The example is reminiscent
of the so-called cybernetic models developed by Ramak-
rishna and colleagues [38,39]. Cybernetic models provide a
coarse-grained description of microbial kinetics and allo-
cate resources to the synthesis or the activity of specific
enzymes in proportion to their return, that is, the growth
rate on the substrate metabolized by the enzyme. The
different variants of cybernetic modeling have been capa-
ble of accounting for a variety of scenarios of simultaneous
or preferential uptake of carbon sources in E. coli [38,40].

The application of resource allocation approaches usu-
ally requires an estimate of the total mass (or concentra-
tion) of enzymes available in a given growth condition.
Hwa and colleagues have analyzed the proteome of E. coli
in more detail and developed growth laws to phenomeno-
logically describe how the distribution of total protein over
sectors of the proteome, each representing a class of pro-
teins with a specific function, varies with the growth rate
[41,42]. The model predicts that, with increasing growth
rate, the fraction of protein that is involved in catabolism
decreases, while the fraction of protein involved in anabo-
lism increases [42]. Moreover, as is well documented, the
fraction of protein that is involved in transcription and
translation also increases with the growth rate. The latter
observation highlights that the abundance of the gene
expression machinery is adjusted across growth condi-
tions, and cannot simply be considered constant (as is done
in many models). Several recent studies have suggested
that the latter effect may be important for the expression
control of particular genes [43–47], including genes that
encode global transcription regulators and enzymes
involved in carbon metabolism, such as Crp [43].

It is important to note that flux constraints originating
from resource limitations to a large extent root in metabo-
lism itself, which produces the energy and precursors
necessary for the synthesis of enzymes [48]. This autocat-
alytic nature of metabolism has been captured in several
recent models that describe the fueling of gene expression
by metabolism and the control of metabolic fluxes by the
products of gene expression. For example, FBA models that
complete the genome-wide reconstruction of E. coli metab-
olism have been extended with reactions involved in the
synthesis of more than 1000 E. coli proteins [12]. Optimi-
zation of the growth rate in the resulting huge model has
been shown to lead to more accurate predictions of growth
rate and substrate uptake/byproduct secretion rates across
several different growth conditions, as well as generating
testable predictions about protein levels (see also [33,49]).

Resource allocation is fundamentally an optimization
problem, focusing on supposedly optimal flux distributions
103
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without worrying about the actual regulatory mechanisms
the cell has developed to control fluxes. However, the
results of the approach can be used to understand the
advantage conferred by the existence of particular regula-
tory mechanisms. This point has notably been developed in
the context of the transcriptional regulation of metabolic
enzymes [14–16,50,51]. Specifically, the cell has to weigh
the growth benefit provided by a regulatory mechanism
against the cost or metabolic burden it incurs. One would
expect that the investment in the synthesis of a regulatory
protein controlling a metabolic operon will only pay off if
the expression of the operon is costly and the need for the
resulting enzymes strongly varies between conditions.
Growth on two carbohydrates has not been considered
from this cost–benefit perspective. However, as illustrated
for the example network in Figure 3C, it can in principle
reproduce diauxic growth.

The resource allocation perspective is capable of suc-
cessfully predicting, in a variety of diauxic growth condi-
tions, the substrate uptake and assimilation patterns of
bacteria and the growth rates they sustain. Its value lies in
uncovering a rationale for the observed behavior by relat-
ing it to an optimality criterion. However, because it
largely ignores the regulatory mechanisms achieving
resource allocation, it cannot provide a causal explanation
of the phenomena.

Mechanistic view
Among the regulatory mechanisms that have been shown
to play a role in diauxic growth, enzyme induction was the
first to be discovered [52]. It involves the repression of the
genes required for the assimilation of a substrate by a
transcription factor, as well as the release of this repres-
sion by an inducer molecule when the substrate is available
in the growth medium (Figure 2). Well-known examples of
enzyme induction in E. coli are the regulation of the lactose
and arabinose operons [53,54]. In addition to operon-
specific mechanisms, there are global regulators of
carbohydrate uptake and metabolism [2,55]. In E. coli
the major global player is the transcription activator
Crp (cAMP receptor protein) [56,57]. Crp is encoded by
the gene crp and influences positively and/or negatively
more than 260 operons [58]. Crp is activated by cAMP, a
second messenger that is synthesized by the adenylate
cyclase Cya. cAMP synthesis is classically believed to be
controlled by the concentration of Cya on the one hand and
the phosphorylation state of the phosphoenolpyruvate-
carbohydrate phosphotransferase (PTS) system on the
other. At high glucose-uptake rates, the glucose-specific
IIA component of the PTS, EIIAGlc, is mostly unphosphory-
lated but, when glucose is depleted from the medium, the
phosphorylated form becomes dominant and activates Cya
[1,59]. Recent findings, however, suggest that other me-
tabolites, such as a-ketoglutarate, oxaloacetate, and also
pyruvate might act as effectors of Cya too [42]. The PTS is
also involved in another regulatory mechanism of CCR,
inducer exclusion. In the presence of glucose, unpho-
sphorylated EIIAGlc inhibits the activity of several non-
PTS permeases, as well as glycerol kinase, to inhibit the
uptake and metabolism of alternative carbon sources
[1,60].
104
To what extent can the above regulatory mechanisms
quantitatively account for diauxic growth phenomena?
Given the multilayered complexity of the regulatory net-
works schematized in Figure 2, this question is difficult to
answer by intuitive reasoning alone. This has motivated
the development of quantitative ordinary differential
equation (ODE) models, which integrate knowledge on
the molecular mechanisms and the parameters describing
the kinetics of these mechanisms. The stoichiometry of the
underlying biochemical reactions also provides the start-
ing-point for these models but, unlike the FBA approaches
discussed above, explicit expressions for the reaction rates
are provided (Box 1). The added descriptive power of the
model comes at a price – namely that quantitative values
for all kinetic parameters need to be provided, either by
direct biochemical measurements or by estimation from
steady-state or time-course data, typically concentrations
of enzymes and metabolites [61–63]. Because direct mea-
surements of biochemical parameters may not be available
or unreliable, unless special care is taken to approach in
vivo conditions [64] – and parameter estimation in complex
nonlinear mathematical models is a difficult problem
[65–67] – this step remains the most important bottleneck
in the development of mechanistic models.

Mechanistic models of CCR in bacteria have a long
history, with early examples dating back to the 1970s
and 1980s [68,69]. Over the past decade, increasingly
more-complex models have been developed taking into
account one or several of the above-mentioned regulatory
mechanisms [17,18,70]. Table 1 summarizes and compares
a few well-known examples of models of central carbon
metabolism in E. coli and its regulation. Some models
additionally account for spatial effects, for example diffu-
sion limitations in PTS functioning [71], while others
integrate the inherent stochasticity of gene expression
[72,73].

The model of Bettenbrock and colleagues describes the
expression of 17 enzymes in E. coli central carbon metabo-
lism, 38 enzymatic reactions, and the dynamic behavior of
more than 50 metabolites, accounting for enzyme induc-
tion, cAMP regulation, and inducer exclusion [17]. While
many of the parameters could be obtained from the experi-
mental literature, about one third needed to be estimated
from dedicated time-series experiments in which growth
rate, external metabolites, and gene expression were
measured. Among other aspects, the model was able to
faithfully reproduce glucose–lactose diauxie in several
genetic backgrounds and growth conditions. It confirmed
the known role of inducer exclusion in preventing lactose
uptake in the presence of glucose, but also demonstrated
the importance of the occurrence of a cAMP pulse during
the transition period for the adaptation of cellular physiol-
ogy. In particular, the transcriptional regulation of the pts
genes by Crp�cAMP, while often neglected, was found to be
quantitatively important, a prediction that would have
been difficult to make without the model.

The model of Kotte and colleagues has taken this work
further by coupling transcriptional regulation of enzyme-
encoding genes to intermediates of central carbon metabo-
lism [18]. The analysis of the model has led to the insight
that changes in metabolic fluxes, for example during diauxic



Table 1. Comparison of models for CCRa,b

Wong [69] Kremling [92] Degenring [93] Sauter [94] Lee [95]

Type of equation DA DA ODE ODE Algebraic, logic rules

Kinetics Yes Yes Yes Yes No (constraints)

# State variables 13 20 10 22 Not determinable

# Kinetic parameters 65 90 127 53

Network modules

- Uptake systems Glc, Lac Glc, Lac Glc Scr Glc, Lac

- Glycolysis � � �
- TCA

- PPP �
- Global regulation cAMP�Crp cAMP�Crp cAMP�Crp 21 regulatory

proteins

- Specific regulation LacI LacI (e.g., Crp, LacI,

GalR)

- Allosteric control No Yesc Yesc No

Experimental validation Parametric

sensitivity

Literature, selected

state variables

measured (wild

type, mutant strains)

Parametric

sensitivity

Pulse

experiment,

stop feeding

Qualitative batch

experiment

Bettenbrock [17] Asenjo [96] Nishio [97] Covert [98] Baldazzi [99]

Type of equation DA Discrete, logic rules DA DA, logic rules DA

Kinetics Yes Stochastic Yes Partly No

# State variables 67 67 63 282 40

# Kinetic parameters 320 131 8

Network modules

- Uptake systems Glc, Lac, Gly,

Glc6P, Ac

Glc, Gly, Ac Glc 11 carbohydrates Glc

- Glycolysis � � � �
- TCA � �
- PPP �
- Global regulation cAMP�Crp cAMP�Crp, FruR cAMP�Crp 16 transcription

factors

cAMP�Crp, FruR, Fis,

RpoS

- Specific regulation LacI, GalS, GalR, Mlc Mlc Mlc

- Allosteric control Yesc No No Yes (for dynamic

part)

Yesc

Experimental validation Selected state

variables, 18

experiments

(wild type,

mutant strains)

Literature, batch

experiments

Steady-state

data for

mutant strains

Single gene

perturbation from

literature, batch

experiments

No

Kotte [18] Berthoumieux [65] Peskov [70] Matsuoka [100]

Type of equation DA DA ODE DA

Kinetics given Yes No Yes Yes

# State variables 47 23 48 35

# Kinetic parameters 193 Yes 476 99

Network modules

- Uptake systems Glc, Ace Glc Glc Glc

- Glycolysis � � � �
- TCA � � � �
- PPP � � � �
- Global regulation cAMP�Crp,

FruR

cAMP�Crp,

FruR

- Specific regulation PdhR, IclR PdhR, IclR

- Allosteric control Yesc Yesc Yesc Yesc

Experimental validation Complete set

for all state

variables

(steady-state)

Literature Steady-state

dataset

Batch experiments

with wild type and

mutant strains

aModels are named according to the first author of the publication.

bAbbreviations: Ac, acetate; DA, differential algebraic system; Glc, glucose; Glc6P, glucose 6-phosphate; Gly, glycerol; Lac, lactose; ODE, ordinary differential equation

system; PPP, pentose phosphate pathway; Scr, sucrose; TCA, tricarboxylic acid cycle. The symbol � indicates that the respective subnetwork is considered in the

publication; #, number.

cFor details see original publications.
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growth, are captured in a distributed way at different loca-
tions in the metabolic network. The information provided by
these sensors, notably Crp�cAMP, Cra (catabolite repressor
activator)�FBP (fructose 1,6-biphosphate), IclR (isocitrate
lyase regulator)�GLX (glyoxylate)�PYR (pyruvate), and
PdhR (pyruvate dehydrogenase complex regulator)�PYR,
feed back into the regulation of the fluxes, either in the
short run (by modulating enzyme activity) or in the long run
(by affecting gene expression). Recently, a follow-up study
provided further experimental evidence for Cra�FBP being a
sensor of glycolytic flux [74]. While these and other studies
have succeeded in integrating known interactions into a
single model, there remains uncertainty about, for example,
the molecular details of EIIAGlc activation of Cya [2,75]
and FBP inhibition of Cra [76,77].

Kinetic models of the example network in Figure 1,
accounting for enzyme induction, global gene expression
regulation, and inducer exclusion, allow a good fit to the
glucose–lactose data for chosen parameter values
(Figure 3E–G). The model accounting for enzyme induction
only (Figure 3H,I) corresponds to a minimal model for CCR
proposed by Narang and colleagues [19]. This minimal
model is able to predict diauxic growth, and also explains
the general observation that the preferred substrate sup-
ports faster growth than the less-preferred substrate
[78]. A key element of this model, in addition to enzyme
induction, is the passive control of enzyme concentrations
by the growth rate. Fast growth on a preferred substrate
results in strong dilution of the enzymes, in particular the
non-induced enzymes for the less-preferred substrate, thus
preventing utilization of the latter. The minimal model
also accounts for the observation that, at low growth rates,
alternative substrates can be utilized simultaneously, as
observed experimentally [79]. While providing an elegant
explanation for diauxic growth, it should be noted that
growth on some substrates, such as acetate, requires global
transcriptional regulation by cAMP. A strain with a cya
deletion cannot express the enzyme acetyl-CoA synthetase
(Acs), a key enzyme in acetate metabolism [80], and has a
severe growth defect.

While current mechanistic models can thus explain
some instances of diauxic growth, they are usually limited
to a restricted range of phenomena. One reason may be the
existence of regulatory connections that are unknown or
unaccounted for, such as a-ketoacids coupling carbon
catabolic fluxes to nitrogen and sulfur availability
[42,81,82]. More generally, active or passive mechanisms
bringing about the resource allocation constraints dis-
cussed in the previous section may play a role. Thus far,
no mechanistic model has integrated effects such as the
competition for limited membrane space and changes in
the activity of the transcriptional and translational
machinery as well as mRNA stability [83] during growth
transitions.

Concluding remarks
Microbial systems biology aims at gaining a systems-level
understanding of the functioning of microbial cells, using a
combination of mathematical modeling and experiments
[7,84,85]. We have illustrated this by revisiting a classical
phenomenon in microbiology, CCR and diauxic growth in
106
Escherichia coli, from a systems-biology perspective. We
have notably considered models that view diauxic growth
as arising from the maximization of growth rate in a
network of metabolic reactions, the optimal allocation of
scarce resources to the synthesis and activity of enzymes
involved in different metabolic pathways, and the opera-
tion of interlocking regulatory mechanisms at the molecu-
lar level. Probably the most interesting novel insight
collectively emerging from all these models is that the
different approaches are able to quantitatively reproduce
diauxic growth with some success and, moreover, can
explain specific aspects of its functioning that would have
been difficult to achieve otherwise. However, each ap-
proach comes with limitations owing to its particular
way of framing the problem, thus restricting its range of
applicability and its appropriateness for answering specific
biological questions.

The application of flux balance models depends on the
definition of capacity constraints and usually requires
additional regulatory constraints for enabling or disabling
specific metabolic pathways depending on the carbon
sources present in the growth medium. While the use of
FBA for explaining diauxic growth is thus limited, exten-
sions that take into account global resource allocation
constraints are more powerful. They define an extended
optimization problem from which the capacity and regula-
tory constraints in FBA naturally arise. However, the
major strength of these approaches – the ability to make
quantitative predictions from minimal information on reg-
ulatory mechanisms using an optimality criterion – is also
their major weakness. The choice of an optimality criterion
is obviously crucial, but controversial [12,20–22]. While
most studies assume that the cell optimizes its growth
rate, there are examples of bacteria that exhibit a so-called
inverse diauxie, preferring carbon sources that sustain a
lower growth rate [86]. It is also not clear to which extent
the models preserve their predictive capability in situa-
tions where optimality arguments may not apply, for
example in mutant strains. More fundamentally, resource
allocation models may be helpful in recognizing why
diauxic growth occurs, but will not be of much use in
understanding how the cell has implemented sequential
uptake. Mechanistic models of central carbon metabolism
do capture many of the known molecular mechanisms, and
thus have the potential of providing such explanations. A
major disadvantage of mechanistic models, however, is
that they are difficult to calibrate. Moreover, they often
do not generalize beyond the specific experimental scenar-
ios for which they have been designed because they focus
on a small module of the regulatory network, ignoring
the interactions of this module with the rest of the cell.
In particular, they usually do not account for global effects
due to physical constraints (molecular crowding, mem-
brane occupancy, growth-rate dilution) and due to mecha-
nisms controlling global physiological effects (activity of
the transcription and translation machinery, mRNA and
protein stability).

All the proposed models in the literature probably
capture important aspects of diauxic growth and CCR:
bacterial metabolism in flux balance models, global physi-
cal and physiological constraints in resource allocation



Box 2. Outstanding questions

� What is the relative importance of the different regulatory

mechanisms that have been demonstrated to play a role in CCR?

� How can the supposed optimal functioning of bacterial metabo-

lism be related to the known regulatory mechanisms of CCR?

� How can global cell physiology be integrated into existing

mechanistic models of CCR?

� How can the resulting multiscale dynamic models be reliably

calibrated from experimental data?
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models, and specific regulatory mechanisms in mechanis-
tic models. We believe that a new generation of models is
needed, including all these aspects. Such models would be
precious for addressing open questions in CCR, for exam-
ple the precise role of the central signaling molecule
cAMP. The common textbook explanation of CCR assigns
a major role to cAMP, allowing it to activate operons of less
preferred carbon sources like lactose, when preferred
carbon sources such as glucose have been depleted
[56,57]. This explanation is notably based on the correla-
tion between glycolytic fluxes, the phosphorylation state of
the PTS, and the activity of Cya ([1] and references there-
in). However, it is in conflict with the observation that the
concentration of cAMP is almost identical when E. coli
cells are growing on either glucose or lactose [87,88]. More-
over, there is evidence that inducer exclusion is mostly
responsible for glucose–lactose diauxie [19,87]. Recent
work has suggested a completely different role for cAMP,
namely coordinating the expression of catabolic proteins
with biosynthetic and ribosomal proteins, in accordance
with the metabolic needs of the cell [42]. Outstanding
questions are listed in Box 2.

A variety of other interesting questions can be men-
tioned that could be profitably addressed by these models,
including a comparison of the variety of molecular imple-
mentations of CCR in different organisms and their func-
tional properties, and the analysis of more complex
ecological growth scenarios. This requires models that
view the cell as a whole, instead of focusing on specific
metabolic and regulatory networks in isolation from the
cellular environment. In recent years, this whole cell per-
spective has gained ground, with the model of Mycoplasma
genitalium as a landmark achievement [89]. It provides a
detailed description of all known molecular components of
the cell and the biochemical reactions and regulatory
interactions in which they are involved. Nevertheless, it
is not always necessary to develop a whole cell perspective
at a detailed molecular level. As illustrated in this review,
even extremely simplified models may explain aspects of a
complex phenomenon such as diauxic growth, and can
capture the essential dynamic features of the mechanisms
at work. For many questions, a global view of the function-
ing of the cell may be obtained using coarse-grained models
[33,90], providing the cellular context missing in mecha-
nistic models of specific cellular processes.
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