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« |IBIS: systems biology group at INRIA/Université Grenoble-Alpes

— Analysis of bacterial regulatory networks by means of models and
experiments

— Biologists, computer scientists, mathematicians, physicists, ...
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Overview

« Part 1. Systems biology and kinetic modeling

— Introduction
— Kinetic modeling of cellular reaction networks

« Part 2. Metabolic network modeling

— Kinetic modeling of metabolism

— Metabolic control analysis (MCA)

— Flux balance analysis (FBA)

— Practical on flux balance analysis (COBRA)

e Part 3. Gene regulatory network modeling
 Part 4. Models and data
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Biochemical reaction networks

 ODE model for growth of microbial populations:
t=N-v(x)— -,
;1,:5-2 a; - N;-v(x).

1

* Reaction rates depend on concentrations x of substrates,
products, effectors




Metabolic networks

* Focus on subsystems that can be studied in isolation due

to modular structure of reaction networks T
— Time-scale hierarchies
o n.ﬂg Metabolic master regulation
— Connectivity structure ;'9":5 &
: ¥

 Metabolic networks 7

— Metabolites and enzymatic e

reactions 338
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— Short turn-over times of
metabolite pools in comparison
with enzyme pools
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Metabolic networks

* Models describing dynamics of metabolism
— Effect of growth dilution can often be ignored
— Variables are metabolites and rates of enzyme-catalyzed reactions
— Enzyme concentrations constant on time-scale of metabolic
dynamics

= Nuv(x)




Stoichiometry matrix
« Stoichiometry matrix /N describes structure of reaction

network
Internal reactions and exchange reactions, reversible and irreversible
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Schilling et al. (2000), J. Theor. Biol., 203(3):229-48




Flux balance analysis (FBA)

« Steady state of metabolic network
Nuv=0

Steady-state reaction rates are called fluxes
e Constraints on fluxes: upper and lower bounds
ol <o <t

— Bounds on fluxes derived from available information in literature, bounds
may be infinite

— For mathematical convenience, all fluxes must be positive v > 0

— Reversible reaction modeled as pair of irreversible, positive fluxes
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Flux balance analysis (FBA)

e Steady-state dynamics of metabolic network
Nv=0

« Stoichiometry matrix and constraints define convex space of
possible solutions: flux cone

— System of steady-state equations
underdetermined: more reactions than
concentrations variables.

— Flux cone represents metabolic capabilities
of network (possible flux distributions)

Flux 2

Flux 1
Stelling (2004), Curr. Opin. Microbiol., 7:513-8




Flux balance analysis (FBA)

e Steady-state dynamics of metabolic network
Nv=0

« Stoichiometry matrix and constraints define convex space of
possible solutions: flux cone

— System of steady-state equations
underdetermined: more reactions than
concentrations variables.

— Every solution can be written as linear
combination of rays of flux cone (extreme
pathways)

CZ{U|’U=Z’UJ@'pi, w; > 0, izl,...,k}
=1
p* : extreme pathway i

w; - weigth of ith pathway Flux 1
Stelling (2004), Curr. Opin. Microbiol., 7:513-8

Flux 2




Flux balance analysis (FBA)

e Steady-state dynamics of metabolic network
Nv=0

« Stoichiometry matrix and constraints define convex space of
possible solutions: flux cone

— System of steady-state equations
underdetermined: more reactions than
concentrations variables.

— Every solution can be written as linear
combination of rays of flux cone (extreme
pathways)

C = {U|’U=Z’w¢pi, w; > 0, izl,...,k}
=1
— Set of extreme pathways unique, but solutions

not uniquely defined by extreme pathways Flux 1
Stelling (2004), Curr. Opin. Microbiol., 7:513-8

Flux 2




Flux balance analysis (FBA)
I

 Extreme pathways

In example network p
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Flux balance analysis (FBA)

« Steady state of metabolic network
Nv=0

« Stoichiometry matrix and constraints define convex space of
possible solutions: flux cone

 FBA aims at finding solutions(s) maximising or minimising linear
combination of fluxes: objective function

7 =clo c e R"

Flux 2

« Typical objective functions: biomass
production, ATP production, ...

Flux 1
Stelling (2004), Curr. Opin. Microbiol., 7:513-8




Flux balance analysis (FBA)

Steady-state dynamics of metabolic network
Nv=0

« Stoichiometry matrix and constraints define convex space of
possible solutions: flux cone

 FBA aims at finding solutions(s) maximising or minimising linear
combination of fluxes: objective function

« Constrained optimisation problem in mathematics

— Use of LP (linear programming) for solving optimisation problem
— COBRA toolbox for building and analysing FBA models

Palsson (2006), Systems Biology: Properties of Reconstructed Networks, Cambridge University Press
Orth et al. (2010), Nat. Biotechnol., 28(3):245-8




Genome-scale models of E. coli metabolism

« Genome-scale reconstruction of E. coli metabolism

* FBA predictions of flux distributions maximising growth rate
with acetate as carbon source

— Given acetate and oxygen uptake rates, compute optimal growth rate

— Line of optimality indicates combinations of acetate and oxygen
uptake rates with maximal growth rate

— Experimental test of predicted line of optimality: control of acetate
uptake rate and measurement of growth and oxygen uptake rate

A 20 B Growth rate (1)
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p
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Edwards et al. (2001), Nat.
Biotechnol, 19(2):125-30
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Genome-scale models of E. coli metabolism

« Genome-scale reconstruction of E. coli metabolism

* FBA predictions of flux distributions maximising growth rate
with acetate as carbon source

« (Good correspondence of FBA predictions and experimental
data suggests that E. coli metabolic network is optimised to
maximise growth rate on acetate

ldem succinate
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Edwards et al. (2001), Nat.
Biotechnol, 19(2):125-30
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Genome-scale models of E. coli metabolism

« Genome-scale reconstruction of E. coli metabolism

* FBA predictions of flux distributions maximising growth rate
with glucose as carbon source and fixed oxygen uptake rate

« Effect on growth rate when deleting genes in central carbon

metabolism
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Edwards et al. (2000), Proc. Natl. Acad. Sci. USA, 97(10):5528-33



Genome-scale models of E. coli metabolism

« Genome-scale reconstruction of E. coli metabolism

* FBA predictions of flux distributions maximising growth rate

with glucose as carbon source and fixed oxygen uptake rate

. Effect on flux distribution when &3

deleting genes in central carbon
metabolism

Deletion of zwf (red) and zwf/pnt (blue)

Edwards et al. (2000), Proc. Natl. Acad. Sci.
USA, 97(10):5528-33



Genome-scale models of E. coli metabolism

« Genome-scale reconstruction of E. coli metabolism

* FBA predictions of flux distributions maximising growth rate
with glucose as carbon source and fixed oxygen uptake rate

« Good correspondence with data for gene deletions examined
(86%), but less so for broader range of conditions (60%)

Observed growth rate lower than predicted growth rate

* Not surprising: regulatory network of wild-type cells may not
be optimal in mutant backgrounds!

Regulatory network selects actual flux distribution from possible flux
distributions in flux cone




Genome-scale models of E. coli metabolism

« Genome-scale reconstruction of E. coli metabolism

* FBA predictions of flux distributions maximising growth rate
with glucose as carbon source and fixed oxygen uptake rate

« Good correspondence with data for gene deletions examined

(86%), but less so for broader range of conditions (60%)
Observed growth rate lower than predicted growth rate

* Not surprising: regulatory network of wild-type cells may not
be optimal in mutant backgrounds!

Regulatory network selects actual flux distribution from possible flux
distributions in flux cone

 However, experiments show that E. coli mutant undergoes
adaptive evolution to achieve predicted optimal growth rate

Ibarra et al. (2002), Nature, 420(6912):186-9 ‘




Genome-scale models of E. coli metabolism

 However, experiments show that E. coli mutant undergoes
adaptive evolution to achieve predicted optimal growth rate

— Growth on malate and other a
substrates 151

— Measured substrate and oxygen
uptake rates
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Regulatory flux balance analysis

e Steady-state dynamics of metabolic network

Nv=0

« Stoichiometry matrix and constraints define convex space of
possible solutions: flux cone

* Refinement of flux cone using additional

constraints

Regulation of enzyme activity or expression,
switching on/off extreme pathways

Covert et al. (2003), J. Theor. Biol., 221(3):309-25
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Genome-scale models of E. coli metabolism

* Regulatory network of wild-type cells may not be optimal in
mutant backgrounds

 How do predictions
change when including *
regulatory network? e

« Genome-scale model of  §
E. coli metabolism,
Including regulation of . ELi==
enzymatic genes

Boolean models relating s
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con d Itions Covert et al. (2004), Nature, 429(6987):92-6
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Genome-scale models of E. coli metabolism

* Regulatory network of wild-type cells may not be optimal in
mutant backgrounds

« Genome-scale model of

E. coli metabolism, " |
including regulation of - =
enzymatic genes || l

» Prediction of growth rate |
in different mutants and ¢ ,, (EINE .
growth conditions s
improved e SR < B S

60% vs 78% il ||I||I||\|I ™ I\I\ﬂllll\ﬂ

Covert et al. (2004), Nature, 429(6987):92-6




Dynamic flux balance analysis

* Dynamics of metabolic network through interactions with
environment

§= —Uep(t)- B, s(0)=sg

B — Pg(f) . B: B(O) = By Substrate |

B : biomass concentration in medium
s : substrate concentration in medium

1 - growth rate
vezt . SUDStrate uptake rate

Biomass

« Dynamics predicted by means of dynamic FBA
— Metabolic network at quasi-steady state with respect to environment

— Computation of exchange rates and growth rate by means of FBA at

each time-point t
— Change in substrate concentrations puts bounds on uptake rates

Mahadevan et al. (2002), Biophys. J., 83(3):1331-40 '




Dynamic flux balance analysis

« Dynamics predicted by means of dynamic FBA
Sequential growth of E. coli on different carbon sources (glucose,

acetate) Orth et al. (2002), Nat. Protocols, 2(3):727-38
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Monte-Carlo sampling of FBA solutions

« Stoichiometry matrix and constraints define convex space of
possible solutions: flux cone

* FBA selects solutions from flux cone optimizing objective
function, but no single solution

« Alternative approach: Monte-Carlo sampllng of optimal
solutions

15

Distributions for
individual fluxes in
network

10

b,

Price et al. (2004), Biophys. J., 87(4):2172-86 '




Monte-Carlo sampling of FBA solutions

* Analysis of glycolysis pathway in E. coli during growth on
glucose
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Monte-Carlo sampling of FBA solutions

* Analysis of glycolysis pathway in E. coli during growth on

glucose
— Tight distributions
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Conclusion FBA

A<> B+ C Reaction1
B+2C—D Reaction 2

® FBA mOdeIS prOV|de a Genome-scale

genome-scale picture of l
metabolism and yield
experimentally-testable D Ml opeen

predictions "
— Predictions of flux distributions l

Reaction n

Metabolites
oOWm>

In different growth conditioNS ¢ mass baiance dsfines a Lo
. system of linear equations _ —
and genetic backgrounds ' ) ! 22:;;;:8
l etc.
d Define objective function To predict growth, Z = Viomass

(Z=c v, +c v, ...)

l

e Calculate fluxes
that maximize 2

Orth et al. (2010), Nat. Biotechnol., 28(3):245-8




Conclusion FBA

 FBA models provide genome-scale picture of metabolism
and yield experimentally-testable predictions

— Predictions of flux distributions in different growth conditions and
genetic backgrounds

— Tool for metabolic engineering

— In E. coli and other (less well-characterised) organisms

+ compartmentalized reconstruction (distinct periplasm) \«‘ Feist and Palsson (2008), Nat. Biotechnol.,
« extensive cell wall metabolism (phospholipids, murein, LPS) - .

1250 4 * reaction thermodynamics 7 26(6)-659'67
« alternate carbon utilization P
1 quinone characterization > S
1000 7 . elemental and charge balancing " -

8 « fatty acid metabolism -~ ”
g 750 4 * expanded cellular transport systems ” ”~ ”
- 4

« used genome as a scaffold
-

P @ reactions
- A genes
B metabolies

500 4 * cell wall constituent biosynthesis 7’
« cofactor biosynthesis

= growth-dependent biomass objective hmcﬁon'
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Conclusion FBA

« But FBA has problems as well!
— Practical question: which objective function works best for problem
considered?
— Fundamental question: what do microorganisms optimise?

Schuetz et al. (2007), Mol. Syst. Biol., 3:119

— Integration of regulatory mechanisms on metabolic and genetic
level is not easy to achieve in FBA formalism

— No predictions on dynamics on time-scale of metabolism




Internships in IBIS

« Challenging problems for biologists, physicists, computer
scientists, mathematicians, ...

* ... In a multidisciplinary working environment
« Contact: Hidde.de-Jong@inria.fr and ibis.inrialpes.fr

Courtesy Guillaume Baptist (2008)
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